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Authen*ca*on	  Background	  

  What	  you	  know	  –	  text	  passwords	  
  What	  is	  secure	  is	  hard	  to	  remember	  

  What	  you	  own	  –	  token	  
  Lost	  or	  stolen	  token	  

  Who	  you	  are	  –	  Physical	  biometrics	  
  Limited	  number	  

Goal:	  address	  all	  the	  limita*on.	  	  



Our	  Solu*on:	  3D-‐Signature	   �
  3D	  signature:	  	  handwri1ng	  in	  3D	  

space	  
  Write	  short,	  easy	  to	  remember	  

passwords	  in	  the	  space,	  	  
  2	  or	  3	  characters	  

  Challenges:	  

  Change	  over	  *me?	  

  Reject	  malicious	  users?	  

  Accept	  genuine	  users?	  

  Behavioral	  biometrics:	  	  

  Can	  be	  updated	  

  Difficult	  to	  duplicate	  

  A	  weak	  typed	  password	  can	  
s*ll	  be	  strong	  if	  it	  is	  wriOen	  in	  
3D	  space	  
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Our	  Solu*on:	  KinWrite	  
-‐-‐	  Kinect	  	  +	  3D-‐Signature	  �

  MicrosoY	  Kinect	  	  
  A	  mo*on	  input	  RGB-‐D	  sensor	  

  Launched	  by	  MicrosoY	  for	  Xbox	  360	  
and	  Windows	  PCs	  	  

  Advantages	  
  Low	  cost	  
  Captures	  3D	  informa*on	  
▻  Depth	  sensor	  

  Works	  in	  the	  dark	  

  Disadvantages	  
  Low	  resolu*on	  
  Measurement	  errors� 5�



KinWrite:	  Overview	  

  Usability	  requirements�

  Rapid	  enrollment	  

  Rapid	  verifica*on	  	  

  Security	  requirement	  

  Unforgeability	  	  

Register	  a	  username �

Draw	  a	  signature	  
K	  Bmes �

Template	  	  
GeneraBon	   �

Log	  in�

Draw	  	  
a	  signature	  

VerificaBon:	  
Pass	  /	  Fail	  	  

6�

Phase	  I:	  
Enrollment	  

Phase	  II:	  	  
VerificaBon�

3D	  Signatures	  should	  
be	  processed	  



Data	  Processing	  	  

KinWrite:	  Data	  Processing�

Preprocessing � Feature	  ExtracBng�Table 1. The summary of six types
(14−dimension) of 3D features extracted from
smoothed 3D-Signatures.

Type Features
Positions & Distance p(t), d(t)
Velocity ṗ(t)
Acceleration �p̈(t)�
Slope angle θxy(t), θzx(t),
Path angle α(t)
Log radius of curvature log 1

κ(t)

4.2.2 Feature Processing

In practice, the values of different features may have dif-
ferent ranges, but their relevancy towards the correct verifi-
cation are not necessarily determined by their ranges. For
example, a path angle has a range of [−π,π] while the po-
sition px(t) has been scaled to the range of [0, 1]. This does
not mean that a path angle is 3 times more relevant than
a position. Thus, we perform two-step feature processing:
normalization and weight selection.

First, we normalize each feature such that it conforms to
a normal Gaussian distribution N (0, 1) over all the frames.
Second, we weigh each feature differently to achieve a bet-
ter performance. To obtain the weight for each feature (di-
mension), we selected a small set of training samples for
each signature (e.g., n = 4 samples for each signature), and
verified these training samples using the DTW classifier (to
be discussed in Section 5) based on one feature (dimension).
For each feature (dimension), we obtain a verification rate
for each signature, i.e., the percentage of genuine samples
in the top n = 4 ranked samples, and we simply consider
the average verification rate over all signatures as the weight
for this feature (dimension). The intuition is that a feature
that leads to a higher verification rate should be assigned a
larger weight. Our experimental results show that the pro-
posed feature normalization and weighting can substantially
improve the verification results.

5 Template Selection and Verification

In this section, we elaborate on algorithms to verify users,
based on their 3D-signatures.

5.1 Why Dynamic Time Warping

A good verification algorithm should perform accurately
without requiring a large number of training samples, be-
cause from the usability perspective, it is unpleasant to col-
lect a large number of training samples when a user enrolls
herself.

Figure 8. An illustration of DTW.

Hidden Markov Models (HMM) are well-known statis-
tical learning algorithms used in classical signature-based
verification systems and have shown good verification ac-
curacy. However, HMM usually requires a large training set
(i.e., representative signature samples) to construct an accu-
rate model. With the usability constraints, it is difficult to
perform well, as has been validated with our experiments.
Thus, we use Dynamic Time Warping (DTW), where one
good template is sufficient for verification.

