
KinWrite:	 	
Handwri*ng-‐based	
Authen*ca*on	 Using	 Kinect	 �
Jing	 Tian∗,	 Chengzhang	 Qu	 **,	 Wenyuan	 Xu*	 and	 Song	 Wang*	 	

*Dept.	 of	 Computer	 Science	 and	 Engineering,	 University	 of	 South	 Carolina	 	

**School	 of	 Computer	 Science,	 Wuhan	 University	 	

Roadmap	

  Authen*ca*on	 Background	

  KinWrite	 Framework	

  Data	 processing	

  Enrollment	 &	 Verifica*on	

  Experiments	

  Legi*mate	 users	

  AOackers	

  Conclusions	 &	 On-‐going	 work	

2�

Authen*ca*on	 Background	

  What	 you	 know	 –	 text	 passwords	
  What	 is	 secure	 is	 hard	 to	 remember	

  What	 you	 own	 –	 token	
  Lost	 or	 stolen	 token	

  Who	 you	 are	 –	 Physical	 biometrics	
  Limited	 number	

Goal:	 address	 all	 the	 limita*on.	 	

Our	 Solu*on:	 3D-‐Signature	 �
  3D	 signature:	 	 handwri1ng	 in	 3D	

space	
  Write	 short,	 easy	 to	 remember	

passwords	 in	 the	 space,	 	
  2	 or	 3	 characters	

  Challenges:	

  Change	 over	 *me?	

  Reject	 malicious	 users?	

  Accept	 genuine	 users?	

  Behavioral	 biometrics:	 	

  Can	 be	 updated	

  Difficult	 to	 duplicate	

  A	 weak	 typed	 password	 can	
s*ll	 be	 strong	 if	 it	 is	 wriOen	 in	
3D	 space	

4�

Our	 Solu*on:	 KinWrite	
-‐-‐	 Kinect	 	 +	 3D-‐Signature	 �

  MicrosoY	 Kinect	 	
  A	 mo*on	 input	 RGB-‐D	 sensor	

  Launched	 by	 MicrosoY	 for	 Xbox	 360	
and	 Windows	 PCs	 	

  Advantages	
  Low	 cost	
  Captures	 3D	 informa*on	
▻  Depth	 sensor	

  Works	 in	 the	 dark	

  Disadvantages	
  Low	 resolu*on	
  Measurement	 errors� 5�

KinWrite:	 Overview	

  Usability	 requirements�

  Rapid	 enrollment	

  Rapid	 verifica*on	 	

  Security	 requirement	

  Unforgeability	 	

Register	 a	 username �

Draw	 a	 signature	
K	 Bmes �

Template	 	
GeneraBon	 �

Log	 in�

Draw	 	
a	 signature	

VerificaBon:	
Pass	 /	 Fail	 	

6�

Phase	 I:	
Enrollment	

Phase	 II:	 	
VerificaBon�

3D	 Signatures	 should	
be	 processed	

Data	 Processing	 	

KinWrite:	 Data	 Processing�

Preprocessing � Feature	 ExtracBng�Table 1. The summary of six types
(14−dimension) of 3D features extracted from
smoothed 3D-Signatures.

Type Features
Positions & Distance p(t), d(t)
Velocity ṗ(t)
Acceleration �p̈(t)�
Slope angle θxy(t), θzx(t),
Path angle α(t)
Log radius of curvature log 1

κ(t)

4.2.2 Feature Processing

In practice, the values of different features may have dif-
ferent ranges, but their relevancy towards the correct verifi-
cation are not necessarily determined by their ranges. For
example, a path angle has a range of [−π,π] while the po-
sition px(t) has been scaled to the range of [0, 1]. This does
not mean that a path angle is 3 times more relevant than
a position. Thus, we perform two-step feature processing:
normalization and weight selection.

First, we normalize each feature such that it conforms to
a normal Gaussian distribution N (0, 1) over all the frames.
Second, we weigh each feature differently to achieve a bet-
ter performance. To obtain the weight for each feature (di-
mension), we selected a small set of training samples for
each signature (e.g., n = 4 samples for each signature), and
verified these training samples using the DTW classifier (to
be discussed in Section 5) based on one feature (dimension).
For each feature (dimension), we obtain a verification rate
for each signature, i.e., the percentage of genuine samples
in the top n = 4 ranked samples, and we simply consider
the average verification rate over all signatures as the weight
for this feature (dimension). The intuition is that a feature
that leads to a higher verification rate should be assigned a
larger weight. Our experimental results show that the pro-
posed feature normalization and weighting can substantially
improve the verification results.

