
SiRiUS: Securing Remote Untrusted Storage

Eu-Jin Goh
�
, Hovav Shacham

�
, Nagendra Modadugu, Dan Boneh

�
Stanford University�

eujin, hovav, nagendra, dabo � @cs.stanford.edu

Abstract

This paper presents SiRiUS, a secure file system de-
signed to be layered over insecure network and P2P file
systems such as NFS, CIFS, OceanStore, and Yahoo!
Briefcase. SiRiUS assumes the network storage is un-
trusted and provides its own read-write cryptographic ac-
cess control for file level sharing. Key management and
revocation is simple with minimal out-of-band communi-
cation. File system freshness guarantees are supported by
SiRiUS using hash tree constructions. SiRiUS contains a
novel method of performing file random access in a cryp-
tographic file system without the use of a block server. Ex-
tensions to SiRiUS include large scale group sharing us-
ing the NNL key revocation construction. Our implemen-
tation of SiRiUS performs well relative to the underlying
file system despite using cryptographic operations.

1. Introduction

Remote file storage is common in many different envi-
ronments: in large organizations, using protocols such as
NFS [32, 5] and CIFS [22]; in P2P networks, using sys-
tems such as OceanStore [27], Farsite [23], and Ivy [25];
on the web, using services such as Yahoo! Briefcase [34].
In all these environments, the end-user often has no con-
trol over the remote file system. Many of these storage
systems rely on the untrusted remote server for data in-
tegrity and access control. However, the remote server of-
ten does not guarantee data integrity and only implements
weak access control.

In this paper, we design and implement a security mech-
anism that improves the security of a networked file sys-
tem without making any changes to the file system or net-
work server. Our motivation for insisting on no changes
to the underlying file system is twofold.

First, we want a system that is easy for end-users to in-
stall and use. Since end-users often have no control of the�

Supported by NSF Grant No. CCR-0205733.�
Supported by NSF Grant No. 0121481.�
Supported by NSF Grant No. CCR-0205733.

remote server, they cannot install a security system that
requires changing the remote file server. Similarly, orga-
nizations who have invested in large NAS devices have no
control over the inner implementation of the device. These
organizations can only add security mechanisms that do
not require changing the NAS server. Hence, insisting on
no changes to the file server enables us to enhance the se-
curity of legacy network file systems without changing the
existing infrastructure.

Second, we want a security mechanism that can be lay-
ered on top of any network file system; NFS, CIFS, P2P,
HTTP, etc. By insisting on no changes to the underly-
ing file systems, SiRiUS becomes agnostic of the network
storage system. The result is a uniform mechanism for
securing many different types of network storage.

Our insistence on making no changes to the remote
server comes at a cost. We cannot defend against certain
attacks such as denial of service — an attacker capable of
compromising the remote server can delete files. How-
ever, the attacker will not be able to view or undetectably
alter files. Other security implications of this design prin-
ciple are discussed in Section 5. For this reason we view
the SiRiUS system as a stop-gap measure designed to add
security to legacy systems. The importance of securing
legacy systems stems from people’s reluctance to upgrade.
This is nicely captured in the following quote from the de-
signers of NFSv3 [4, p. 61] four years after NFSv3 was
introduced:

Although NFS version 2 has been superseded
in recent years by NFS version 3, system ad-
ministrators are slow to upgrade the operating
systems of their clients and servers, so NFS ver-
sion 2 is not only widespread, it is still by far
the most popular version of NFS.

SiRiUS is designed to be easy to install and is intended to
be used until a new network file system is deployed with
adequate access control and data integrity abilities.

SiRiUS is designed to handle multi-user file systems
where users frequently share files. It supports granting
read only or read-write access to files. This flexibility
is unusual in cryptographic file systems (e.g., CFS [2])

where possession of a key usually enables both reading
and writing to a file. SiRiUS also defends against version
rollback attacks as described in Section 3.3 and 6.4. We
reduce network traffic by providing random access within
files while still ensuring data integrity. SiRiUS is built us-
ing the SFS toolkit [17].

The next section describes the design goals of the SiR-
iUS system. Sections 3 and 4 describe the inner work-
ings of the system and implementation details. Our exper-
iments with SiRiUS show reasonable performance. For
read operations, we get a slowdown factor of � when us-
ing SiRiUS layered over NFS, versus plain NFS. Detailed
experimental results are given in Section 4.8. We dis-
cuss related work in Section 7. We note that the issue
of building an easy-to-deploy secure file system that inter-
operates with legacy infrastructure seems to have received
little attention so far.

2. Design Criteria

In this section, we describe the criteria used in designing
SiRiUS. We begin with the general systems requirements
and proceed to the security requirements.

2.1. System Considerations

No changes to File Server. SiRiUS must add security to
existing network file systems with no change to the soft-
ware or hardware of the servers. This consideration is ful-
filled by layering SiRiUS over existing network file sys-
tems. Existing secure file systems (such as SUNDR [19])
that work at the file system block level require extensive
modification to the file server. Therefore, SiRiUS should
work at a higher level, using files as its atomic unit.

Fulfilling this requirement makes it possible for users to
install SiRiUS without the support of the file server ad-
ministrator. Similarly, it makes it possible to use SiRiUS
to secure different types of network storage systems (NFS,
CIFS, P2P, Web). In fact, SiRiUS can also be used to se-
cure removable storage devices such as USB hard drives
and compact flash devices. Requiring zero changes to the
file server limits the security we can provide, as discussed
in Section 5.1. For example, we cannot prevent a “sledge-
hammer” denial-of-service attack, in which an adminis-
trator deletes all files.

File Sharing. The ability to share files amongst users
is essential in a network file system. SiRiUS users must
be able to share a file easily with other users of the sys-
tem. Existing cryptographic file systems [2, 35, 1, 7, 13]
limit their own usefulness because they either provide
very coarse sharing at the directory or file system level or
fail to distinguish between read and write access. File sys-
tems that do provide per-file sharing [24, 19, 29, 18] rely

on a trusted authentication mechanism residing on the file
server, which precludes their use in settings where users
have no administrative control over the server.

Minimal Client Software. A SiRiUS user should need
to run only a user-level daemon. Users should not be re-
quired to upgrade or patch the client OS kernel.

Performance. SiRiUS should not perform unreason-
ably worse than its underlying file system.

Efficient Random Access and Low Bandwidth. Reads
and writes to any location in a file should take compara-
ble amounts of time. Efficient random access is hard to
achieve in a cryptographic file system that does not oper-
ate at the file block level. Random access allows partial
file reads or writes which take up less network bandwidth.

2.2. Security Considerations

Confidentiality and Integrity. File data must be pro-
tected from users that are not granted access. Even the
super user administering the remote file server should not
be able to read files unless explicitly given permission by
the file owner. Furthermore, unauthorized modifications
to file data must be detected by SiRiUS.

It is desirable to protect filenames since they may leak
information about the contents of a file. However, other
pieces of meta data information such as data block point-
ers and modification times should not be protected to pro-
vide better crash recovery. For example, if data block
pointers are encrypted, the file system cannot piece to-
gether a partially written file.

Untrusted File Server. A serious problem with legacy
network file systems is that their access control mech-
anisms are insecure and easily defeated. For example,
the most popular authentication mechanism used by NFS
trusts the user and group ID of incoming file requests.
These IDs are easily spoofed by an attacker to gain full
access to a user’s files. Hence, SiRiUS cannot depend on
any access control enforcement by the file server.

SiRiUS must store all access control information (en-
crypted and signed) together with the file data. Storing
all access control data together with the file data has the
added benefit of making files readily available even af-
ter backups, mirroring and replication of the network file
server. Furthermore, it also allows file sharing with mini-
mal out-of-band communication with other users.

