
Secure Remote Access to an Internal Web Server

Christian Gilmore David Kormann Aviel D. Rubin

AT&T Labs { Research, Florham Park, NJ, USA

fcgilmore,davek,rubing@research.att.com

Abstract

We address the problem of secure remote access to
a site's internal web server from outside the �rewall.
The goal is to give authorized users access to sen-
sitive information, while protecting the information
from others. We implemented our solution using a
one-time password scheme for client authentication
and SSL for con�dentiality. Our main design con-
siderations were security, performance, ease of use,
availability, and scale. We were further constrained
by the desire to leave our �rewall and local infrastruc-
ture unchanged.

1 Introduction

Most large organizations today have to resort to
using �rewalls to protect themselves from would-be
hostile attackers on the Internet. While �rewalls are
an inconvenience, when well administered, they do a
reasonable job of isolating an organization from the
rest of the world. The security policy usually amounts
to total trust of all insiders and total mistrust of out-
siders, where the �rewall de�nes the boundary [2].

As a result of classifying users as insiders or out-
siders, companies can have di�erent internal and ex-
ternal web views. People inside the �rewall have ac-
cess to the internal site, which contains sensitive data
such as company strategy, business plans, etc. In ad-
dition, they can update personal information such as
the payroll data and bene�t allocations. The latter
is often protected by simple passwords on top of SSL
connections [5].

The external view of a web site is usually commer-
cial and geared towards customers. Companies often
use their external web site to display product infor-
mation, details for investors, and other marketing ma-
terial. More sophisticated organizations use their ex-
ternal web site for customer transactions, billing, and
customer service.

It is common practice for the same fully quali�ed

domain name to refer to the internal site when a user
access the web from the inside, and to the external
site when an external user makes a request. For ex-
ample, here at AT&T, www.research.att.com is an
alias to akalice.research.att.com, a web server be-
hind the �rewall, and www.research.att.com is an
alias for akpublic.research.att.com for users out-
side the �rewall. Employees can even have two ver-
sions of their home page, both referenced by
http://www.research.att.com/info/username.
The web page on akalice may contain proprietary
information, whereas the copy on akpublic should
not.

A problem arises when insiders travel outside of
the �rewall boundary. Most sites allow users telnet
and ftp access to their machines from the outside
so that they can read e-mail and edit �les. Usu-
ally, the users are authenticated through some strong
one-time password mechanism in hardware or soft-
ware [8]. While users have a legitimate right to ac-
cess the internal web server, it is not accessible to
them. The best they can do is telnet to an in-
ternal machine and run a text-based browser, such
as lynx [http://www.slcc.edu/lynx/]. While text-
based browsers can be quite useful, they have severe
drawbacks. There is no support for multimedia, exe-
cutable content, helper applications and other recent
features of browsers. Even worse, since telnet connec-
tions are usually unencrypted, the web content travels
to the remote site in the clear.1 Finally, public Inter-
net kiosks (e.g. at the airport) may contain access
to HTML browsers but no access to telnet or other
Internet services.

Abadi et. al. present a solution that uses a web
tunnel on the �rewall for access from outside the �re-
wall [1]. Their solution requires changes to the �rewall
and the use of client-side Javascript in the browser.
Our goal is to allow access without any modi�cation
to the internal infrastucture, and in particular with-

1It is likely that SSH [19], SSL telnet, and IPSEC which
solve this problem, will gain in popularity.

out changing the �rewall or the end web server. We
achieve this without requiring Javascript.

We layer a strong client authentication mechanism
on top of SSL to allow legitimate users access to an
internal web site from outside of the �rewall. The
idea is to make the session as transparent as possible
for the user without compromising the security of the
information. We do this without any changes to our
�rewall or internal infrastructure. The system allows
users to access the internal web from outside the �re-
wall. This is useful for employees who are on the road,
or who receive their home access from a third party
Internet Service Provider (ISP).

2 Client authentication

Strong client authentication schemes exist for ap-
plications such as telnet and ftp. Most notable
are challenge/response hardware tokens and one-time
password schemes based on hash chaining [8, 9] or
pseudorandom functions [17].

Client authentication for the web exists in the form
of client certi�cates issued by organizations such as
Verisign and Thawte. However, the identity veri�ca-
tion mechanisms of these organizations are often in-
adequate [18] and thus, these mechanisms are not in
widespread use. We implemented our scheme using
hash chaining [11] (see Section 5.1).

3 Our environment

Following standard practice, our �rewall policy al-
lows hosts behind the �rewall to establish TCP con-
nections to hosts outside the �rewall on any port,
while inbound connections are tightly restricted. Thus
any mechanism that gives access to users on the out-
side must involve either opening an inbound port on
the �rewall or initiating a connection from the inside.
Our intent is to layer our solution on top of an existing
infrastructure, so we opt for the latter.

Another feature of our �rewall is that it tears down
inactive connections every 15 minutes. We initiate our
service from behind the �rewall, so we have to make
sure that there is always a way for external clients to
contact the internal web server when despite the fact
that idle connections are torn down by the �rewall.