We use DTW to quantify the difference between two 3D-
signature samples. Instead of directly calculating the fea-
ture difference in the corresponding frames, DTW allows
nonrigid warping along the temporal axis. To some degree,
time warping can compensate the feature difference caused
by the signing speed. For instance, a user may sign her 3D-
signature slowly one day and quickly another day. Given
two 3D-signature samples, we denote their feature vectors
as f1(t), t = 1, 2, · · · , N1 and f2(s), s = 1, 2, · · · , N2,
and construct a N1×N2 distance matrix D with an element
dts = �f1(t)− f2(s)�, t = 1, 2, · · · , N1, s = 1, 2, · · · , N2.
DTW finds a non-decreasing path in D, starting from d11
and ending at dN1N2 , such that the total value of the el-
ements along this path is minimum. This minimum total
value is defined as the DTW distance between the two 3D-
signature samples; we denote it as d(f1, f2). Figure 8 illus-
trates such an example.

5.2 Template Selection

Utilizing DTW as the verification algorithm, during the en-
rollment phase for a user u, we simply choose the most
representative 3D-signature sample fu from the training set,
which we call the template (3D-signature) of the user u.
With this template, we can verify a test 3D-signature sam-
ple f of the user u by evaluating their DTW distance d(fu, f):
If the DTW distance is larger than a threshold dT , the veri-
fication fails. Otherwise, the verification succeeds.

How well KinWrite performs is determined by the
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  Subject:	  raise	  a	  hand	  and	  use	  a	  finger*p	  

  Kinect:	  record	  the	  wri*ng	  mo*on	  in	  the	  space	  

	  Depth	  frames	  	  	  	  	  	  	  	  	  	  	  	  Skeleton	  points	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  RGB	  images	  

Data	  Processing:	  Acquisi*on	  

Data	  
Preprocessing �

Feature	  	  
ExtracBng�

Data	  
AcquisiBon�   8�



  Raw	  signatures	  	  
  Noisy	  

  Smooth	  
  Kalman	  filter	  	  

FingerBp	  posiBon	  1	  
FingerBp	  posiBon	  2	  

…	  

FingerBp	  posiBon	  n	  

Feature	  	  
ExtracBng�

Data	  
AcquisiBon�

Data	  
Preprocessing � 

Data	  Processing:	  Preprocessing	  

x-‐y	  plane	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  y-‐z	  plane	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  z-‐x	  plane	  
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Data	  Processing:	  Feature	  Extrac*ng	  �

Table 1. The summary of six types
(14−dimension) of 3D features extracted from
smoothed 3D-Signatures.

Type Features
Positions & Distance p(t), d(t)
Velocity ṗ(t)
Acceleration �p̈(t)�
Slope angle θxy(t), θzx(t),
Path angle α(t)
Log radius of curvature log 1

κ(t)

4.2.2 Feature Processing

In practice, the values of different features may have dif-
ferent ranges, but their relevancy towards the correct verifi-
cation are not necessarily determined by their ranges. For
example, a path angle has a range of [−π,π] while the po-
sition px(t) has been scaled to the range of [0, 1]. This does
not mean that a path angle is 3 times more relevant than
a position. Thus, we perform two-step feature processing:
normalization and weight selection.

First, we normalize each feature such that it conforms to
a normal Gaussian distribution N (0, 1) over all the frames.
Second, we weigh each feature differently to achieve a bet-
ter performance. To obtain the weight for each feature (di-
mension), we selected a small set of training samples for
each signature (e.g., n = 4 samples for each signature), and
verified these training samples using the DTW classifier (to
be discussed in Section 5) based on one feature (dimension).
For each feature (dimension), we obtain a verification rate
for each signature, i.e., the percentage of genuine samples
in the top n = 4 ranked samples, and we simply consider
the average verification rate over all signatures as the weight
for this feature (dimension). The intuition is that a feature
that leads to a higher verification rate should be assigned a
larger weight. Our experimental results show that the pro-
posed feature normalization and weighting can substantially
improve the verification results.

5 Template Selection and Verification

In this section, we elaborate on algorithms to verify users,
based on their 3D-signatures.

5.1 Why Dynamic Time Warping

A good verification algorithm should perform accurately
without requiring a large number of training samples, be-
cause from the usability perspective, it is unpleasant to col-
lect a large number of training samples when a user enrolls
herself.