All file data is encrypted and signed on the client be-
fore being stored on the file server (providing end-to-
end security). Performing all cryptographic operations on
the client has the benefit of offloading the cryptographic

workload from the file server onto lightly loaded client
machines. It also obviates the need for channel security
when transmitting files over a network.

File Access Controls. SiRiUS must support two file ac-
cess modes; read only and read-write. Support for write
only mode is preferable but not a requirement as it is un-
common. Access control should be enforced on a per file
basis. The access control mechanism in SiRiUS should
not limit the flexibility of file sharing provided by the un-
derlying file system while still providing security. SiRiUS
should also be able to enforce access control even when
the underlying file system does not support file sharing.
This is easily achieved when all users of a file masquerade
as one user (from the server’s point of view).

Based on usage patterns in our department file servers,
we observe that most files are shared only among a small
number of users. Thus, it is reasonable to optimize SiR-
iUS sharing for small groups.

Key Management. The proliferation of keys used by
different applications creates a management and usability
nightmare. To avoid compounding this problem, a SiR-
iUS user must not be required to keep more than a few
keys for file system access. These keys must also be com-
patible with simultaneous use in other applications.

Key Distribution and Revocation. Many crypto-
graphic file systems discount the problem of key distribu-
tion and revocation by assuming timely and efficient out-
of-band communication between users. We feel that such
assumptions are unrealistic and we address such problems
directly in SiRiUS.

All out-of-band communication for obtaining other
users’ keys should be minimized. Ideally, SiRiUS can use
existing key distribution infrastructure such as PGP public
key servers or even Identity Based Encryption (IBE) [3]
master key servers.

In SiRiUS, user access revocation must not use online
or out-of-band interaction between users. The user access
revocation mechanism for the file system should be sim-
ple and effective. When read or write access to a file is
revoked, the revoked user should immediately lose access
to that file without need for communication.

Freshness Guarantees. SiRiUS must guarantee the fre-
shness of meta data containing the access control informa-
tion. This freshness guarantee allows timely revocation of
access controls and also prevents access control rollback
attacks. The freshness of file data should also be guaran-
teed to ensure that users always read the latest version of
their files.

3. File System Design

In this section, we describe the SiRiUS file system data
structures and algorithms.

3.1. Overview

Existing secure file systems which support file sharing
only consider the problem of securing and sharing files
on a trusted file server. Furthermore, many of these de-
signs require custom file servers. The goal of SiRiUS is to
secure data placed on any untrusted and unmodified net-
work file server while maintaining performance and stan-
dard file system semantics. We next give a brief overview
of SiRiUS.

From the SiRiUS user’s point of view, SiRiUS appears
as a local file system with the standard hierarchical view
of files and directories. A SiRiUS client on the user’s ma-
chine intercepts all operations to the SiRiUS file system
and processes the requests before transmission to the re-
mote file server. The type of network file system exported
by the remote file server is hidden from the user. All cryp-
tographic operations including encryption and signing are
done by the client before the results are placed on the file
server.

All SiRiUS users maintain one key for asymmetric en-
cryption and another for signatures. We call these the
user’s master encryption key (MEK) and master signing
key (MSK).

Files stored on the file server are kept in two parts. One
part contains the file meta data and the other the file data.
We will refer to the meta data file as md-file and the en-
crypted data file as d-file. The file meta data contains the
access control information while the file data contains the
encrypted and signed contents. The file data is encrypted
with a symmetric cipher using a unique key for each file.
We call this encryption key the file encryption key (FEK).
The data is also signed using a signature scheme with a
unique key for that file. The signing key is called the file
signature key (FSK).

The FEK and FSK are used to differentiate between
read and write access. Possession of only the FEK gives
read only access to the file while possession of both the
FEK and FSK allows read and write access. For example,
a user with only the FEK cannot create a valid file because
he cannot produce a valid file signature.

A key distribution mechanism (such as a PKI) may be
required for SiRiUS depending on the encryption and sig-
nature scheme used. Organizations that are concerned
about security tend to have such infrastructure already
in place. Identity Based Encryption [3] and Signature
schemes tend to require less infrastructure than a tradi-
tional PKI and are well suited for individual and small-
scale use. SiRiUS can make use of any existing key distri-

Acronym Definition

FEK File Encryption Key
FSK File Signature Key
MEK Owner’s Master Encryption Key
MSK Owner’s Master Signature Key
d-file Data File
md-file Meta Data File
mdf-file Meta Data Freshness File

Table 1. Glossary.

bution mechanisms that already exist for PGP, S/MIME,
IBE, etc.

There is a meta data freshness file (mdf-file) located in
every directory of a user’s file system. This file contains
the root of a hash tree [21] built from all the md-files in the
directory and its subdirectories. For example, the mdf-file
at the root of a user’s home directory contains the root of
the hash tree constructed from the user’s md-files in the
directory and mdf-files under immediate subdirectories. A
user’s SiRiUS client will periodically time stamp the root
mdf-file and sign it using his MSK. The update interval can
be set by the user.

In the subsequent sections, we describe the file formats
and how basic file operations — create, read, write and
sharing — are carried out. A glossary is provided for ref-
erence in Table 1. For clarity, assume that SiRiUS uses
RSA for asymmetric encryption, AES for symmetric en-
cryption, SHA-1 for hashing and DSA for signing.

3.2. File Structure

We first describe the structure of the md-file. The md-file
contains access control information and its format is de-
picted in Figure 1. Each encrypted key block corresponds
to a user with some access rights to the d-file. Encrypted
key blocks contain the FEK encrypted under the MEK of
each user with read access. If a user also has write ac-
cess, then the FSK is included in the user’s encrypted key
block. Figure 2 shows examples of key blocks for two
users, one with read-write access and the other with only
read access. Each encrypted key block is tagged with the
user name or key ID corresponding to the public key used
to encrypt the block.

The md-file also contains the public portion of the FSK
in the clear so that readers can verify the integrity of the
d-file. The timestamp is updated by the owner when the
meta data file is modified. The md-file also contains the
relative filename (as opposed to absolute pathname) of the
file.1 Finally, the md-file is signed using the owner’s MSK.

1The filename is included in the md-file to prevent file swapping at-
tacks. We provide more detail in Section 3.3.

Encrypted
Key Block
(Owner)

Encrypted
Key Block
(User 1)

Encrypted
Key Block
(User n)

File
Signature
Public Key
(FSK)�����

Assuming n users with read or write permissions.

Filename

Metadata
Last
Modified
Timestamp

Owner's
Signature
[Hash of
Metadata]

Figure 1. Meta Data file format.

File
Encryption
Key (FEK)

File
Signature
Key (FSK)

Username
(or KeyID)

File
Encryption
Key (FEK)

Username
(or KeyID)encrypted

with public
key for
username

plain text

plain text

encrypted
with public
key for
username

Figure 2. Encrypted Key Block format.

Note that the md-file is signed by the file owner’s MSK and
hence can be updated only by the owner. Also note that
the first encrypted key block is always encrypted under the
file owner’s MEK.

The d-file contains the file data and is shown in Figure 3.
File data is encrypted using the FEK contained in the cor-
responding md-file. A hash of the data is computed and
signed using the FSK also contained in the md-file. This
signature is appended to the end of the file.

3.3. Freshness Guarantees

SiRiUS enables a user to guarantee the freshness of the
md-files that he owns. Freshness guarantees are required
in order to prevent rollback attacks. A rollback attack in-
volves misleading users into accessing stale data. For ex-
ample, suppose Bob revokes Alice’s permission to write to
a file named foo. Alice does a rollback attack by replac-
ing the new md-file with an older version that she saved.
The older version of the md-file has a valid signature and
will hence verify correctly. Alice has now successfully re-
stored her own write permissions to the file. Checking the
meta data for freshness would stop such an attack.