We assume that users require occasional access
from untrusted sites such as Internet cafes or termi-
nal rooms at conferences. Our only requirement is
that the web client be SSL enabled. We build user
authentication into our protocol. We refer to the web

client as a Dumb Web Terminal (DWT). We strive
to treat the DWT as \untrusted" to the extent pos-
sible; nonetheless, the administrator of the DWT has
complete control of all data coming in and out of the
machine. So, in our model, we must assume that any
internal web content viewed on a DWT could be se-
cretly recorded and copied by the site administrator.
What we do not allow, however, is for the adminis-
trator to be able to access other sensitive content by
virtue of observing something.

It is possible that Virtual Private Network (VPN)
technology could be used to allow access to the in-
ternal web, but we have not adopted any of these
products at our site. Furthermore, we believe that
many institutions would prefer to use a lightweight,
free solution such as ours, rather than to invest in
VPN products just for internal web access.

4 Architecture

Our architecture is diagramed in Figure 1. The
main component of our system is the proxy. Of ne-
cessity, there is one subcomponent inside the �rewall
and one on the outside. A user on a DWT connects
to the proxy through the Internet with an authen-
tication request, using a special URL that contains
his/her username. Next, the proxy contacts the au-
thentication server to verify that the request is from
a valid user. Once authentication completes, requests
from the user are forwarded to the internal web server,
which responds as usual. No modi�cation is required
to the DWT, the �rewall or the internal web server.

Figure 2 shows the proxy in more detail. The
internal machine, which we call pushweb, maintains
a control connection to the external machine called
absent. This is necessary because our �rewall does
not allow connections from absent to pushweb. Users
at a DWT request a connection to absent by typ-
ing in a URL with absent.research.att.com as the
hostname. When absent receives a connection from
the browser, it records some information about the
connection and sends a request along the control con-
nection. Pushweb then opens a data connection to
absent. Absent uses the data connection to forward
requests to pushweb, which forwards them to the web
server. The web server processes the request and re-
turns an HTTP reply to pushweb. The reply is for-
warded to absent, which sends it back to the DWT,
where it is displayed for the user.

Web pages received from the web server may con-
tain links to other pages behind the �rewall. If the
links are not changed, then future requests will not

2

Web
server

DWT

Firewall

Auth
server proxy

Internet

Figure 1: Architecture: The main components of the system. The proxy has one subcomponent behind the
�rewall and one on the outside.

DWT

absentpushweb

Web
server Fi

re
w

al
l

control connection

data connections

web request

web reply

web request

web reply

PROXY

Figure 2: The proxy: The proxy consists of an internal and an external component. We use a machine that we
call pushweb, on the inside, and a machine called absent on the outside. Pusheb opens a control connection to
absent. When a web requests comes from a DWT, absent uses the control connection to instruct pushweb to
open a data connection, which is used for the actual communication.

be able to access internal pages. For example, a link
may be of the form:

<a href="http://myhost.research.att.com/

proprietary.html">Business plan.

When the user clicks on \Business plan", the DWT
attempts to connect directly to the machine myhost,
and, of course, the �rewall does not allow this. To
solve this, pushweb does some processing on web
pages before sending them to absent. First, all rela-
tive URLs are translated to absolute URLs with host
names and directories. URLs that are outside of the
trusted domain are not changed further. However,
URLs that are behind the �rewall are prepended with
some security information (see Section 5.4). Then,
new URLs are constructed that point to absent and
include the original URL. For example, the URL

http://www.research.att.com/projects/

is rewritten as

https://absent.research.att.com/geturl=user/

2b5db86c1f6e/http://www.research.att.com/projects/

In general, rewritten URLs contain the following in-
formation:

� https://absent.research.att.com/ Ev-
ery rewritten URL starts with this string. It
points the DWT to absent on port 443.

� cmd=user \cmd" can be login, geturl, logout, or
OTP resp and indicates the action to be taken
by pushweb with the request. \user" contains
the name of the user. This is his/her login ac-
count ID.

� hex data This is explained in Section 5.4.

� original-urlThis is the original URL that was
contained in the page, converted to an absolute
URL if necessary.

Recall that one of our goals is to make the brows-
ing experience the same as when users are behind the
�rewall. Rewriting URLs achieves this. Pages ap-
pear the same to users, but when links are clicked on,
the pages are requested through absent. The only
di�erences users might notice are the appearances of
codi�ed URLs in the message window of the browser
when the mouse passes over links, and the URL that
is displayed in the location window.

In our system, absent forwards all requests to
pushweb. Pushweb in turn, removes the substring

3

https://absent.research.att.com/ and processes
the remainder of the request based on the values of
cmd and user.

5 Authentication and security

Security is paramount when we consider export-
ing private and con�dential information outside of the
�rewall. We must assure that only valid users can ac-
cess the internal web, while active attackers on the
Internet cannot. In this section, we describe our tech-
niques for authenticating clients and maintaining the
privacy of the information from illegitimate outsiders.