Figure 8. An illustration of DTW.

Hidden Markov Models (HMM) are well-known statis-
tical learning algorithms used in classical signature-based
verification systems and have shown good verification ac-
curacy. However, HMM usually requires a large training set
(i.e., representative signature samples) to construct an accu-
rate model. With the usability constraints, it is difficult to
perform well, as has been validated with our experiments.
Thus, we use Dynamic Time Warping (DTW), where one
good template is sufficient for verification.

We use DTW to quantify the difference between two 3D-
signature samples. Instead of directly calculating the fea-
ture difference in the corresponding frames, DTW allows
nonrigid warping along the temporal axis. To some degree,
time warping can compensate the feature difference caused
by the signing speed. For instance, a user may sign her 3D-
signature slowly one day and quickly another day. Given
two 3D-signature samples, we denote their feature vectors
as f1(t), t = 1, 2, · · · , N1 and f2(s), s = 1, 2, · · · , N2,
and construct a N1×N2 distance matrix D with an element
dts = �f1(t)− f2(s)�, t = 1, 2, · · · , N1, s = 1, 2, · · · , N2.
DTW finds a non-decreasing path in D, starting from d11
and ending at dN1N2 , such that the total value of the el-
ements along this path is minimum. This minimum total
value is defined as the DTW distance between the two 3D-
signature samples; we denote it as d(f1, f2). Figure 8 illus-
trates such an example.

5.2 Template Selection

Utilizing DTW as the verification algorithm, during the en-
rollment phase for a user u, we simply choose the most
representative 3D-signature sample fu from the training set,
which we call the template (3D-signature) of the user u.
With this template, we can verify a test 3D-signature sam-
ple f of the user u by evaluating their DTW distance d(fu, f):
If the DTW distance is larger than a threshold dT , the veri-
fication fails. Otherwise, the verification succeeds.

How well KinWrite performs is determined by the
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•  Movement 
•  Geometry  
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Quan*fy	  the	  similarity	  of	  3D-‐signatures�

Approach-‐-‐Dynamic	  Time	  Warping	  (DTW)	  

  DTW	  distance	  represents	  the	  similari*es	  between	  two	  3D-‐	  
signature	  samples	  -‐-‐Warping	  along	  the	  temporal	  axis	  

  Requires	  a	  small	  number	  of	  training	  samples	  

Dynamic	  Time	  Warping�Euclidean	  Distance	  �
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KinWrite:	  Enrollment	  &	  Verifica*on�

  Template:	  best	  represent	  the	  signature	  

  Threshold:	  determine	  whether	  two	  signatures	  are	  from	  the	  same	  user	  

  DTW	  distance	  <	  threshold	  	  	  pass	  

  DTW	  distance	  >	  threshold	  	  fail	  to	  pass	   12�
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  Experiment	  setup	  
  3	  Kinect	  sensors	  	  

  Distance	  	  	  1.5	  -‐	  2.5	  meters	  

  A	  sample	  	  	  a	  video	  clip	  (2-‐12s),	  	  

	   	  	  	  	  	  	  	  ~30	  frames/second,	  depth	  frames	  

  Evalua*on	  metrics:	  
  Precision	  =	  verified	  genuine	  users	  /	  all	  verified	  users	  

  Security	  	  

  Recall	  =	  verified	  genuine	  users	  /	  all	  genuine	  users	  
  Usability	  	  
  Average	  a@empts	  =	  1	  /	  Recall	  

Kinect	  
sensor�

Experiments:	  Setup �

13�



  Scenario	  1	  –	  Legi*mate	  users	  

  Let	  the	  subjects	  write	  their	  genuine	  signatures:	  

  18	  users,	  35	  signatures	  
  18	  -‐	  47	  3D-‐signature	  samples	  for	  each	  signature	  over	  a	  period	  of	  5	  

months	  	  

  1180	  samples	  in	  total	  

Experiments:	  Scenarios�

14�



Most	  cases:	  >95%	  recall	  

The	  worst	  case:	  70%	  recall�

Results:	  Legi*mate	  Users �

15�

Ideal	  point	  �

Signature	  1	  -‐-‐	  ’ARE’	  
Signature	  2	  –	  ‘Bry’	  
Signature	  3	  –	  ‘Cao’	  
Signature	  4	  -‐-‐	  ’DELl’	  
Signature	  5	  –	  ‘HP’	  
Signature	  6	  –	  ‘JAS’	  
Signature	  7	  -‐-‐	  ’LIU’	  
Signature	  8	  –	  ‘PIN	  ’	  
Signature	  9	  –	  ‘Sa’	  

