Reducing the Cost of Security in Link-State Routing

R. Hauser	A. Przygienda	G. Tsudik
McKinsey Consulting	Fore Systems	USC-ISI
Zürich, Switzerland	Bethesda, MD	Marina Del Rey, CA
hauser@acm.org	prz@fore.com	${ m gts@isi.edu}$

ISOC Symposium on Network and Distributed System Security, Feb 10-11, 1996, San Diego, CA

Introduction

Routing Protocols:

- Ford/Fulkerson's Max Flow → Distance Vector
 e.g., OSPF, IDPR, ATM-PNNI
- Dijkstra's Shortest Path → Link State,
 e.g., RIP, BGP, IDRP

Focus of this work:

 \longrightarrow How to minimize the cost of security in Link State Routing?

Link State (LS) Security Requirements:

- 1. Origin Authentication
- 2. Non-repudiation
- 3. Data integrity
- 4. Timeliness and Ordering

Building Blocks:

- Public key-based digital signatures (RSA, DSS, El Gamal, Schnorr, etc.)
- (Conjectured/alleged) one-way hash functions (MD5, 8-pass SNEFRU, SHA, etc.)
- Hash chain constructs

(e.g., S/KEY one-time authentication, micro-payments, etc.)

Hash Chains

Example:

- 1. Alice generates a secret R
- 2. Computes a hash chain of length n: H¹(R), ..., Hⁱ(R), ... Hⁿ(R) where H⁰(R) = R and Hⁱ(R) = H(Hⁱ⁻¹(R)) for 0 < i < n
 3. Initially, Bob receives Hⁿ(R)
- 4. Alice releases $\mathcal{H}^{n-1}(R)$
- 5. Bob checks that $\mathcal{H}(\mathcal{H}^{n-1}(R))$ matches $\mathcal{H}^n(R)$.

Last two steps can be repeated n-1 times

Stable Link State – SLS

Observation

A large percentage (50%, by some estimates) of LSU-s are simply re-statements of previous LSU-s, i.e., an LSU often carries no new information other than its timing since links and nodes go up and down infrequently.

LSU types:

1. Anchor LSU - ALSU

generated whenever a link state change occurs or the current hash chain is depleted. Signed, sequenced, timestamped. Contains: $\mathcal{H}^n(R)$, T_0 , n, {LINKS}, SIG

2. Chained LSU – $CLSU_i$

generated periodically or upon explicit request Unsigned, sequenced, timestamped.

Contains: $\mathcal{H}^{n-i}(R), T_i, i$

SLS contd.

Issues:

- Missing CLSU-s?
- Storage Requirements?
- \bullet Only effective in ${\bf STABLE}$ routing environments!

Observation

The state of a link is (typically) a *binary* value.

- \bullet Each node generates $(n \times \ k \times \ s)$ hash chains
 - \boldsymbol{n} chain length
 - k # of incident links
 - s # of possible link states (typically 2: UP and DOWN)
- All R_j $(1 \leq j \leq k)$ must be random and unique,
- ALSU contains:

 $[nodeID, T_n, \mathcal{H}^n(R_1), \mathcal{G}^n(R_1), ..., \mathcal{H}^n(R_j), \mathcal{G}^n(R_j), ..., \mathcal{H}^n(R_k), \mathcal{G}^n(R_k)]^{SK}$

Hash Table

	L_1		•••	L_j		•••	L_k	
	up	down		up	down		up	down
1	$\mathcal{H}^1(R_1)$	${\cal G}^1(R_1)$		$\mathcal{H}^1(R_j)$	${\cal G}^1(R_j)$		$\mathcal{H}^1(R_k)$	${\cal G}^1(R_k)$
•	•	•			•		•	•
•	•	•			•		•	•
•	•	•			•		•	•
i	$\mathcal{H}^i(R_1)$	${\cal G}^i(R_1)$		$\mathcal{H}^i(R_j)$	${\cal G}^i(R_j)$		$\mathcal{H}^i(R_k)$	${\cal G}^i(R_k)$
•	•	•			•		•	•
•	•	•			•		•	•
	•	•			•		•	•
n	$\mathcal{H}^n(R_1)$	$\mathcal{G}^{\overline{n}}(R_{1})$		$\mathcal{H}^n(R_j)$	$\mathcal{G}^{\overline{n}(R_{j})}$		$\mathcal{H}^n(R_k)$	$\mathcal{G}^{\overline{n}}(\overline{R_k})$

CLSU Construction

For each link L_j , $(1 \le j \le k)$ and for each $CLSU_i$, $(1 \le i < n)$ link state flags (LSF_i) is defined as:

$$LSF_i = [LF_i(1), ..., LF_i(k)]$$

where:

$$LF_i(j) = egin{cases} 1 & ext{if } L_j & ext{is UP} \ 0 & ext{if } L_j & ext{is DOWN} \end{cases}$$

For each link L_j , $(1 \le j \le k)$ and for each $CLSU_i$, $(1 \le i < n)$ link state vector (LSV_i) is defined as:

$$LSV_i = [LS_i(1), ..., LS_i(k)]$$

where:

$$LS_i(j) = \begin{cases} \mathcal{H}^{n-i}(R_j) & \text{if } LF_i(j) = 1\\ \mathcal{G}^{n-i}(R_j) & \text{if } LF_i(j) = 0 \end{cases}$$

 $CLSU_i$ contains: $[nodeID, i, T_i, LSF_i, LSV_i]$

CLSU Processing

- 1. Looks up the current entry for nodeID
- 2. Validates T_i and i:

Checks that T_i is valid (reasonably close to current time), i > p and $T_i > T_p$ (last stored timestamp from $CLSU_p$.)

- 3. For each link L_j reflected in $CLSU_i$ (0 < j < k):
 - a) if L_j 's state is unchanged ($LF_i(j) = LF_p(j)$), compute:

 $\mathcal{G}^{i-p}(LS_i(j))$ if $LF_i(j) = 0$ $\mathcal{H}^{i-p}(LS_i(j))$ if $LF_i(j) = 1$

and compare to $LS_p(j)$; reject upon mismatch.

b) if L_j 's state has changed $(LF_i(j) \neq LF_p(j))$, compute:

 $\mathcal{G}^{i}(\mathcal{G}^{n-i}(R_{j}))$ if $LF_{i}(j) = 0$ $\mathcal{H}^{i}(\mathcal{H}^{n-i}(R_{j}))$ if $LF_{i}(j) = 1$

and compare to $LS_n(j)$; reject upon mismatch.

Replace LSV_p with LSV_i .

Analysis

Security (both SLS and FLS):

- 1. Strength of the underlying signature function (wrt ALSUs)
- 2. Strength of the underlying hash function (wrt CLSUs)
- 3. Randomness of the starting values
- 4. Loose clock synchronization: maximum skew $= (2 \times t)$

Limitations:

- Very frequent state oscillations
- Clock synchronization impossible
- Multiple-valued (or continuous) link state

Conclusions

Related Work:

- [MB-96] S. Murphy and M. Badger, *Digital Signature Protection of the OSPF Routing Protocol*, 1996 Symposium on Network and Distributed Systems Security (SNDSS'96), February 1996.
 - [P-88] R. Perlman, Network Layer Protocols with Byzantine Robustness, Ph.D. Dissertation, MIT LCS TR-429, October 1988.

Future Work:

- Experimental Results (OSPF)
- SLS/FLS Hybrid
- Other Constructs?