5.1 Hash chaining

The original idea for hash chaining is due to Lam-
port [11]. There are two phases to authentication
using hash chaining. In the initialization phase, a
user picks a strong password, pw and a number, n,
and using a well-known cryptographically strong one-
way hash function, f , computes y = fn(pw). This
amounts to n applications of f to the password. The
value y is stored on an authentication server.

In the authentication phase, the user sends y0 =
f i(pw), where i is initially n � 1, to the authentica-
tion server. The server checks to see if y = f(y0). If
so, authentication is successful, otherwise it fails. If
successful, the authentication server replaces y with
y0, the user decrements i by 1, and the process con-
tinues.

The security of the system lies in the fact that an
eavesdropper on the network cannot compute any one-
time passwords from previously used passwords. The
use of a cryptographically strong hash function for f
ensures that.

There is an Internet RFC [7] that describes a stan-
dard one-time password scheme that uses hash chains
for authentication. The S/KEY and OPIE one-time
password systems are freely available, widely used im-
plementations of this standard.

5.2 User authentication

We use OPIE for authentication. To use Absent,
users must have an entry in the OPIE keys database.
To do this, they run the absent init program which
is a subset of the functionality of opie init. The
users specify the number of one-time passwords, n
and a secret passphrase, pw. MD5 [16] is used as the
one-way hash function, f . The program runs setuid
to the database administrator and writes n; fn(pw)

into the OPIE database, along with some other in-
formation about the users. At this point, users are
initialized to use Absent.

An initialized user can use any dumb web termi-
nal (DWT), authenticate, and access the internal web.
The �rst thing a user does is issue a login request by
typing in a special URL.

https://absent.research.att.com/login=user

The mechanics of the communication between absent

and pushweb are discussed in Section 6. For the pur-
poses of this section, we assume a data connection be-
tween absent and pushweb exists. absent forwards
the request to pushweb, which immediately negotiates
an SSL connection with the DWT (see next section),
while absent blindly forwards data packets between
them.2 At this point, absent acts as a wire.

Once the SSL connection is established, pushweb
looks up the user in the OPIE database. If the user is
registered, pushweb submits a request to the authen-
tication server which generates an OPIE challenge.
Pushweb then constructs an HTML page with a form
for the user to enter the OPIE response and sends the
page over the SSL connection to the DWT. An OPIE
challenge is of the form

otp-md5 386 bu5414 ext

where otp-md5 indicates that MD5 is the hash func-
tion, 386 is the number of times to iterate the func-
tion, and bu5414 is the seed for the generator. Fig-
ure 3 shows the OPIE challenge page. The user en-
ters the response into the form and clicks the submit
button. A list of one-time passwords can be printed
on paper in advance or computed using a calculator.
To compute a response, the user enters the seed, the
number of times to iterate and the secret passphrase
into an OPIE calculator. One of the reasons we chose
OPIE is that calculators are becoming widespread.
We use a public domain application on our Palm Pi-
lot [http://www.linet.it/pilot/a/pilototp.zip]
to authenticate.

After the user submits the one-time password, it
passes over the SSL connection to pushweb, which
sends the response to the authentication server. If
the authentication succeeds, then an entry is created
in a user table, and the page requested in the chal-
lenge form is returned to the user. One of the �elds

2This is similar to SSL tunneling. We simply forward pack-
ets and do not use Netscape's tunnelingprotocol (Internet draft
by Luotonen, 1997) because that relates to proxying SSL from
a browser using the CONNECT command, and we are assum-
ing that the user may not have access to the proxy settings in
the browser.

4

Figure 3: Opie challenge page: The user receives this page when logging in for the Absent service.

in the user table entry is an expiration time. In our
system an authentication is valid for 20 minutes. Af-
ter that, the user is presented with another challenge
page.

It is important that the one-time password chal-
lenge and response occur over an established SSL con-
nection. One-time password systems such as OPIE
and S/KEY have been shown to be vulnerable to ac-
tive attacks [17]. The con�dentiality and replay pre-
vention properties of SSL ensure that a play-in-the-
middle attack (e.g. where the response from the user
is blocked and then later used by the intruder) is not
possible.

5.3 Connection con�dentiality

Packets between the DWT and the �rewall are vul-
nerable to sni�ng attacks. Therefore, we must estab-
lish a private channel between pushweb and the DWT.
While this channel passes through the absent proxy,
the proxy is not privy to the data passed along it; it
simply forwards packets along the channel. To accom-
plish this, we use HTTP over SSL, as implemented in
the Apache-SSL web server. We further restrict the
set of ciphers supported on the server to those pro-
viding \U.S. domestic-quality" encryption, as shown

in Table 1.
It is important that users check the security in-

formation about their SSL connection to ensure that
they are communicating with pushweb. Otherwise,
an imposter could substitute some other valid server
certi�cate and elicit OPIE passwords from the user,
or feed him/her bogus content. Most browsers are
con�gured to warn the user if the name in a certi�-
cate does not match the site requested. Thus, the
certi�cate for pushweb actually contains the name
absent.research.att.com.