	  	  	  	  …	  

Signature	  34	  -‐-‐	  ‘ee’	  
Signature	  35	  –’LLL’�

Recall	  (usability) �
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n	  
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Results:	  Legi*mate	  Users �
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  Scenario	  2	  –	  AOackers	  
  AOack	  model	  

  Random	  aXacker	  

  Content-‐aware	  aXacker	  

  Observer	  aXacker	  

  Educated	  aXacker	  

  Insider	  aXacker	  

Unknown:	  spelling	  ,	  
	   	   	   	   	  

	  how	  to	  sign�

Known:	  	  spelling	  ,	  
Unknown:	  how	  to	  sign�

Unknown:	  	  spelling	  ,	  
Known:	  	  how	  to	  sign�

Known:	  what	  is	  in	  
the	  system…�

Experiments:	  Scenarios �
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AXack	  Type	   #	  'aXacker’	   #	  samples	  from	  each	   #	  'vicBm'	   #	  samples	  
Random	  AOack	   34	   14~42	   4	   1040	  
Content-‐Aware	  AOack	  	   6	   10	   4	   240	  
1-‐Observer	  AOack	  	   12	   5	   4	   240	  
4-‐Observer	  AOack	  	   12	   5	   4	   240	  
Educated	  AOack	  	   12	   5	   4	   240	  
Insider	  AOack	  	   12	   5	   4	   240	  



Results:	  AOack	  Scenarios�
Threshold	  2:	  
1.9	  AXempts�

Threshold	  3:	  
3	  AXempts�

Threshold	  1:	  
1.2	  AXempts�
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Conclusions	  and	  On-‐going	  Work �
  Conclusions	  

  Designed	  a	  behavior-‐based	  authen*ca*on	  system	  
(KinWrite)	  

  Our	  experiment	  results	  based	  on	  over	  2000	  samples	  

showed	  that	  3D-‐signatures	  can	  be	  used	  to	  verify	  users	  

  On-‐going	  Work	  

  Compare	  usability	  among	  3D	  signatures	  and	  exis*ng	  

authen*ca*on	  methods	  

  Study	  other	  types	  of	  3D	  signatures	  

19�



20�



ROC	  Curves �

21�



Results:	  Legi*mate	  User �
13	  signatures	  can	  

achieve	  a	  95%	  recall� 17	  signatures	  can	  
achieve	  a	  100%	  recall�

5	  signatures	  can	  achieve	  
at	  least	  85%	  recall� 22�



Results:	  All	  AOack�
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(b) ROC Curves

Figure 15. The average performance (by signatures) in various attack scenarios.
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(b) Achievable precision at a 75% recall

Figure 16. The performance (by signature) in various attack scenarios.

are similar to the ones derived based on training sets, sug-

gesting that weight selection over a small training set suf-

fices.

To evaluate the impact of weighted features on verifica-

tion performance, we modified KinWrite so that all 14 di-

mensions of the features were equally weighted. Figure 14

(a,e) show the verification performance on all 35 signatures

of this modified KinWrite. The results demonstrate that

weighting features using the verification rates can improve

the verification performance.

The Role of Dynamic Time Warping. The proposed

DTW allows nonrigid warping along the temporal axis

when measuring the difference between two signatures. To

understand the impact of nonrigid warping on the verifica-

tion performance, we defined the difference between two

signatures (in the form of features) f1(t), t = 1, 2, · · · , N1

and f2(t), t = 1, 2, · · · , N2 as follows. We re-sampled the

signature features so that they had the same length, e.g.,

N = 50 points, and then calculated the Euclidean distance

between the two signature feature vectors. Figure 14 (b)

and (f) shows the testing performance (on all 35 signatures)

when using this difference metric without warping along the

temporal axis. The results show that the use of nonrigid

warping in DTW can substantially improve the verification

performance.

Impact of Kalman Filter and Feature Normalization.
We conducted experiments to justify the choice of Kalman

filter and feature normalization. First, we modified our Kin-

Write so that the Kalman filter was not included, or a differ-

ent feature normalization method was used by the data pre-

processor, and then we conducted the experiment as before.

Figure 14 (c,g) show the verification performance on all 35
signatures when features were normalized linearly to the

range of [0, 1]. The results show that the proposed feature

normalization method based on N (0, 1) distribution leads

to a better performance. Figure 14 (d,h) show the verifica-

tion performance on all 35 signatures when the signatures

were not smoothed by the proposed Kalman filter. From the

results, we can conclude that the use of a Kalman filter can

improve the verification performance.

