Some Timestamping Protocol Failures Failures

March 12, 1998

Mike Just School of Computer Science Carleton University Ottawa, Canada

just@scs.carleton.ca http://www.scs.carleton.ca/~just/

Mike Just, Carleton University. ¹

Outline

- · Results
- Model \bullet
- Temporal Authenticity
- Benaloh/de Mare scheme
- Haber/Stornetta scheme \bullet
- Concluding Remarks \bullet

Results

- define two classes of timestamping schemes and appropriate measures of their temporal authenticity
- show how confusion between the classes (through lack of proper measurement) leads to a protocol failure
- show how overly ambitious assumptions and incomplete protocol descriptions lead to a protocol failure

Model

Goal is to

- authentically associate a time with data
- so the time and its authenticity can be respectively measured and verified at some later time.

Stamping Protocol

 \bullet On input y , produces a timestamp s .

Verification Protocol

• The authenticity of s is verified. If successful, the measure of time associated to y through s is accepted.

Applications

- patent submissions
- digital signatures
- intellectual property (e.g., lab books, academic papers)
- · electronic commerce

Temporal Authenticity

Message (data-origin) authentication: assurance of the source of a message y .

Temporal authentication: message authentication $+$ uniqueness + timelineness of a message y

- Absolute: assurance of the particular time at which a message was timestamped
- Relative: assurance of the temporal ordering (induced by the timestamp construction) of two messages
- Hybrid: assurance of the provision of both absolute and relative temporal authentication

Verifying Temporal Authenticity

- 1. verify the message authenticity of the timestamp
- 2. measure the time associated with the data by the timestamp

Absolute Measure: determines a particular time of stamping

Relative Measure: determines the ordering of two stamped messages

A message y has been **backdated** if a temporal measurement infers that y' was stamped before y when in fact, y' was stamped after y .

Benaloh/de Mare Timestamping (Eurocrypt '93)

Each round produces one stamp for m messages (bulk **authentication**). Let s_r be the stamp for round r. Results computed in a group of unknown order, e.g. \mathbb{Z}_n where $n = pq$. Let y_i be submitted by user u_i .

$$
s_r = x^{y_1 \cdots y_m}
$$

Authenticity of s_r is maintained (irrelevant here) and u_i keeps $\{z_i, y_i\}$.

(Verification) Given y_i and $z_i = x^{y_1 \cdots y_{i-1}y_{i+1} \cdots y_m}$, u_i demonstrates that

$$
{z_i}^{y_i} \equiv s_r
$$

To provide timelineness, it is suggested to use

 \sim for time \sim for the \sim for the \sim

Protocol Failure

• Given y_i , z_i and s_r , how is x either recovered, or verified for its correctness? (Solution: it isn't.)

Providing a recoverable measurement

- Absolute: authentically store the current time along with s_r
- Relative: (chaining) authentically store

$$
s_r^\prime = h(s_r,s_{r-1})
$$

Haber/Stornetta Timestamping (Journal of Cryptology '91)

Let s_r the stamp for round r. Let T be a timestamping service that

- is unable to backdate
- requires no record keeping
- 1. u sends y_r and $ID_r = ID_u$ where ID_u is the unique identification for user u , to T.
- 2. T computes the timestamp $s_r = sig_T(C_r)$, where

$$
C_r = (r, t_r, ID_r, y_r; L_r)
$$

\n
$$
L_r = (t_{r-1}, ID_{r-1}, y_{r-1}, H(L_{r-1}))
$$

3. For next request from user v, T sends $(s_r, ID_{r+1} =$ ID_v) to u.

Haber/Stornetta (cont'd)

Absolute timestamp is provided by the inclusion of the time t_r .

Relative timestamp is provided by the inclusion of the linking information L_r .

Therefore a **hybrid timestamp** is provided.

Verification

- 1. ID_j produces (s_j, ID_{j+1}) for a challenger
- 2. signature on s_i is verified
- 3. (collusion protection) contact ID_{j+1} and obtain (s_{i+1}, ID_{j+2}) where

$$
s_{j+1} = sig_T(j+1, t_{j+1}, ID_{j+1}, y_{j+1}; L_{j+1})
$$

- 4. check that L_{j+1} contains both y_j and $H(L_j)$
- 5. can also check with ID_{j+2} or ID_{j-1} , etc.

Attack

- fake-chain attack (Haber/Stornetta)
- partial insertion attack

backdated (when measured absolutely) if $t_i < t_{j+1}$

Attack Detection?

 \bullet Verifying backwards from i to j.

 $(ID_i = ID_{i+1}$ or another collusion.)

Repeated round numbers.

(extra checks are required)

Lags in time (because of backdating).

(depends on the frequency of attacks and specifics of verification)

Attack Prevention

- 1. proper message authentication, e.g., storage (widespread or otherwise)
- 2. relative measurements (stamps are measured in pairs; combined with periodic authenticated storage)

Are not straightforward preventions since

- \bullet Item 1 alters the original stamping and verification procedures
- Item 2 alters the verification procedure.
- Item 2 can be used without Item 1

Concluding Remarks

- stamping and verification protocols must be fully explained
	- verification of authenticity
	- absolute timestamps require an absolute measurement
	- relative timestamps require a relative measurement
- important to indicate what level of trust is required for each entity
- evidence (e.g., storage of stamps) is important for dispute resolution as well as for verification