5 Template Selection and Verification

In this section, we elaborate on algorithms to verify users,
based on their 3D-signatures.

5.1 Why Dynamic Time Warping

A good verification algorithm should perform accurately
without requiring a large number of training samples, be-
cause from the usability perspective, it is unpleasant to col-
lect a large number of training samples when a user enrolls
herself.

Figure 8. An illustration of DTW.

Hidden Markov Models (HMM) are well-known statis-
tical learning algorithms used in classical signature-based
verification systems and have shown good verification ac-
curacy. However, HMM usually requires a large training set
(i.e., representative signature samples) to construct an accu-
rate model. With the usability constraints, it is difficult to
perform well, as has been validated with our experiments.
Thus, we use Dynamic Time Warping (DTW), where one
good template is sufficient for verification.

We use DTW to quantify the difference between two 3D-
signature samples. Instead of directly calculating the fea-
ture difference in the corresponding frames, DTW allows
nonrigid warping along the temporal axis. To some degree,
time warping can compensate the feature difference caused
by the signing speed. For instance, a user may sign her 3D-
signature slowly one day and quickly another day. Given
two 3D-signature samples, we denote their feature vectors
as f1(t), t = 1, 2, · · · , N1 and f2(s), s = 1, 2, · · · , N2,
and construct a N1×N2 distance matrix D with an element
dts = �f1(t)− f2(s)�, t = 1, 2, · · · , N1, s = 1, 2, · · · , N2.
DTW finds a non-decreasing path in D, starting from d11
and ending at dN1N2 , such that the total value of the el-
ements along this path is minimum. This minimum total
value is defined as the DTW distance between the two 3D-
signature samples; we denote it as d(f1, f2). Figure 8 illus-
trates such an example.

5.2 Template Selection

Utilizing DTW as the verification algorithm, during the en-
rollment phase for a user u, we simply choose the most
representative 3D-signature sample fu from the training set,
which we call the template (3D-signature) of the user u.
With this template, we can verify a test 3D-signature sam-
ple f of the user u by evaluating their DTW distance d(fu, f):
If the DTW distance is larger than a threshold dT , the veri-
fication fails. Otherwise, the verification succeeds.

How well KinWrite performs is determined by the

9

Data	 AcquisiBon�

Enrollment� VerificaBon	

  Subject:	 raise	 a	 hand	 and	 use	 a	 finger*p	

  Kinect:	 record	 the	 wri*ng	 mo*on	 in	 the	 space	

	 Depth	 frames	 	 	 	 	 	 	 	 	 	 	 	 Skeleton	 points	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 RGB	 images	

Data	 Processing:	 Acquisi*on	

Data	
Preprocessing �

Feature	 	
ExtracBng�

Data	
AcquisiBon� 8�

  Raw	 signatures	 	
  Noisy	

  Smooth	
  Kalman	 filter	 	

FingerBp	 posiBon	 1	
FingerBp	 posiBon	 2	

…	

FingerBp	 posiBon	 n	

Feature	 	
ExtracBng�

Data	
AcquisiBon�

Data	
Preprocessing �

Data	 Processing:	 Preprocessing	

x-‐y	 plane	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 y-‐z	 plane	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 z-‐x	 plane	

9�

Data	 Processing:	 Feature	 Extrac*ng	 �

Table 1. The summary of six types
(14−dimension) of 3D features extracted from
smoothed 3D-Signatures.

Type Features
Positions & Distance p(t), d(t)
Velocity ṗ(t)
Acceleration �p̈(t)�
Slope angle θxy(t), θzx(t),
Path angle α(t)
Log radius of curvature log 1

κ(t)

4.2.2 Feature Processing

In practice, the values of different features may have dif-
ferent ranges, but their relevancy towards the correct verifi-
cation are not necessarily determined by their ranges. For
example, a path angle has a range of [−π,π] while the po-
sition px(t) has been scaled to the range of [0, 1]. This does
not mean that a path angle is 3 times more relevant than
a position. Thus, we perform two-step feature processing:
normalization and weight selection.