14

~97% � ~75% �
1.3	  

aXempts	   �
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How	  to	  Select	  a	  Feature �

  We	  choose	  features	  based	  on	  the	  movements	  and	  geometries	  
on	  the	  signature	  trajectories.	  

  	  Also	  we	  also	  learnt	  from	  the	  results	  on	  2D	  online	  signature	  
verifica*on.	  

24�
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Figure 5. A comparison between a raw 3D-signature (a Chinese character) and the one smoothed by
a Kalman filter.

by using the propagation technique described above. Other-

wise, we remove the first frame of these K frames and add

the next frame to repeat the initialization process until their

minimum-depth pixels show the required temporal continu-

ity, which reflects the reliability of the fingertip localization

in the initial frames.

4.1.2 Scaling and Translation

By connecting the fingertip points sequentially, we get a raw

signature, which is a 3D curve in the x− y − z space. One

global feature of a signature is its size, which can be de-

fined by the size of the bounding box around the signature.

The size of a signature in the x − y image plane may vary

when the distance between the user and the Kinect sensor

changes. In addition, users may intentionally sign in a larger

or smaller range during different trials, resulting in different

sizes of signatures. To achieve a reliable verification, we

scale the raw 3D-signatures into a 1× 1× 1 bounding box.

To make the different 3D-signatures spatially compara-

ble, we perform a global translation on each signature so

that the rear-right corner of its 3D bounding box becomes

its origin. Finally, we normalize each position such that

it follows a normal Gaussian distribution N (0, 1) over all

the frames. We denote the position of the fingertips after

the scaling, translation, and normalization to be ps(t) =
(psx(t), p

s
y(t), p

s
z(t))

T
.

4.1.3 Signature Smoothing

As shown in Figure 5, the raw 3D-signature obtained by a

Kinect is usually highly jagged and noisy. Such jagged sig-

natures are caused by the limited resolution of the Kinect

depth sensor. For example, a small area around the finger-

tip may have similar depths. By selecting the minimum-

depth pixel, the above fingertip localization algorithm may

not capture the correct fingertip position.

To address this issue, we apply a Kalman filter to smooth

the raw 3D-signatures that have been normalized. For sim-

p(t-1)

p(t) p(t+1)
p(t+2)

p(t+3)
p(t+4)

α(t)

y-axis

x-axis

z-axis

1/κ

Figure 6. An illustration of path angle and cur-
vature.

plicity, we smooth the three coordinates of the raw 3D-

signature separately. Take the x-coordinate as an example.

We denote the prediction of the underlying fingertip posi-

tion to be p(t) = (px(t), py(t), pz(t))T at the t-th frame

and define the state x(t) = (px(t), ṗx(t), p̈x(t))T at the t-th
frame as a vector of the predicted fingertip position, velocity

and acceleration. The state transition of the Kalman filter is

then x(t) = Ax(t − 1) + wx(t). Based on the theory of

motion under a constant acceleration, we can define

A =




1 �t �t2

2
0 1 �t
0 0 1



 (1)

where �t is the time interval between two consecutive

frames. Given the typical rate of 30 frames per second for a

Kinect sensor, we have �t = 1
30 seconds.

For the observation in the x coordinate, we only have the

raw fingertip position psx(t) but no velocity or acceleration.

Thus, we can write an observation equation for the Kalman

filter as psx(t) = cx(t) + vx(t), where c = (1 0 0). We

model the process noise wx(t) and the measurement noise

vx(t) to be zero-mean Gaussian distributions. For the pro-

cess noise, we choose the same covariance matrix Qx for

all the frames. More specifically, Qx is a 3 × 3 diagonal

matrix with three identical diagonal elements, which equals

the variance of acceleration (along x coordinate) estimated
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Related	  Work �

  This	  is	  basically	  a	  signature	  verifica*on	  problem,	  which	  is	  
based	  on	  research	  on	  2D	  online	  signature.	  	  

  And	  also	  it	  is	  a	  behavior	  biometrics	  method,	  which	  is	  also	  
related	  to	  gesture	  recogni*on	  and	  classifica*on;	  	  

  while	  it	  is	  also	  a	  new	  way	  of	  Kinect	  applica*on.	  
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How	  to	  Select	  Template	  &Threshold�
  Template	  Selec*on	  

  The	  template	  has	  the	  minimum	  DTW	  distance	  to	  others	  

  Threshold	  Selec*on	  

  Select	  a	  threshold	  that	  leads	  to	  a	  zero	  false	  posi*ve	  rate	  among	  training	  
samples.	  
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