SiRiUS uses a hash tree [21] to guarantee freshness.
The SiRiUS client for a user generates a hash tree con-
sisting of all his md-files. Every directory contains a file
with the hash of the md-files in that directory and its sub-
directories. This file is known as the directory meta data
freshness file or mdf-file. The directory mdf-file is an op-

Signature
[Hash of Data]
(signed with FSK)

Encrypted File Data (encrypted with FEK)

Figure 3. Data file format.

timization for reducing the cost of updating and verifying
the hash tree. A similar system for tamper detection in un-
trusted databases is described by Maheshwari et al. [16].

Generating the mdf-file. We next describe how a user’s
SiRiUS client generates the hash tree for his files and di-
rectories. Without loss of generality, we assume that all
files and sub-directories (and their contents) contained in
a user’s home directory belong to the owner. We first de-
scribe how the hash tree is generated for a directory.

1. Apply a SHA-1 hash to each meta data file in any
order and keep track of the hashes. Also verify the
signature on each meta data file during this process.

2. Concatenate the hashes of each meta data file, to-
gether with the mdf-files of each sub-directory (if
any) in lexicographical order and apply a SHA-1
hash to the concatenation.

3. The final hash and the directory name is placed in the
mdf-file.

Generating the mdf-file for a user’s root directory is
slightly different from the procedure described above. The
difference is that the current timestamp is appended to the
concatenation of the hashes in the second step when the fi-
nal hash is calculated. The final hash is concatenated with
the timestamp and placed in the root mdf-file. The root
mdf-file is signed with the user’s MSK.

Verifying Meta Data Freshness. We next describe how
Bob’s SiRiUS client uses the root mdf-file to check the
meta data freshness of a file named foo owned by Alice.

1. Regenerate the mdf-file for the directory where foo
resides (follow the first two steps of the generation
procedure). Compare the result with the current mdf-
file. If it does not match, then verification has failed.

2. If foo is in the root directory, check the mdf-file
timestamp to ensure it has been updated recently and
verify the owner’s signature.
Otherwise, recursively walk up the directory tree and
at each step, generate the mdf-file and carry out Step 1
till the root directory is reached.

The verification process guarantees that the meta data
files in the current directory are fresh up to the timestamp
on the root mdf-file. Note that it is sufficient to just regen-
erate hashes for the subtree containing foo.

The directory mdf-files greatly reduces the cost of re-
generating the hash tree because it removes the need to
descend into subdirectories that are not in the path to the
root. The verification procedure can be accelerated by
caching the hashes of directories contents when they are
first obtained. The cached values can be used as long as
contents of md-files remain unchanged.

Updating the Root mdf-file. The root mdf-file is peri-
odically updated with a new timestamp and signed by the
owner using a freshness daemon. For efficiency, the owner
should keep a local cached copy of the current root mdf-
file. Since only one signature is required to update the root
mdf-file, the update operation is cheap. Hence, the update
time interval can be on the order of minutes or seconds.

If any meta data file is changed by the owner, the hash
tree needs to be updated. Note that changes to a meta data
file only affect the hash calculations of the directory con-
taining the file and the parents of that directory. Hence, we
only need to recompute the hash tree for those directories.
The same verification procedure is used to regenerate the
root mdf-file on an update. The differences are that the ex-
isting directory mdf-files are replaced with the recalculated
versions while traversing up the tree. Also, the root mdf-
file is updated with the current timestamp and re-signed.

Including Filenames in md-files. A certain class of at-
tacks cannot be prevented by checking just the meta data
freshness. A md-file has to be tightly linked to its file name
to prevent a file swapping attack.

We provide an example of a file swapping attack. Sup-
pose user Alice owns file foo and file bar, which reside
in the same directory. User Bob wants to read bar but
has no read or write access to bar. However, Bob has
read access to foo. Bob can trick Alice into writing to
the wrong file in the following manner: Bob renames bar
to foo and vice versa, along with their md-files. Bob can
now read the file named bar (which was originally foo)
but not the file named foo (which was originally bar).
At some point, Alice writes her nuclear launch codes to
what she thinks is bar without checking the contents of
the file. Bob notices the update, reads the launch codes
and launches some nuclear missiles.

If the filename were not included in the md-file, this at-
tack would succeed because Alice cannot easily verify that
she is writing to the right file. Observe that the freshness
hash tree would still verify. To prevent this attack, we in-
clude the filename in the md-file. We also include the di-
rectory name in the mdf-file to prevent directory swapping
attacks. Note that we only need to include the relative file-
name in the md-file and mdf-file because the position of the
file in the freshness hash tree gives sufficient information
about the path of the file.

3.4. Creating a File

A file is created by the SiRiUS client for a user in the
following steps.

1. Generate a random DSA File Signing Key (FSK) and
a random AES File Encryption Key (FEK).

2. Encrypt the FSK and FEK using RSA with the

owner’s MEK and tag the cipher text with the owner’s
user name to form the encrypted key block.

3. Apply SHA-1 to the encrypted key block, public key
of the FSK, a timestamp (of the current time), and
filename. Sign the hash with DSA using the user’s
MSK.

4. Create the md-file by concatenating the owner’s en-
crypted key block, public key of the FSK, the times-
tamp, the filename, and the signature.

5. Encrypt the file data with AES using the FEK. Apply
SHA-1 to the encrypted file data and sign the hash
with DSA using the private key of the FSK. Concate-
nate the cipher text with the signature to create the
d-file.

6. Update the root mdf-file.

3.5. File Sharing

Recall that only the file owner can permit other users to
gain access to the file. SiRiUS sets access permissions by
adding encrypted key blocks in the md-file for the users the
owner wishes to give access to. The following procedure
is carried out by SiRiUS to share a file owned by Alice for
a user with the user name Bob.

1. Alice obtains the md-file and verifies the signature
with her MSK.

2. Alice obtains the public key for Bob through a pub-
lic key server.2 If Bob is only granted read access,
Alice encrypts only the FEK using RSA with Bob’s
public MEK. If Bob is also granted write access, Al-
ice encrypts both the FEK and FSK. The cipher text,
together with Bob’s user name is the encrypted key
block to be added to the md-file.

3. Alice adds Bob’s encrypted key block to the md-file
and updates the timestamp to the current time. She
applies SHA-1 to the modified md-file and signs the
hash using DSA with her MSK. She replaces the sig-
nature on the md-file.

4. Alice simultaneously verifies the freshness of the old
md-file and calculates the new root mdf-file. If fresh-
ness is verified, she updates the root mdf-file and re-
places the old md-file with the new version.

3.6. Writing to a File

The SiRiUS client takes the following steps to write to
a file.

1. Obtain the md-file and identify the file owner by ex-
tracting the user name tag from the first encrypted
key block. Obtain the owner’s MSK using a public

2Note that if Boneh-Franklin IBE [3] is used for asymmetric encryp-
tion, Bob’s public key can be obtained without contacting a key server.

key server3 and verify the signature on the md-file.
Also verify the freshness of the md-file.

2. Locate the encrypted key block with the writer’s user
name in the md-file and decrypt the key block to ob-
tain the FEK and FSK.

3. Obtain the d-file and verify the signature using the
public key of the FSK.

4. Decrypt the encrypted file data with the FEK. Carry
out the file write on the plain text file data. If the file
is to be replaced, then this decryption step is unnec-
essary.

5. Encrypt the modified file data with the FEK. Evaluate
the SHA-1 hash of the encrypted file data and sign
the hash with the FSK. Append the signature to the
newly generated cipher text to create the new d-file.
Replace the old d-file with the new version.

Observe that the freshness hash tree is not updated on a
file write.