At present we do not support internal SSL servers.
If an internal server uses SSL, then we have to layer
our secure connection over that SSL connection. This
is presents some problems (see Section 8).

5.4 Other security features

5.4.1 Authenticated URLs

One of the important security features of our system is
that no adversary should be able to access the internal
web server. To that end, we bind every URL to an
authenticated user. When a user authenticates using
the one-time password scheme, an entry is created in
a user table on the pushweb server. We generate a

5

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_IDEA_CBC_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DH_DSS_WITH_DES_CBC_SHA

SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA

SSL_DH_RSA_WITH_DES_CBC_SHA

SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

Table 1: The SSL ciphersuites used by pushweb

random key for the user and add it to the table. Recall
that when a user retrieves a page, all of the internal
URLs are rewritten. The format of the new URL is

https://absent.research.att.com/geturl=user/

2b5db86c1f6e/original-url

The �eld immediately preceding the original-url con-
tains some security information. The �rst two char-
acters, in this case 2b, correspond to the hexidecimal
representation of the length in bytes of the original-url
(see Section 5.4.2). The remaining data, 5db86c1f6e,
represent the output of a Message Authentication
Code (MAC) function, truncated to the 40 most sig-
ni�cant bits. To compute the MAC, the server uses
the key in the user table and the original URL. Trun-
cating a MAC makes it more di�cult for an attacker
to exhaustively search for the key because there are
many possible keys that could produce the shortened
output [13, 15]. In choosing 40 bits, we trade o� the
amount of work it requires for an attacker to exhaus-
tively generate a valid MAC versus the length of the
URLs. Most systems limit URL length to 256 bytes,
so we wanted to add as little as possible to this. To
generate a valid URL with a valid MAC, an attacker
would have to test on the order of 240 URLs with
random MACs. The birthday attack [13] that would
require 220 trials does not work here because the sam-
ple space for URLs is limited to valid URLs on the
server. Since every trial requires a request from the
server and keys expire every 20 minutes, it is infeasible
for an attacker to generate a valid URL. In addition,
we log unsuccessful requests, and an exhaustive search
is immediately obvious on the server.

When the pushweb server receives a URL, it �rst
checks that the user is valid (i.e. registered with Ab-
sent). It then checks that the length of the URL is

correct. Finally, it retrieves the key from the user
table, computes the MAC, and compares the most
signi�cant 40 bits to the MAC. If all of these tests
are correct then the page is retrieved. If the key has
expired, the server sends a new one-time password au-
thentication form. This results in a new MACing key
for the user after successful authentication. Thus, old
URLs with MACs from expired keys, are useless.

5.4.2 CGI scripts

When a user submits information to the server in
a form using a GET method, a URL containing
the names and values of the input boxes is passed
from the DWT to the server. This URL cannot
be MACed in advance by pushweb because there
is no way to know what values the user will en-
ter. For example, say that a CGI script is refer-
enced by the following URL (where absent represents
absent.research.att.com)

https://absent/geturl=alice/32a5d386cf6e/http://

www.research.att.com/~alice/cgi-bin/reg.cgi

The URL sent to the server when the user submits
could be

https://absent/geturl=alice/32a5d386cf6e/http://

www.research.att.com/~alice/cgi-bin/reg.cgi&name=bob

The MAC is correct for the �rst 50 bytes of the orig-
inal URL, but it does not include \&name=bob".
Therefore, we include the length, in hex, of the orig-
inal URL that references the CGI script. In the
above example the length is 50, which is hex 32.

6

The most signi�cant 40 bits of the actual MAC are
0xa5d386cf6e.

The e�ect is that authenticated users can execute
CGI scripts as long as their keys are valid. A CGI
script that is MACed by an expired key cannot be
invoked. A potential danger is that an attacker who
can surmise that a particular request is a CGI form
can replay the message to cause the script to execute
again with the same input data as before. Fortunately,
SSL protects against replay attacks, so our system is
not vulnerable to this.

5.4.3 Generating random keys

The security of any system that uses cryptographic
operations lies in the unpredictability of the keys. As
described above, our system requires that the server
generate a secret key corresponding to each user to
compute the MACs of URLs. We employ an expensive
function to generate as random a seed as possible,
followed by a speedy operation to generate user keys
from the initial randomness.

Our system employs the randlib package from
cryptolib [10] as a \true" random number generator.
This package collects as much information as possible
from the host environment and mixes it using cryp-
tographic functions. The software uses information
about network connections, the process table, mem-
ory, disk, etc. The process is very tedious and slow.
Therefore, we call the truerand function only upon
server startup to generate a master key. Then, we use
DES [14] as a pseudorandom function with the master
secret as the key, to generate all other MAC keys.