First, we normalize each feature such that it conforms to
a normal Gaussian distribution N (0, 1) over all the frames.
Second, we weigh each feature differently to achieve a bet-
ter performance. To obtain the weight for each feature (di-
mension), we selected a small set of training samples for
each signature (e.g., n = 4 samples for each signature), and
verified these training samples using the DTW classifier (to
be discussed in Section 5) based on one feature (dimension).
For each feature (dimension), we obtain a verification rate
for each signature, i.e., the percentage of genuine samples
in the top n = 4 ranked samples, and we simply consider
the average verification rate over all signatures as the weight
for this feature (dimension). The intuition is that a feature
that leads to a higher verification rate should be assigned a
larger weight. Our experimental results show that the pro-
posed feature normalization and weighting can substantially
improve the verification results.

5 Template Selection and Verification

In this section, we elaborate on algorithms to verify users,
based on their 3D-signatures.

5.1 Why Dynamic Time Warping

A good verification algorithm should perform accurately
without requiring a large number of training samples, be-
cause from the usability perspective, it is unpleasant to col-
lect a large number of training samples when a user enrolls
herself.

Figure 8. An illustration of DTW.

Hidden Markov Models (HMM) are well-known statis-
tical learning algorithms used in classical signature-based
verification systems and have shown good verification ac-
curacy. However, HMM usually requires a large training set
(i.e., representative signature samples) to construct an accu-
rate model. With the usability constraints, it is difficult to
perform well, as has been validated with our experiments.
Thus, we use Dynamic Time Warping (DTW), where one
good template is sufficient for verification.

We use DTW to quantify the difference between two 3D-
signature samples. Instead of directly calculating the fea-
ture difference in the corresponding frames, DTW allows
nonrigid warping along the temporal axis. To some degree,
time warping can compensate the feature difference caused
by the signing speed. For instance, a user may sign her 3D-
signature slowly one day and quickly another day. Given
two 3D-signature samples, we denote their feature vectors
as f1(t), t = 1, 2, · · · , N1 and f2(s), s = 1, 2, · · · , N2,
and construct a N1×N2 distance matrix D with an element
dts = �f1(t)− f2(s)�, t = 1, 2, · · · , N1, s = 1, 2, · · · , N2.
DTW finds a non-decreasing path in D, starting from d11
and ending at dN1N2 , such that the total value of the el-
ements along this path is minimum. This minimum total
value is defined as the DTW distance between the two 3D-
signature samples; we denote it as d(f1, f2). Figure 8 illus-
trates such an example.

5.2 Template Selection

Utilizing DTW as the verification algorithm, during the en-
rollment phase for a user u, we simply choose the most
representative 3D-signature sample fu from the training set,
which we call the template (3D-signature) of the user u.
With this template, we can verify a test 3D-signature sam-
ple f of the user u by evaluating their DTW distance d(fu, f):
If the DTW distance is larger than a threshold dT , the veri-
fication fails. Otherwise, the verification succeeds.

How well KinWrite performs is determined by the

9

"   Start	 point	 "   Turning	 Point	 "   Speed!	

Six types 3D features
•  Movement
•  Geometry

�

Data	
Preprocessing �

Data	
AcquisiBon�

Feature	 	
ExtracBng� 10�

Genuine	 user � Genuine	 user � AXacker�

Quan*fy	 the	 similarity	 of	 3D-‐signatures�

Approach-‐-‐Dynamic	 Time	 Warping	 (DTW)	

  DTW	 distance	 represents	 the	 similari*es	 between	 two	 3D-‐	
signature	 samples	 -‐-‐Warping	 along	 the	 temporal	 axis	

  Requires	 a	 small	 number	 of	 training	 samples	

Dynamic	 Time	 Warping�Euclidean	 Distance	 �

11�

KinWrite:	 Enrollment	 &	 Verifica*on�

  Template:	 best	 represent	 the	 signature	

  Threshold:	 determine	 whether	 two	 signatures	 are	 from	 the	 same	 user	

  DTW	 distance	 <	 threshold	 	 	 pass	

  DTW	 distance	 >	 threshold	 	 fail	 to	 pass	 12�

Initial User
Signature 2�

Initial User
Signature 1�

Initial User
Signature n� Te

m
pl

at
e

&
 T

hr
es

ho
ld

 S

el
ec

to
r

User
Signature n�

User
Signature 1� User

Signature n�

Attack
Signature 1�

Verifier

Pass/Fail �

…
�

DTW � DTW �

VerificaBon	 �Enrollment	 �

  Experiment	 setup	
  3	 Kinect	 sensors	 	

  Distance	 	 	 1.5	 -‐	 2.5	 meters	

  A	 sample	 	 	 a	 video	 clip	 (2-‐12s),	 	

	 	 	 	 	 	 	 	 ~30	 frames/second,	 depth	 frames	

  Evalua*on	 metrics:	
  Precision	 =	 verified	 genuine	 users	 /	 all	 verified	 users	