3.7. Reading a File

The SiRiUS client takes the following steps to read a
file.

1. This step is identical to Step 1 for file writing.
2. Locate the encrypted key block with the reader’s user

name in the md-file and decrypt the key block to ob-
tain the FEK.

3. Obtain the d-file and verify the signature using the
public key of the FSK.

4. Decrypt the encrypted file data with the FEK to ob-
tain the file contents.

3.8. Renaming Files and Directories

A file rename requires changing the filename stored
in the md-file for that file. A directory rename requires
changing the directory name stored in the mdf-file for that
directory. Both types of renames require updating the
freshness hash tree. As a result, only the file or directory
owner can perform renames. This file system semantic
causes some problems with traditional applications that
use a rename paradigm to guarantee atomic file updates.
We present a solution to this problem in Section 6.4.

On a file rename, if the destination filename exists, then
the destination file is overwritten with the source file. The
destination file acquires the permissions of the source file.
The source file is deleted and the freshness hash tree is
updated to reflect these changes.

On a directory rename, the mdf-file for that directory is
updated with the new directory name followed by a nor-
mal freshness hash tree update.

3If an Identity Based signature scheme is used, verifying the file
owner’s signature can be done without a public key server.

3.9. File Links

SiRiUS supports symbolic links if they are also sup-
ported by the underlying file system. Symbolic links on
Unix file systems are typically implemented as normal
files with the file data containing the path of the link.
In this case, when the SiRiUS client accesses a symbolic
link, it decrypts the contents and obtains the file pointed
to by the link.

One file can have two hard links with different names
referencing the file. Therefore, SiRiUS cannot support
hard links because each md-file only contains one file-
name.

3.10. Key Management

Key management in SiRiUS is very simple because
each file keeps track of its own file keys for access con-
trol. All users only need to keep track of two keys; the
MSK and the MEK. There is no out-of-band communica-
tion if Identity Based encryption and signature schemes
are used. Otherwise, a small amount of out-of-band com-
munication is required in order to obtain public keys.

3.11. Key Revocation

Key revocation in SiRiUS is simple and does not require
out-of-band communication. For read access revocation,
the owner generates a new FEK. Using this key, the d-file
is updated by encrypting the file data with the new key
and then signed (using the old FSK). The revoked user’s
encrypted key block is removed from the md-file and all
the remaining key blocks are updated with the new FEK.
Finally, the md-file is signed with the owner’s MSK and
the root mdf-file is updated.

Write access revocation is the same as read access re-
vocation except that a new FSK is also generated. The
encrypted key blocks are updated with this new FSK and
the d-file is signed with this new key. Note that revok-
ing write access also involves creating a new FEK and
re-encrypting the data because write access implicitly pro-
vides read access.

3.12. Backups

A system administrator can backup the remote file
server by using the standard backup tools such as dump
or tar. Note that the administrator does not need to use
SiRiUS to perform the backup. Furthermore, the admin-
istrator gains no access to the file data. SiRiUS users only
need to backup their MSK and MEK. They can access any
backup of their files with just these two keys.

4. Implementation and Performance

In this section, we describe an instantiation of the SiR-
iUS file system layered over NFS.

4.1. Overview

We implemented a SiRiUS client on Linux that layers
SiRiUS over NFS version 3 using the SFS toolkit [17]
and OpenSSL [28]. The SFS toolkit provides support for
building user-level NFS loopback servers and clients. The
SiRiUS client contains a user-level NFS loopback server
to communicate with the client machine and a NFS client
to communicate with the remote NFS file server. Using a
user-level NFS loopback server to interface with the client
machine ensures portability because most modern client
operating systems have kernel-level NFS clients.

Note that SiRiUS’ NFS client can be replaced with a
client that supports a different protocol. For example, one
can retain the NFS loopback server and replace the NFS
client with a Yahoo! Briefcase (HTTP) client. This will
allow Yahoo! Briefcase to look like an NFS server to the
user.

Application

NFS Client

NFS Server

SiRiUS Client

NFS Client

NFS Server

user

kernel

Client Machine

File Server

Network

Figure 4. Architecture of SiRiUS layered
over NFS using the SFS toolkit.

The SiRiUS client intercepts NFS requests on the NFS-
mounted file system and processes the requests. The client
then sends the modified requests to the remote NFS server.
See Figure 4 for an overview of the system architecture.

4.2. Multiplexing NFS Calls

Many SiRiUS operations require the SiRiUS client to
transform a single NFS request from the client machine
into multiple requests to the server. First, SiRiUS needs
to read and write the md-file as well as the d-file. Second,
many SiRiUS file operations verify the meta data fresh-
ness, which necessitates sending a number of NFS calls to
walk the directory structure and read mdf-files.

The SFS toolkit’s ability to perform asynchronous Re-
mote Procedure Calls (RPC) [33] proved a great help in
multiplexing NFS calls from the client machine. When
the SiRiUS client receives an NFS call from its loopback
server, it asynchronously sends out a series of NFS calls
to the remote server to process the incoming call. We
illustrate this with an example of an NFS CREATE call.
When the SiRiUS client receives a CREATE call for a file

named foo, it first creates the md-file. The SiRiUS client
prepends .x-md-x. to foo, obtaining .x-md-x.foo
as the name of the md-file.4 It then sends a CREATE call to
the remote server for the md-file. When this completes, the
SiRiUS client generates and stores the contents of the md-
file using a WRITE call. Following this, the root mdf-file
is updated. It finally sends the original CREATE request
to the remote server and returns the result of that request
to the local client machine.

4.3. File System View

The SiRiUS client implementation hides the presence
of the md-files and mdf-files from the SiRiUS user’s file
system view. For example, an ls invocation does not dis-
play these meta data files. This view is implemented by
processing the NFS READDIR and READDIRPLUS results
from the remote server to remove entries for files whose
names begin with the meta data file extensions. The code
infrastructure added to handle these two NFS calls is eas-
ily extended to handle encrypted filenames.

4.4. NFS File Handle Cache

In NFS, all file system objects are identified by a unique
NFS file handle generated by the remote server. The SiR-
iUS client must correlate the handles of d-files with those
of md-files. For example, NFS READ and WRITE opera-
tions refer to the target file by its NFS file handle. With
just this file handle, we have no way of obtaining the file
handle for the associated md-file.

Fortunately, the NFS LOOKUP operation is always
called on an unknown object to obtain its file handle
before other operations can be performed. The NFS
LOOKUP call for an object contains the NFS file handle
for its directory, and the name of the object in that direc-
tory. The LOOKUP call expects a NFS file handle to the
specified target in the return result. By caching the argu-
ments and the results of LOOKUP calls, we can maintain
enough state to relate d-file and md-file file handles.

For each file system object, the SiRiUS client caches:
its file handle; the file handle of the directory in which it
resides; and its name in that directory. This cache is cross-
referenced in two hash tables, one keyed by the NFS file
handles of objects, and the other by a combination of the
directory file handle and directory entry name. The SiR-
iUS client monitors all NFS operations (e.g., RENAME
and REMOVE) that might change NFS file handle state
for an object and updates both hash tables.

We give an example to illustrate how file handle caching
works. Suppose the SiRiUS client receives an NFS READ

4The prefix .x-md-x. is chosen arbitrarily. SiRiUS uses it only to
locate md-files on the remote server. No special steps are needed to deal
with files with the same name as the prefix.

call for a file foo. It uses the file handle for foo given
in the READ argument to obtain (from the file handle hash
table) the directory handle for the directory in which foo
resides. Using this directory handle, the SiRiUS client
determines the md-file file handle (from the directory file
handle hash table) using the directory handle and the md-
file name. The SiRiUS client issues a NFS READ for the
md-file using this md-file handle. In the meantime, the
original NFS READ call for foo is also sent.