It is important to note that the recent results show-
ing 56 bit DES to be vulnerable to exhaustive search
[6] do not in any way impact the appropriateness of
DES as a pseudo random number generator (PRNG).
When DES is used as a PRNG, there are no plain-
text/ciphertext pairs for an attacker to use, and thus,
a DES cracking machine cannot be used to predict
the output of the generator. This is true because the
MAC keys that we generate (the output of DES) and
the initial random seed (obtained from randlib) are
never available to the attacker.

After generating the master secret, a counter is ini-
tialized. Then, every time a new key is needed, we
compute new-key = DES(master-key; counter) and
then increment the counter. This has the advantage
that computing new keys is fast, while cracking these
keys without knowledge of the master key is di�cult.

To illustrate this, we describe how the attacker
might crack the master-key from which the user keys
are derived. First, the attacker must collect URLs
containing MACs from one user. These are limited in

number by the lifetime of the key (20 minutes) and the
number of links in the requests made by the user. In
addition, the URLs are generally unavailable to out-
sides in our system because SSL is used. Next, the
attacker must compute the user's key. This amounts
to breaking HMAC, a task considered to be infeasi-
ble. Even if the attacker �nds a key that computes all
of the MACs correctly, there is no guarantee that it
is the right key because the truncation of the MACs
to 40 bits results in many possible keys (see Section
5.4.1). Finally, the attacker knows that user keys are
produced by applying DES to a counter, so a reason-
able guess can be made about the input value. Thus,
after doing all of this work, the attacker can produce
a pair fP;Cg where P is a range of possible plain-
text (some counter value) and C is a possible cipher-
text (a user's MAC key). To obtain more pairs, the
attacker must break HMAC for another user. The
best known techniques for breaking DES involve 243

plaintext/ciphertext pairs [13]. As stated above, brute
force in not an option because even the ciphertexts are
not known to the attacker. We conclude that it is not
feasible for an attacker to crack the master key. For
additional security, we note that the master key does
not represent any state in the system; it is only used
to seed a PRNG. So, it can be changed at any time
by calling truerand again.

5.4.4 Other issues

For maximum security, it is important that users
clear the memory and disk cache and then kill their
browser. In addition, we include the HTTP directive
Cache-Control: no-cache in every page. This has
the e�ect of forcing the browser not to cache pages.
The method is not fool-proof, as users could still save
the page they are viewing onto the remote machine,
but there is a limit to how much we can protect the
information from users who are determined to expose
it.

6 Implementation

Wherever possible, we used existing software to im-
plement Absent. This both simpli�es security analysis
(if we can assume the component parts to be secure)
and reduces our coding e�ort (particularly in the case
of the internal proxy and one-time password systems).
For this reason, only the Absent daemon itself consists
entirely of original code; most of the other components
make use of exiting code.

The Absent system consists of two daemons
that implement the functions of the external server

7

(absentd) and internal proxy (pushweb), and the pro-
tocol with which these daemons communicate over a
control channel. The control channel is opened by
pushweb at startup. The protocol on this channel is
fairly simple, consisting of �ve messages:

� HELO(timestamp;mac): Sent by pushweb

when opening the control channel. absentd

checks that the timestamp is within a reasonable
amount of time from the current time (to pre-
vent replay attacks) and ensures that the sup-
plied MAC is in fact HMAC-MD5(secret, times-
tamp), where secret is a MACing secret con-
structed at installation time and shared by the
two daemons. If the MAC matches and the
source of the connection is the con�gured ad-
dress of pushweb, the connection is assumed by
absentd to be valid. If not, the connection at-
tempt is rejected.

� COPEN(id, timestamp, client sockaddr, MAC):
When a client connects to absentd, this message
is sent to pushweb to indicate that a new data
connection for the client should be opened. This
connection will be used for proxied data between
the client and pushweb. The client sockaddr is
a Berkeley-style socket address, indicating the
site from which the client is connecting. The
id argument is used by absentd to identify the
client; it has no meaning to pushweb, and is es-
sentially an opaque value which should simply
be returned. The timestamp and MAC �elds
are checked by pushweb as in the HELO mes-
sage, with the exception that the MAC covers
all the arguments to the control message.

� COPEN R(id; timestamp;MAC) :
The COPEN R message is not, strictly speak-
ing, control channel protocol. It is sent along
a new data data channel by pushweb after the
connection is opened. On receipt of the message,
absentd does the usual checks on timestamp

and MAC and, if the id value refers to a wait-
ing connection, begins acting as a proxy for the
client.

� PING(timestamp;MAC),
PONG(timestamp;MAC): Our �rewall times
out inactive connections after a period of time.
To prevent this, Absent implements a simple
keepalive protocol. These messages implement
that protocol. Periodically, either side may send
a PING message. The sending side expects to
receive a PONG message within a reasonable
period of time. If none is received, the control

connection is assumed to be dead; if absentd
notices this, it stops accepting new client con-
nections until a new control connection is es-
tablished (existing connections continue to be
serviced). If pushweb notices this, it attempts
to reestablish the control connection.

