Some Timestamping Protocol Failures

March 12, 1998

Mike Just School of Computer Science Carleton University Ottawa, Canada

just@scs.carleton.ca
http://www.scs.carleton.ca/~just/

Outline

- Results
- Model
- Temporal Authenticity
- Benaloh/de Mare scheme
- Haber/Stornetta scheme
- Concluding Remarks

Results

- define two **classes** of timestamping schemes and appropriate **measures** of their temporal authenticity
- show how confusion between the classes (through lack of proper measurement) leads to a protocol failure
- show how overly ambitious assumptions and incomplete protocol descriptions lead to a protocol failure

Model

Goal is to

- authentically associate a **time** with data
- so the time and its authenticity can be respectively **measured** and **verified** at some later time.

Stamping Protocol

• On input y, produces a timestamp s.

Verification Protocol

• The authenticity of s is verified. If successful, the measure of time associated to y through s is accepted.

Applications

- patent submissions
- digital signatures
- intellectual property (e.g., lab books, academic papers)
- electronic commerce

Temporal Authenticity

Message (data-origin) authentication: assurance of the source of a message y.

Temporal authentication: message authentication + uniqueness + timelineness of a message y

- **Absolute:** assurance of the particular time at which a message was timestamped
- Relative: assurance of the temporal ordering (induced by the timestamp construction) of two messages
- **Hybrid:** assurance of the provision of both absolute and relative temporal authentication

Verifying Temporal Authenticity

- 1. verify the message authenticity of the timestamp
- 2. measure the time associated with the data by the timestamp

Absolute Measure: determines a particular time of stamping

Relative Measure: determines the ordering of two stamped messages

A message y has been **backdated** if a temporal measurement infers that y' was stamped before y when in fact, y' was stamped after y.

Benaloh/de Mare Timestamping (Eurocrypt '93)

Each round produces one stamp for m messages (**bulk authentication**). Let s_r be the stamp for round r. Results computed in a group of unknown order, e.g. \mathbb{Z}_n where n = pq. Let y_i be submitted by user u_i .

$$s_r = x^{y_1 \cdots y_m}$$

Authenticity of s_r is maintained (irrelevant here) and u_i keeps $\{z_i, y_i\}$.

(Verification) Given y_i and $z_i = x^{y_1 \cdots y_{i-1}y_{i+1} \cdots y_m}$, u_i demonstrates that

$$z_i^{y_i} \equiv s_r$$

To provide timelineness, it is suggested to use

x = f(current time)

Protocol Failure

Absolute measurement?

• Given y_i , z_i and s_r , how is x either recovered, or verified for its correctness? (Solution: it isn't.)

Providing a recoverable measurement

- Absolute: authentically store the current time along with s_r
- **Relative:** (chaining) authentically store

$$s_r' = h(s_r, s_{r-1})$$

Haber/Stornetta Timestamping (Journal of Cryptology '91)

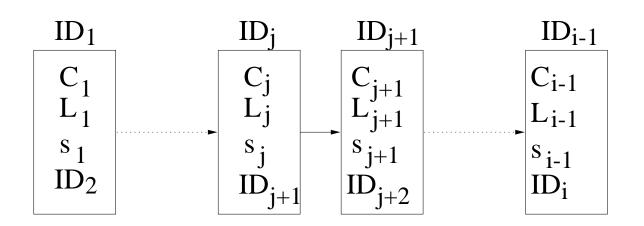
Let s_r the stamp for round r. Let T be a timestamping service that

- is unable to backdate
- requires no record keeping
- 1. u sends y_r and $ID_r = ID_u$ where ID_u is the unique identification for user u, to T.
- 2. T computes the timestamp $s_r = sig_T(C_r)$, where

$$C_{r} = (r, t_{r}, ID_{r}, y_{r}; L_{r})$$

$$L_{r} = (t_{r-1}, ID_{r-1}, y_{r-1}, H(L_{r-1}))$$

3. For next request from user v, T sends $(s_r, ID_{r+1} = ID_v)$ to u.

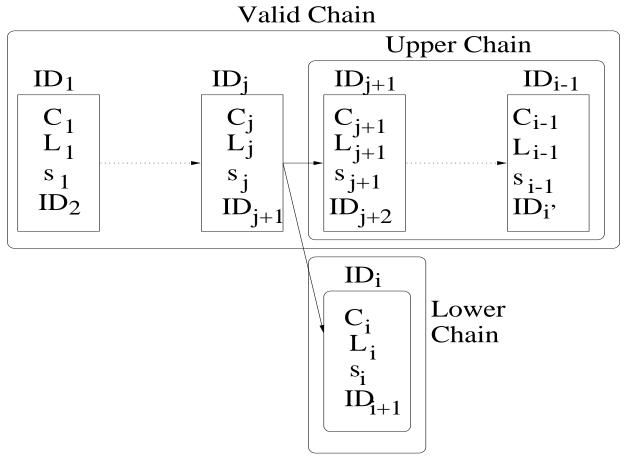

Haber/Stornetta (cont'd)

Absolute timestamp is provided by the inclusion of the time t_r .

Relative timestamp is provided by the inclusion of the linking information L_r .

Therefore a **hybrid timestamp** is provided.

Verification


- 1. ID_j produces (s_j, ID_{j+1}) for a challenger
- 2. signature on s_j is verified
- 3. (collusion protection) contact ID_{j+1} and obtain (s_{j+1}, ID_{j+2}) where

$$s_{j+1} = sig_T(j+1, t_{j+1}, ID_{j+1}, y_{j+1}; L_{j+1})$$

- 4. check that L_{j+1} contains both y_j and $H(L_j)$
- 5. can also check with ID_{j+2} or ID_{j-1} , etc.

Attack

- fake-chain attack (Haber/Stornetta)
- partial insertion attack

backdated (when measured absolutely) if $t_i < t_{j+1}$

Attack Detection?

• Verifying backwards from i to j.

 $(ID_i = ID_{j+1} \text{ or another collusion.})$

• Repeated round numbers.

(extra checks are required)

• Lags in time (because of backdating).

(depends on the frequency of attacks and specifics of verification)

Attack Prevention

- 1. proper message authentication, e.g., storage (widespread or otherwise)
- relative measurements (stamps are measured in pairs; combined with periodic authenticated storage)

Are **not straightforward** preventions since

- Item 1 alters the original stamping and verification procedures
- Item 2 alters the verification procedure.
- Item 2 can be used without Item 1

Concluding Remarks

- stamping and verification protocols must be fully explained
 - verification of authenticity
 - absolute timestamps require an absolute measurement
 - relative timestamps require a relative measurement
- important to indicate what level of trust is required for each entity
- evidence (e.g., storage of stamps) is important for **dispute resolution** as well as for verification