4.5. Changing Access Controls

At present, we have implemented all of SiRiUS de-
scribed in Section 3. The hooks for adding and revoking
permissions to a file are present in the SiRiUS client, but,
since SiRiUS permissions are more expressive than Unix
permissions, there is no natural way to invoke these hooks
directly using the chmod system call.

This problem can be solved by a user-level permissions
tool that interacts with the SiRiUS client over a dedi-
cated RPC channel. Alternately, the RPC channel can be
avoided if the permissions tool calls chmodwith modified
arguments. We illustrate the operation of the permissions
tool with an example. Suppose Bob wishes to grant Alice
permission to read file foo. Bob invokes the command-
line tool, which creates a dummy file with a special name.
The tool then performs a chmod on the file, causing the
kernel NFS client to send the NFS SETATTR (set file at-
tributes) request to the SiRiUS client. The dummy file-
name starts with a special flag and contains the filename
foo and user name Alice. The SiRiUS client parses the
filename, obtains the public key for Alice and performs
the appropriate set of NFS calls to change the permissions
for file foo.

4.6. Random Access and Low Bandwidth

We originally did not plan on implementing random ac-
cess. While building the SiRiUS client, we realized that
whole-file read and write operations provide unacceptable
performance for large files. Random access from the SiR-
iUS client to the remote server is critical when the SiRiUS
client must handle partial read and write requests from the
local in-kernel client, as in NFS.

The insight is that NFS READ and WRITE calls oper-
ate on chunks of 8192 bytes.5 Hence, reading (or writ-
ing) a file larger than 8192 bytes involves multiple NFS
operations. If SiRiUS does not have random access, each
READ (respectively, WRITE) request involves fetching the
entire file to decrypt and verify (respectively, encrypt and
sign). We implemented random access as described in
Section 6.1.

5The chunk size depends on the NFS implementation and most im-
plementations optimize for 8192-byte blocks.

Test File Size Kernel NFS DumbFS SiRiUS
File Creation 0 0.4 3.4 14.5
File Deletion 0 0.3 0.4 1.1
Sequential Read 8 KB 0.9 1.4 18.0
Sequential Write 8 KB 1.1 2.0 21.9
Sequential Read 1 MB 96.7 97.8 223.8
Sequential Write 1 MB 100.0 102.7 632.9

Table 2. Benchmark Timings for Basic Operations. Numbers given are in milliseconds.

4.7. Caching

Our implementation avoids unnecessary operations by
aggressively caching meta data and integrity information.
All the caching code is implemented over the the file han-
dle cache infrastructure. The md-file does not have to be
fetched and verified repeatedly on a read unless we en-
counter an integrity or decryption failure. We can perform
the same optimization for writes by the file owner. In ad-
dition, for a read operation on block

�
of file foo, we only

need to compare the hash of block
�

to the cached file hash
block of foo. If the hashes are the same, we do not need
to fetch the hash block and verify its signature again. Un-
fortunately, writes update the hash block and so we are
forced to perform a signature for every write. Similar op-
timizations are implemented for freshness verification.

4.8. Performance

We performed the tests listed in Table 2 to compare the
performance of SiRiUS layered over NFS, the Linux ker-
nel (2.4.19) NFS Client and DumbFS (a NFS pass-through
proxy built using the SFS toolkit). Each test was per-
formed on a hundred different files and the results were
averaged. Our implementation uses AES-128 as the block
cipher, RSA-1024 as the public key encryption algorithm,
and DSA-512 as the signature scheme. The NFS server
was run on a Pentium III 1.13 GHz machine and the three
clients were run on a Pentium III-M 866 MHz machine.

The DumbFS benchmarks show the low overhead of us-
ing a user-level loopback server. File creation is much
slower in SiRiUS because it requires key and signature
generation. Deletions are slightly slower because SiRiUS
has to unlink two files compared to just one for regular
NFS clients. For small files, reads and writes are about 20
times slower than the kernel NFS client. For writes, the
slowdown is due to the overhead of encrypting data (de-
crypting for reads), verifying three signatures (two for file
integrity and one for freshness), and generating a signa-
ture (no signature generation for reads).

For larger files, our aggressive caching and optimiza-
tions start to pay off. SiRiUS is able to read a 1 MB file
with only a ��� ��� slowdown, as compared with the ker-
nel NFS. SiRiUS writes a 1 MB file with ��� ��� slowdown

in comparison with the kernel NFS. Keeping in mind
the extensive cryptographic operations involved in reads
and writes, these benchmarks represent excellent perfor-
mance. Reads are about ��� as fast as writes because ev-
ery write has to sign the modified hash block. Sequential
writes on a large file can be sped up if we can cache all
the changes to the file hash block before performing the
signature. Unfortunately, NFSv3 does not provide a file
CLOSE call which would allow this optimization.6

The first read (or write) of a random 8 KB block within
a large file will take the same amount of time as a sequen-
tial read (or write) of an 8 KB file. Subsequent 8 KB block
operations on the same file will see dramatic performance
improvements (similar to those observed for large files)
because of the caching and verification optimizations de-
scribed in the previous section.

A profile of the current implementation shows that 63%
of the time spent during a 1 MB file read is on AES de-
crypt. Signature generation take up about 40% of the time
on a 1 MB file write. We can improve read performance
by switching to a faster block cipher. The cost of signature
generation for writes can be alleviated if expensive com-
putations are performed out-of-line, as with on-line/off-
line signature schemes [11]. For example, DSA signa-
ture generation is computationally expensive because it
requires an exponentiation to a random number. This ex-
ponentiation is independent of the message to be signed
and can therefore be precomputed by the signer before he
receives the message. The SiRiUS client can reduce write
times by precomputing these random exponentiations dur-
ing idle cycles and using these precomputed values for
signature generation when write requests are received.

5. Weaknesses

The design constraints to SiRiUS — in particular, the
prohibition on modifications to the server — limit the se-
curity we can provide. We list some of these limitations
here.

6NFSv4 supports a CLOSE call.

5.1. Deleting File System Contents

There are some inherent difficulties in securing legacy
network file systems without modifying the file server.
For example, since the file server cannot be trusted to per-
form any access controls, an attacker can break into the
server and perform a denial-of-service attack by deleting
all the files. SiRiUS can do very little to prevent these
sorts of attacks. Without assuming anything about the un-
derlying file system, the best that SiRiUS can do is to pro-
vide tamper-detection mechanisms. The real solution is to
layer SiRiUS over a Byzantine storage system [6].

5.2. Seizing File System Control

A malicious user can replace an existing file (and its
meta data) and then update the root mdf-file and sign it
himself. In this case, unless the file reader knows who the
true owner is supposed to be, file verification will succeed.
The entire file system can be seized by performing this at-
tack on all the files. However, this attack is of little signif-
icance since the file system owner will quickly detect the
attack when carrying out the periodic update to the root
mdf-file. Another solution to this problem is to publish the
root mdf-file (which is small) on a secure server so that the
freshness hash tree can be independently verified.

5.3. d-file Rollback

The freshness guarantees in basic SiRiUS only apply to
the md-files. Hence, a rollback attack that replaces the
newest version of the d-file with an older version suc-
ceeds in basic SiRiUS. Because the older version is still a
legitimately-created file, this attack is not as devastating as
that against md-files (described in Section 3.3), where re-
voked permissions are restored. However, d-file rollbacks
are a problem and should be fixed.

We cannot counter this attack with the scheme for md-
file freshness applied to d-files because each d-file can
have multiple writers whereas each md-file has only one
writer. The best solution to the d-file rollback problem
is the one described in Section 6.4 for maintaining tradi-
tional file system semantics using union mounts.