Note that all control messages have associated
MACs over their arguments. Both daemons are fairly
draconian about dealing with incorrect MAC values.
If an incorrect MAC is received, the control connec-
tion is immediately closed. This suggests a fairly sim-
ple denial-of-service attack based on the injection of
bogus packets. No attempt has been made at this
point to repair this problem, and the authors welcome
suggestions.

absentd is a simple (roughly 900 lines), standalone
C program. Aside from implementation of the proto-
col described above, it is an unremarkable blind proxy.

The internal daemon, pushweb, is more complex.
The daemon consists of three parts:

� A modi�ed Apache web server

� The URL-rewriting handler

� The one-time password interface

The choice of Apache as the base upon which to
build pushweb was driven primarily by the fact that
Apache itself provides most of the features pushweb

requires:

� An SSL implementation (with Apache/SSL)

� A proxy

� A web server

� Available source.

6.1 Modi�cations to Apache

The modi�cations to the Apache source are min-
imal; they consist mainly of replacing Apache's
connection-accepting code with code that on receipt
of a COPEN message on the control channel, cre-
ates a new connection to the absent daemon. Once
the socket address of this new connection is set to
the client sockaddr value supplied with the COPEN
message, the connection appears to apache to be a
normal client connection from the client address. This
spoo�ng allows Apache's access control and logging
functions to behave normally, and permits us to use
the remainder of the Apache code unmodi�ed. The
changes to Apache source entail fewer than 100 lines
of C.

8

6.2 URL-rewriting handler

We've writen an apache handler to deal with all
tasks that are preformed once the connection is es-
tablished. These include handling requests, authenti-
cating users, fetching web documents, rewriting URLs
in HTML documents, and returning the document to
the client (through absent). Apache allows third par-
ties to write handlers to �t into certain phases of each
transaction. We've written our handler in perl to uti-
lize its powerful regular expression functionality and
to avoid recompiling every time the code changes. The
changes require only a minor addition to the Apache
startup con�guration �les. This handler, which in-
volves fewer than 500 lines of code, is invoked during
the URL translation phase.

The �rst step is to determine whether the command
value is login, OTP response, logout, or geturl.
For a login request, the code ensures that the user
is registered and sends the OTP challenge to the
client. When an OTP response command is received,
we check the validity of the response. If valid, the user
is logged in, and the requested page (included as part
of the OTP response) is returned to the client with all
of the URLs on the page that reference our internal
domain rewritten. Upon a logout request, the MAC
of the logout URL is checked and, if valid, the user
is logged out. The log out consists of removing their
entry in the table on pushweb, in particular, deleting
their MAC key. Otherwise, we assume that it is a
forgery and return an error.

When a geturl command is received, our handler
checks the MAC of the requested URL and, if valid,
submits the request to the internal web server. If
the Content-type of the response from the server is
"text/html", the document is then parsed to identify
all links on the page. Every link containing a rela-
tive URL is converted to one containing an absolute
URL by adding the \http://" protocol, the complete
server name (such as music.research.att.com), and the
proper path information (e.g. replacing ../foo.html
with /dir/foo.html) to the URL if they are missing.
A second pass is then made through the document
to prepend the Absent information to each URL. Fi-
nally, a logout button is added to the page, and the
Content-length header is adjusted to match the new
larger document length. If the Content-type is not
"text/html", the response from the server remains
unedited. Finally, the HTTP response is returned to
the client.

6.3 Performance

The most signi�cant performance bottleneck in Ab-
sent is the parsing engine. Therefore, we built a
special-purpose parser that leaves most HTML un-
touched, and is concerned only with tags that can
contain URLs. In addition to the overhead of pars-
ing, a MAC is computed for each link, resulting in 2
computations of MD5. As URL length is limited to
256 bytes, the hash function only iterates once for each
call. Thus, a page containing 750 links requires 1500
iterations of MD5. However, we �nd that this is only
signi�cant (i.e. perceptible) for pages with a tremen-
dous number of links. Most pages are processed very
quickly with an unnoticeable overhead.

As an extreme example, we examined a page with
3398 links. The size of the original HTML �le is
116,997 bytes. This page takes 18 seconds to parse
and convert all the URLs, including changing relative
URLs to absolue, parsing, and computing MACs on
our pushweb, a Sparc Ultra 2. The same operation
took almost a minute using an o� the shelf parser.
The resulting page is 363,497 bytes long, a 311% in-
crease in size. Thus, performance is strongly tied to
the number of links on a page. It is our experience
that most pages contain few enough links that the
added latency is not noticeable.

7 Security assessment

The security of our system rests on the security
of the underlying mechanisms and their composi-
tion. We use o�-the-shelf software components such
as OPIE, SSLEAY, and HMAC. These packages have
been heavily scrutinized by experts in the security
�eld, so we have some con�dence in them. We con-
stantly monitor bug reports on relevant newsgroups
and mailing lists, and plan to upgrade immediately
any component that is discovered to have a security
problem when a patch is released.