6. Extensions

SiRiUS extensions are non-essential capabilities that
improve the performance or security of basic SiRiUS. We
have implemented the random access extension (for per-
formance reasons).

6.1. Random Access and Low Bandwidth

Currently, only cryptographic file systems that operate
at the block level are able to support random access and
low bandwidth. As mentioned in Section 2.1, it is hard

to achieve such properties in file systems that operate at a
higher level. The main difficulty is in updating and verify-
ing file integrity information without accessing the entire
file.

Basic SiRiUS is easily modified to add random access
and low bandwidth. We first give an overview of the ran-
dom access scheme in SiRiUS. The key insight is that we
can represent each file as a series of blocks, each with its
own integrity information. Each file block is encrypted us-
ing a block cipher in counter mode [10] and each block is
also hashed for integrity. However, to prevent block swap-
ping attacks, the integrity of each block needs to be related
to the integrity of the entire file. A hash tree construction,
similar to that used for SiRiUS meta data freshness, can
be used to relate block integrity to file integrity.

Figure 5 shows the d-file format required for random
access. The symbol � denotes concatenation. The last
block of the d-file contains all the block hashes (H � to
H �) and the signature (using the FSK) of the block hashes.
Note that the last block is of variable size but is generally
small.

Data
Block 1
(DB1) �����

Assuming n blocks.

Data
Block n
(DBn)

H[DB1]
(H1) ����� Sig[H[H1 || ... || Hn]]

H[DBn]
(Hn)

Fits on the final n+1 block.

Figure 5. Data file format for random access.

We describe how random access works in SiRiUS by
elaborating on the procedures for the update and the veri-
fication of file data. We assume that the block cipher used
is AES in counter mode, the hash function is SHA-1 and
the signature scheme is DSA.

We first describe how a block within the d-file is up-
dated. Assume that the md-file has been verified and we
have the FEK and FSK. Also assume that we are updating
block number

�
.

1. Encrypt the data using AES in counter mode with
the FEK and

�
as the counter.7

2. Hash encrypted block
�

and replace the hash value
for block

�
in the final hash block. Re-apply SHA-1

to the concatenation of block hashes to obtain a new
file hash, and sign that with the FSK.

Observe that we need to fetch only two blocks to update
one data block. For updates that span multiple data blocks,
the procedure is applied to each affected block.

Verifying a single file block � is equally easy. Fetch
both the file block � and the final hash block. Hash file

7We can use the same initial value for the counter for each file be-
cause each file has a unique FEK.

block � and recompute the file hash using the hashes of
the other blocks in the hash block; the actual data blocks
need not be retrieved. Then, verify that the signature from
the hash block corresponds to the computed file hash.

6.2. Encrypted Pathnames

Adding filename encryption to SiRiUS is simple. When
creating the file, use the FEK to encrypt the filename.
Any change in the FEK requires the filename to be re-
encrypted. When listing the contents of a directory, the
SiRiUS client iterates over all the md-files in the direc-
tory to obtain the FEK of each file to which the user has
access. With an FEK, filenames can be decrypted and dis-
played. Files to which the user has no access are not dis-
played. This list operation is potentially expensive, since
two public-key operations are required for decryption and
verification of the encrypted key block. We can speed up
this operation by caching the file keys on the client ma-
chine.

In basic SiRiUS, directories in the file system do not
have an associated md-file. If directory entries are en-
crypted, then each directory needs an associated md-file.

filename collisions are a potential problem because each
file name is encrypted with a different key. We provide an
example of the problem. Suppose that Alice wishes to re-
name a file foo to bar, and that, in the same directory,
there are other files to which she does not have read ac-
cess. There might already be another file called bar of
which she is unaware.

The filename collision problem is solved in SiRiUS by
prepending a hash of the unencrypted filename to the en-
crypted filename. Before a file is created or renamed,
the directory can be checked for collisions. This solution
comes at the expense of reducing the maximum filename
length by the size of the hash.

6.3. Large-Scale Group Sharing using NNL

Basic SiRiUS is optimized for small group sharing and
does not scale well when large groups of users share files.
For example, when Bob revokes Alice’s read access to a
file, Bob must generate a new FEK and update all the en-
crypted key blocks in the md-file with the new FEK. Thus,
Bob must perform � public key encryptions if there are �
users sharing the file.

For large-scale sharing, we can use the NNL construc-
tion [26] for key revocation. NNL works well when the
group is close to the size of the entire user set. We call
this extension SiRiUS-NNL. We provide an overview of
NNL’s properties; we then describe the new md-file format
and the process of file creation, sharing, and revocation.

NNL Overview. NNL [26], or Naor-Naor-Lotspiech,
introduces the subset-sum framework of schemes for

broadcast encryption and traitor tracing. A broadcast en-
cryption scheme [12] is concerned with efficient transmis-
sion of a message to a group of receivers whose member-
ship is not fixed: for example, from a satellite television
provider to its subscribers. A traitor-tracing scheme [8] al-
lows the recovery, from a box capable of decoding broad-
cast transmissions, of the identity of (one of) the users
who colluded in the box’s creation.

Broadcast encryption provides a natural model for SiR-
iUS’ key-distribution requirements. The owner of a file
will want to distribute that file’s encryption key FEK to
some set of users and its signing key FSK to some other
set, and do so as space-efficiently as possible. Changes in
permissions are equivalent to changes in the membership
of one or both sets of users.

In NNL’s subset-sum framework, the set of potential re-
cipients is partitioned into subsets, each associated with a
long-lived key. Each recipient belongs to a number of sets,
and possesses only the keys of those sets. The broadcaster
chooses a subset cover, i.e., a set of subsets whose union
includes exactly those users whom he wishes to receive
the transmission. He encrypts the transmission key under
each included subset’s key.

Basic SiRiUS is a special case of this framework. Each
user belongs to one subset; that subset’s long-lived key
is the user’s key. If there are

�
users in the system, of

whom � should be able to decrypt (or, alternately, ������ � are revoked), then transmission size is �	�
��� , each
receiver stores �	���� keys.

Naor et al. provide two more sophisticated instantia-
tions of the subset-cover framework. These are both more
efficient than the basic approach when � is large (alter-
nately, � is small). Both constructions are combinatorial,
and make use of a binary tree; each user is assigned a leaf
node.

In the complete-subtree instantiation, each subset is a
complete subtree rooted at some node in the tree. A
user is given the keys corresponding to those subtrees
rooted at nodes along the path from her leaf to the root.
In the complete-subtree instantiation, transmission size is
�	�
������� ��� ����� and each receiver stores �	����� � � keys.

In the subset-difference instantiation, a subset is defined
by two nodes ��� and ��� such that ��� is in the subtree
whose root is � � ; the set contains all those nodes in ��� ’s
subtree but not in �!� ’s subtree. A user is given the keys
corresponding to those subsets that include her. In this
instantiation, transmission size is �	����� and each receiver
stores �	�
���#" � � keys.

Halevi and Shamir [14] provide a more efficient instan-
tiation of the subset-cover framework that has a transmis-
sion size of �	����� , and requires only �	�
��� ��$&% � � �'� keys.

SiRiUS-NNL md-file Format. In SiRiUS-NNL, each
md-file requires two separate NNL trees. The keys in one
NNL tree are used to encrypt a file key block (in the md-
file) which contains the FEK and FSK. Call this file key
block the FKB-write. The keys in the other NNL tree
are used to encrypt another file key block which contains
only the FEK. Call this block the FKB-read.8 With these
two file key blocks, we can still separate read from read-
write access, since a user with only read access will not
have keys to the NNL tree for FKB-write. The FKB-write
and FKB-read are encrypted using the appropriate choice
of keys calculated using the Subset-Cover revocation al-
gorithms (described in the NNL paper [26]) on the NNL
trees.

A user’s encrypted key block in the md-file contains the
symmetric encryption keys that constitute a path from a
leaf to the root of one of the two NNL trees. Since this
path never changes, the encrypted key blocks are not up-
dated on a revocation, removing the need for a public-key
encryption on revocation. Since the encrypted key blocks
are larger and there are additional key blocks, we are trad-
ing space for time in SiRiUS-NNL. This tradeoff is ac-
ceptable since disk space is cheap and plentiful.

File Creation, Access, and Revocation. On file cre-
ation, all the symmetric keys for two NNL trees for that
file are created and stored in the owner’s encrypted key
block. Enough keys are created so that more users can be
added in the future.

When a user is given read access to a file, the file owner
obtains a set of keys from the NNL tree for FKB-read and
creates the encrypted key block for that user with these
keys. A similar procedure is used for write access.

When a user’s read access to revoked, the owner re-
generates the FEK and re-encrypts the d-file. She also
calculates the new choice of keys for the FKB-read and
encrypts the FKB-read with this new set. A similar proce-
dure is used for write-access revocation.

6.4. Maintaining Traditional File System Seman-
tics

In basic SiRiUS, each user owns a separate file system
on the remote server. Since there is no concept of direc-
tory permissions in SiRiUS, only the owner of a file sys-
tem can create or rename files on her file system. These
semantics present a problem with some traditional appli-
cations such as editors. For example, Emacs creates tem-
porary files in the working directory during editing, and,
on a save, replaces the original file with the temporary
copy through a rename. Many applications use this re-

8These file key blocks are not present in basic SiRiUS.

name paradigm to guarantee atomic file updates.9 Appli-
cations such as CVS will not work flawlessly in basic SiR-
iUS because non-owner users need to create new files in a
repository.

Union Mounts. SiRiUS can be extended to support tra-
ditional file system semantics through the use of union
mounts [30, 20]. We use a generalized union-mount sys-
tem to merge SiRiUS file systems belonging to differ-
ent users together to obtain a single view of the merged
file systems. We refer to a SiRiUS extension with union
mounts as SiRiUS-U.

The BSD union mount system allows a stack of file sys-
tems � ��� � � � � ��� to function logically as a single file sys-
tem.

For each file read attempt, the stacked file systems are
searched, from ��� down to � � ; the topmost one that con-
tains a version of the file is used to answer the attempt.

Any changes to a file actually modify the copy in the
topmost, read-write file system ��� . File deletions are han-
dled by placing a “whiteout” entry in � � that hides the
lower-level file.

Union mounts are useful, for example, when compiling
sources from a CD-ROM: a directory tree under /tmp can
be stacked over the (read-only) source tree; object files
and executables are created in /tmp, but appear side-by-
side with the sources.

When a SiRiUS-U client mounts a user’s file system,
the client carries out a union mount of all other users’ cor-
responding file systems on the remote file server. All the
freshness files and md-files for all users are visible to the
SiRiUS-U client so that it can locate and verify files to
which it has access.

To handle name-space collisions, SiRiUS-U requires a
logical ordering of the union-mounted stack of SiRiUS
file systems that is different from that in previous union-
mount implementations. The logical ordering required is
temporal: The most recent version of a file is ordered at
the top of the search stack. We illustrate this ordering with
an example. Suppose Bob is the owner of file foo, Alice
alone has write access to the file, and Carol has read ac-
cess. Suppose Alice performed the last write on foo and
Carol tries to read foo some time later. Carol’s SiRiUS-
U client checks the union-mounted file system and locates
both Bob’s and Alice’s versions of foo. Since Alice’s ver-
sion is more recent, the SiRiUS client displays her version
to Carol.

If Alice is not allowed to write to foo, then Carol’s
client should not consult Alice’s version regardless of its
temporal ordering. Bob’s meta data files must therefore
specify which users are allowed to modify a given file,

9Emacs is intelligent enough to create temporary files in the local
/tmp directory if the user has no write access to the working directory.

and only these users’ directory trees should be consulted
in accessing a file.

Using union mounts allows SiRiUS to maintain the file
system semantics discussed earlier. Furthermore, SiRiUS-
U retains the security of the original scheme. In fact,
SiRiUS-U can also guarantee the freshness of d-files.

Freshness Guarantees Using Union Mounts. If union
mounts are used, the md-file freshness scheme can be ex-
tended to d-files to solve the d-file rollback attack men-
tioned in Section 5.3.

Each SiRiUS user also computes a hash tree for the hash
blocks of all the d-files that he has write access and creates
a data freshness file or df-file. The procedures for generat-
ing the df-files are similar to those for generating mdf-files.
The root df-file is periodically time-stamped and signed by
the user.

The union mount of all user file systems ensures that
all df-files for each user are visible to everyone. These df-
files are used verify the freshness of file data. For example,
suppose that file foo has two writers, Bob and Carol, and
that Alice wants to read the file. The union mount shows
that the latest version of foo was last modified by Bob,
so Alice verifies the d-file freshness using Bob’s df-files.

7. Related Work
The Self-Certifying File System [18] (SFS) provides

authentication and channel security for accessing remote
file systems. Access control in SFS relies on all file re-
quests’ passing through the trusted SFS server. The use of
a trusted server in SFS removes the need for end-to-end
security. In contrast, SiRiUS is designed on the assump-
tion of an untrusted file server and therefore provides end-
to-end security with cryptographic access controls.

The Cryptographic File System (CFS) [2] associates a
single symmetric key with each file system. The path-
names and data of the file system contents are encrypted
before being written to disk. Access control is determined
by possession of the file system key. Hence, CFS allows
only coarse sharing with no read-write separation or per-
file sharing. In contrast, SiRiUS allows fine grained shar-
ing on a per-file basis.

CryptFS [35] is similar to CFS except that symmetric
keys are associated with groups of files. These group
file keys permit group sharing but no read-write ac-
cess controls. The Extended Cryptographic File System
(ECFS) [1] extends CFS to provide file integrity. The
Cryptographic Storage File System (CSFS) [13] is similar
to CFS but also supports file integrity and group sharing
of files. However, CSFS does not provide read-write ac-
cess controls. CSFS also relies on a highly trusted group
database server that determines group membership (and
hence access control). The Transparent Cryptographic

File System (TCFS) [7] is another extension of CFS. Each
user in TCFS possesses a master key which is used to
protect unique file keys. TCFS has a group threshold
sharing scheme that require a certain number of active
group members before group shared files become acces-
sible. Apart from this scheme, no other form of sharing
is supported. In contrast, SiRiUS provides per file read-
write sharing and does not rely on access control servers.

Secure Network Attached Disks (SNAD) [24] is a block
storage system providing end-to-end encryption and in-
tegrity of file data and meta data. Files are protected with
unique symmetric keys, in turn protected with the asym-
metric key of each user given access to the file. How-
ever, access permissions are stored and enforced by the
remote file server. This model requires strong authentica-
tion of users along with user trust in the server to enforce
access control. The Secure Untrusted Data Repository
(SUNDR) [19] uses block servers to store blocks of data
that clients interpret as a file system. The file system im-
plementation resides entirely on the client. SUNDR pro-
vides end-to-end encryption using per-file keys. File in-
tegrity is implemented using hash trees. SUNDR relies on
the server’s enforcing access control. Both SUNDR and
SNAD require new storage servers. In comparison, SiR-
iUS does not require new infrastructure and also allows
each user to manage his own access permissions without
having to trust the file server.