7.1 Compromise of absent

We constantly and carefully monitor absent. How-
ever, this machine is outside of the �rewall, and it is
reasonable to assume that it will come under attack.
Assuming that a sophisticated attacker manages to
become root on absent without our noticing, we ex-
amine the possible consequences. The attacker's goals
are the following:

Denial of service The attacker prevents valid users
from being able to use the system.

9

Passively eavesdrop on a user's session The at-
tacker attempts to see the contents of the user's
interaction with the internal web server without
diverting from the SSL protocol.

Serve bogus information to a user In this at-
tack, the attacker masquerades as the internal
web server and serves up �ctitious information
to the user.

Obtain valid one-time passwords In
this scenario, the attacker's goal is to fool the
user into exposing a one-time password with a
lower number than any previously used.

Access the internal web The attacker attempts to
use its control over absent to bypass the authen-
tication mechanism and access protected con-
tent on the internal web server.

Obtain root on pushweb The attacker attempts
to use its control over absent to attack pushweb.

Compromise of internal network The attacker
attempts to use its control over absent to com-
promise the internal network including control
over machines, and �les.

The �rst attack, denial of service, is not preventable
as an attacker who controls absent can easily close
all sockets on the machine and refuse to communicate
with anyone. We monitor the machine for this condi-
tion and can detect such denial of service attacks. The
second attack is more di�cult for the attacker. Absent
serves only as an SSL proxy. It blindly forwards SSL
data between pushweb and the client. There are no
encryption/decryption keys stored on absent. There-
fore, there is no way that the attacker can eavesdrop
on a session without breaking SSL or performing a
more active attack.

To serve bogus information to the user, the attacker
must establish an SSL connection with the browser.
To do this, it must serve a valid certi�cate. Such
certi�cates are not too di�cult to obtain. If such an
attack is successful, the server could fool the user into
revealing secret one-time passwords. The only way
to prevent this attack is to require users to check the
security information in the certi�cate when they use
the system, and to verify that the name of the server
in the certi�cate is \absent".3

3Even though the SSL connection is between the DWT and
pushweb, the client certi�cate we serve has the name absent in
it. This is because the DWT connects to an address that starts
https://absent.research.att.com/ so we use the name absent in
the certi�cate so that the browserwon't complain that the name
of the server and the name in the certi�cate don't match. The

Without compromising pushweb, the internal
server, SSL, or one-time passwords, there is no way to
use access to absent to get to the internal web server.
This is because the only messages coming from absent

to pushweb are control messages instructing pushweb

to open data connections. These connections are used
to forward SSL tra�c. An attacker on absent can ex-
haust resources on pushweb, but that is the extent of
the damage possible. Similarly, barring bu�er over-
ow attacks and other such vulnerabilities related to
bugs in the software, there is no way to use root ac-
cess on absent to break into pushweb or the internal
network more easily than from an arbitrary host on
the Internet.

7.2 Compromise of pushweb

Because pushweb runs behind the �rewall, a root
compromise could be devastating. Besides compro-
mising all access control on web content, an attacker
could launch attacks on the internal �le system and
on user accounts. To compromise this machine, an at-
tacker needs to exploit vulnerabilities in the pushweb
code or existing weaknesses in the �rewall. The lat-
ter is a problem independent of our service, and we
assume that others are protecting the perimeter. We
were very careful about memory allocation to avoid
bu�er overow problems (the leading cause of soft-
ware security aws [4].)

We take the following special precautions on
pushweb.

� The pushweb server runs as user nobody, which
has permissions only to read and write �les
needed for the Absent service.

� No other services are available from pushweb.

� There are no regular user accounts on pushweb,
just administrative accounts to manage the Ab-
sent service.

� All important actions and especially error con-
ditions are logged, and the logs are monitored
closely. We hope eventually to log on a WORM
(write once-read many) disk.

� All machines except the internal web server are
con�gured to refuse connections from pushweb.

These precautions make it more di�cult for an at-
tack on pushweb to lead to further compromise of the
internal network. The logs are crucial to penetration

private key corresponding to the public key in the certi�cate is
kept only on pushweb.

10

detection and recovery. To date, there have been no
successful compromises of pushweb or absent (to our
knowledge).

8 Limitations

One fundamental problem in our system is the in-
ability to access secure servers behind the �rewall.
The reason is that the SSL protocol establishes a se-
cure connection between the server and the end client.
If an external user contacts an internal server through
absent, there are two possibilities. The �rst is that
the user's remote machine and the secure server estab-
lish an SSL connection directly. The second option is
that the client and absent establish an SSL connec-
tion, and absent establishes a secure connection to
the server and acts as a forwarding agent. Each of
these approaches is problematic.

In the �rst scenario, there is no way to rewrite the
URLs to point back to absent so any attempt to ac-
cess a link on a page from a secure server is blocked
by the �rewall. Thus, it must be possible to see the
contents of pages served to the client (the second sce-
nario). However, as the administrators of absent, we
do not want the responsibility of being able to observe
tra�c that is supposed to be con�dential. For exam-
ple, if a user accesses his/her private payroll data,
and a dispute later arises about a web transaction, it
would be possible to blame us, since we had access to
the data. For this and other, similar reasons, we do
not support access to secure servers behind the �re-
wall.