Plutus [15] provides end-to-end security, along with
a novel cryptographic group sharing system with lazy
revocation. CryptosFS [29] explores the use of public
key cryptography to replace access control mechanisms.
CryptoFS relies on the file server correctly to verify ac-
cess by users. Furthermore, obtaining the asymmetric
keys only grants access to the enciphered file; files are
also encrypted using a symmetric key that users must ob-
tain (through some out-of-band channel) to decrypt and
encrypt the file contents. In contrast, SiRiUS has a sim-
pler key management scheme with user-managed access
control. The Swallow distributed file system [31] enforces
access control through client side cryptography. Swallow
clients encrypt their files before storing them on the re-
mote file servers. However, Swallow does not provide
fine grained file sharing. If the owner of a file allows read
access to another user, that user can also modify the file
undetectably.

Zero-Interaction Authentication (ZIA) [9] aims to se-
cure mobile devices even against physical attacks. ZIA
implements file access control via a cryptographic file sys-
tem that communicates with a physical authentication to-
ken. Public key cryptography is used to authenticate a
physical token to the mobile device. File sharing is imple-
mented using symmetric ciphers. SiRiUS can use ZIA to
secure the master keys on the client machine.

8. Summary and Conclusion

The use of SiRiUS is compelling in situations where
users have no control over the file server (such as Yahoo!
Briefcase or the P2P file storage provided by Farsite). We
believe that SiRiUS is the most that can be done to secure
an existing network file system without changing the file
server or file system protocol.

Acknowledgments

The authors thank Monica Lam, Ben Pfaff, Mendel
Rosenblum, and the other members of the Stanford Col-
lective Group for their helpful discussions. The authors
also thank Kevin Fu and the anonymous reviewers for
their comments. Special thanks to Constantine Sapuntza-
kis for comments on maintaining standard file system se-
mantics, and Robert McGrew for pointing out an attack
(now fixed). The authors are grateful to Mendel Rosen-
blum and VMware for providing us with their software
for development work.

References

[1] D. Bindel, M. Chew, and C. Wells. Extended crypto-
graphic file system. Unpublished manuscript, December
1999.

[2] M. Blaze. A cryptographic file system for Unix. In Pro-
ceedings of the First ACM Conference on Computer and
Communications Security, pages 9–16. ACM, November
1993.

[3] D. Boneh and M. Franklin. Identity based encryption
from the Weil pairing. In J. Kilian, editor, Proceedings
of Crypto 2001, volume 2139 of LNCS, pages 213–229.
Springer-Verlag, August 2001.

[4] B. Callaghan. NFS Illustrated. Addison-Wesley, Decem-
ber 1999.

[5] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version
3 protocol specification. RFC 1813, June 1995.

[6] M. Castro and B. Liskov. Practical Byzantine fault toler-
ance. In Proceedings of the Third Symposium on Operat-
ing Systems Design and Implementation (OSDI. USENIX,
Febuary 1999.

[7] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano.
The design and implementation of a transparent crypto-
graphic file system for UNIX. In Proceedings of USENIX
Technical Conference, FREENIX Track. USENIX, June
2001.

[8] B. Chor, A. Fiat, and M. Naor. Tracing traitors. In
Y. Desmedt, editor, Proceedings of Crypto 1994, vol-
ume 839 of LNCS, pages 257–70. Springer-Verlag, August
1994.

[9] M. Corner and B. Noble. Zero-interaction authentication.
In Proceedings of the Eighth International conference on
Mobile Computing and Networking (MOBICOM), pages
1–11. ACM, 2002.

[10] M. Dworkin. Recommendation for block cipher modes of
operation. Special Publication 800-38A, NIST, 2001.

[11] S. Even, O. Goldreich, and S. Micali. On-line/off-line
digital signatures. In G. Brassard, editor, Proceedings
of Crypto 1989, volume 435 of LNCS, pages 263–277.
Springer-Verlag, August 1989.

[12] A. Fiat and M. Naor. Broadcast encryption. In D. Stinson,
editor, Proceedings of Crypto 1993, volume 773 of LNCS,
pages 480–91. Springer-Verlag, August 1993.

[13] K. Fu. Group sharing and random access in cryptographic
storage file systems. Master’s thesis, Massachusetts Insti-
tute of Technology, June 1999.

[14] D. Halevi and A. Shamir. The LSD broadcast encryption
scheme. In M. Yung, editor, Proceedings of Crypto 2002,
volume 2442 of LNCS, pages 47–60. Springer-Verlag, Au-
gust 2002.

[15] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus — scalable secure file sharing on untrusted
storage. In Proceedings of the Second USENIX Confer-
ence on File and Storage Technologies (FAST). USENIX,
March 2003.

[16] U. Maheshwari, R. Vingralek, and W. Shapiro. How to
build a trusted database system on untrusted storage. In
Proceedings of the Fourth Symposium on Operating Sys-
tems Design and Implementation (OSDI). USENIX, Octo-
ber 2000.

[17] D. Mazières. A toolkit for user-level file systems. In
Proceedings of the USENIX Technical Conference, pages
261–274. USENIX, June 2001.

[18] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file system
security. In Proceedings of the Seventeenth ACM Sympo-
sium on Operating Systems Principles (SOSP), pages 124–
139. ACM, 1999.

[19] D. Mazières and D. Shasha. Don’t trust your file server.
In Proceedings of the Eighth Workshop on Hot Topics in
Operating Systems, pages 113–118, May 2001.

[20] M. K. McKusick, K. Bostic, M. Karels, and J. Quarterman.
The Design and Implementation of the 4.4 BSD Operating
System. Addison-Wesley, 1996.

[21] R. Merkle. A digital signature based on a conventional
encryption function. In C. Pomerance, editor, Proceed-
ings of Crypto 1987, volume 293 of LNCS, pages 369–378.
Springer-Verlag, August 1987.

[22] Microsoft. Common internet file system (CIFS). Located
at http://www.ubiqx.org/cifs/.

[23] Microsoft. Federated, available, and reliable storage for
an incompletely trusted environment (Farsite). Located at
http://research.microsoft.com/sn/Farsit
e/.

[24] E. Miller, D. Long, W. Freeman, and B. Reed. Strong
security for distributed file systems. In Proceedings of
the Twentieth IEEE International Performance, Comput-
ing, and Communications Conference, pages 34–40, April
2001.

[25] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
read/write peer-to-peer file system. In Proceedings of the
Fifth USENIX Symposium on Operating Systems Design
and Implementation (OSDI). USENIX, December 2002.

[26] D. Naor, M. Naor, and J. Lotspiech. Revocation and trac-
ing schemes for stateless receivers. In J. Kilian, editor,
Proceedings of Crypto 2001, volume 2139 of LNCS, pages
41–62. Springer-Verlag, August 2001.

[27] OceanStore Project. Located at
http://oceanstore.cs.berkeley.edu/.

[28] OpenSSL Project. Located at
http://www.openssl.org/.

[29] D. P. O’Shanahan. CryptosFS: Fast cryptographic secure
NFS. Master’s thesis, University of Dublin, 2000.

[30] J.-S. Pendry and M. K. McKusick. Union mounts in
4.4BSD-Lite. In Proceedings of USENIX Technical Con-
ference, pages 25–33. USENIX, January 1995.

[31] D. Reed and L. Svobodova. Swallow: A distributed data

storage system for a local network. In A. West and P. Jan-
son, editors, Local Networks for Computer Communica-
tions, pages 355–373. North-Holland, 1981.

[32] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the SUN network
filesystem. In Proceedings of the Summer USENIX Con-
ference, pages 119–130. USENIX, 1985.

[33] R. Srinivasan. Remote Procedure Call Protocol version 2.
RFC 1813, August 1995.

[34] Yahoo! Briefcase. Located at
http://briefcase.yahoo.com/.

[35] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A stack-
able vnode level encryption file system. Technical Report
CUCS-021-98, Columbia University, 1998.