Another limitation of Absent is that some func-
tionality is lost when URLs are dynamically gener-
ated on the client side by a scripting language such as
Javascript. There is no way to parse the HTML and
�nd these URLs. If the URLs reference something
behind the �rewall, the subsequent request will fail.
There is nothing that can be done about this without
analyzing the scripting code, and this is known to be
very hard to do. It's actually impossible for general-
purpose code [3].

As mentioned in Section 3, we do not have VPN
technology available to us. It is clear that an in-
tegrated virtual private network is a better solution
than the one we have provided. First, it is more trans-
parent to the users, and second, it is more secure. This
is because our system is composed of several di�erent
components, SSL, Apache, OPIE, and our own code.
While the security of one-time passwords is believed
to be well understood, and SSL has been analyzed
carefully, little or no analysis of the composition of

these systems has been done. In fact protocol compo-
sition is a very hard problem and has led to security
problems in the past [12]. Given our goal of providing
internal web access from sites such as terminal rooms
at conferences and Internet cafes, it seems that a VPN
solution is not feasible.

9 Conclusions

We present Absent, a system for providing se-
cure access to an internal web server from outside
of the �rewall. We make use of the secure socket
layer (SSL) protocol to achieve con�dentiality and
one-time passwords for user authentication. Absent is
designed to minimize change to our local infrastruc-
ture and to make use of o�-the-shelf security com-
ponents. The key design considerations were secu-
rity, performance, ease of use, availability and scale.
Our system is currently in production use by re-
searchers at AT&T. The code is freely available at
http://www.research.att.com/projects/absent.

Acknowledgements

We thank Sam Alexander, Peter Honeyman, Larry
Jackel, Michael Kocheisen, Urs Muller, Michael Re-
iter, and Stuart Stubblebine, for helpful comments.

References

[1] Martin Abadi, Andrew Birrell, Raymie Stata,
and Edward Wobber. Secure web tunneling. Pro-
ceedings of the Seventh International World Wide
Web Conference. Computer Networks and ISDN
Systems, 30:531{539, April 1998.

[2] Bill Cheswick and Steve Bellovin. Firewalls and
Internet Security: Repelling the Wily Hacker.
Addison-Wesley Publishing Company, 1994.

[3] M. E. Davis and E. J. Weyuker. Computabil-
ity, Complexity, and Languages. Academic Press,
Inc, 1983.

[4] Simson Gar�nkel and Gene Spa�ord. Practical
Unix & Internet Security. O'Reilly & Associates,
Inc., 1996.

[5] Simson Gar�nkel and Gene Spa�ord. Web Secu-
rity & Commerce. O'Reilly & Associates, Inc.,
1997. Appendix C.

11

[6] John Gilmore. EFF builds DES cracker that
proves that data encryption standard is insecure.
EFF press release, July 1998.

[7] N. Haller and C. Metz. A one-time password
system. Internet Request For Comments (RFC)
1938, May 1996.

[8] Neil Haller. The s/key(tm) one-time password
system. Symposium on Network and Distributed
System Security, pages 151{157, February 1994.
ftp://thumper.bellcore.com/pub/nmh/skey/.

[9] Naval Research Labs. Opie software distribution,
1996. ftp://ftp.nrl.navy.mil/pub/security/opie/.

[10] John B. Lacy. CryptoLib: Cryptography in soft-
ware. USENIX Security Conference IV, pages
1{18, 1993.

[11] Leslie Lamport. Password authentication with
insecure communication. Communications of the
ACM, 24(11):770{771, November 1981.

[12] David Martin, S. Rajagopalan, and Aviel D. Ru-
bin. Blocking java applets at the �rewall. Proc.
Internet Society Symposium on Network and Dis-
tributed System Security, pages 16{26, 1997.

[13] A.J. Menezes, P. V. Oorschot, and S. A. Van-
stone. Handbook of Applied Cryptography. CRC
Press, 1997.

[14] National Bureau of Standards. Data encryption
standard. Federal Information Processing Stan-
dards Publication, 1(46), 1977.

[15] Bart Preneel and Paul C. van Oorschot. On the
security of iterated message authentication codes.
IEEE Transactions on Information theory, 1998.

[16] R. Rivest. The md5 message digest algorithm.
RFC 1321, April 1992.

[17] Aviel D. Rubin. Independent one-time pass-
words. USENIX Journal of Computing Systems,
9(1), 1996.

[18] Aviel D. Rubin, Daniel Geer, and Marcus J.
Ranum. Web Security Sourcebook. John Wiley
& Sons, Inc., 1997.

[19] Tato Ylonen. SSH - secure login connections over
the internet. USENIX Security Conference VI,
pages 37{42, 1996.

12