  Security	 	

  Recall	 =	 verified	 genuine	 users	 /	 all	 genuine	 users	
  Usability	 	
  Average	 a@empts	 =	 1	 /	 Recall	

Kinect	
sensor�

Experiments:	 Setup �

13�

  Scenario	 1	 –	 Legi*mate	 users	

  Let	 the	 subjects	 write	 their	 genuine	 signatures:	

  18	 users,	 35	 signatures	
  18	 -‐	 47	 3D-‐signature	 samples	 for	 each	 signature	 over	 a	 period	 of	 5	

months	 	

  1180	 samples	 in	 total	

Experiments:	 Scenarios�

14�

Most	 cases:	 >95%	 recall	

The	 worst	 case:	 70%	 recall�

Results:	 Legi*mate	 Users �

15�

Ideal	 point	 �

Signature	 1	 -‐-‐	 ’ARE’	
Signature	 2	 –	 ‘Bry’	
Signature	 3	 –	 ‘Cao’	
Signature	 4	 -‐-‐	 ’DELl’	
Signature	 5	 –	 ‘HP’	
Signature	 6	 –	 ‘JAS’	
Signature	 7	 -‐-‐	 ’LIU’	
Signature	 8	 –	 ‘PIN	 ’	
Signature	 9	 –	 ‘Sa’	

	 	 	 	 …	

Signature	 34	 -‐-‐	 ‘ee’	
Signature	 35	 –’LLL’�

Recall	 (usability) �

Pr
ec
is
io
n	
(s
ec
ur
it
y)
�

Results:	 Legi*mate	 Users �

Euclidean	 distance � DTW	 �
16�Recall	 (usability) �

Pr
ec
is
io
n	
(s
ec
ur
it
y)
�

  Scenario	 2	 –	 AOackers	
  AOack	 model	

  Random	 aXacker	

  Content-‐aware	 aXacker	

  Observer	 aXacker	

  Educated	 aXacker	

  Insider	 aXacker	

Unknown:	 spelling	 ,	
	 	 	 	 	

	 how	 to	 sign�

Known:	 	 spelling	 ,	
Unknown:	 how	 to	 sign�

Unknown:	 	 spelling	 ,	
Known:	 	 how	 to	 sign�

Known:	 what	 is	 in	
the	 system…�

Experiments:	 Scenarios �

17�

AXack	 Type	 #	 'aXacker’	 #	 samples	 from	 each	 #	 'vicBm'	 #	 samples	
Random	 AOack	 34	 14~42	 4	 1040	
Content-‐Aware	 AOack	 	 6	 10	 4	 240	
1-‐Observer	 AOack	 	 12	 5	 4	 240	
4-‐Observer	 AOack	 	 12	 5	 4	 240	
Educated	 AOack	 	 12	 5	 4	 240	
Insider	 AOack	 	 12	 5	 4	 240	

Results:	 AOack	 Scenarios�
Threshold	 2:	
1.9	 AXempts�

Threshold	 3:	
3	 AXempts�

Threshold	 1:	
1.2	 AXempts�

18�

Conclusions	 and	 On-‐going	 Work �
  Conclusions	

  Designed	 a	 behavior-‐based	 authen*ca*on	 system	
(KinWrite)	

  Our	 experiment	 results	 based	 on	 over	 2000	 samples	

showed	 that	 3D-‐signatures	 can	 be	 used	 to	 verify	 users	

  On-‐going	 Work	

  Compare	 usability	 among	 3D	 signatures	 and	 exis*ng	

authen*ca*on	 methods	

  Study	 other	 types	 of	 3D	 signatures	

19�

20�

ROC	 Curves �

21�

Results:	 Legi*mate	 User �
13	 signatures	 can	

achieve	 a	 95%	 recall� 17	 signatures	 can	
achieve	 a	 100%	 recall�

5	 signatures	 can	 achieve	
at	 least	 85%	 recall� 22�

Results:	 All	 AOack�

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

Pr
ec

isi
on

CA
Ob−1
Ob−4
CA&OB−4
Insider
Random

(a) Precision-Recall curves

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

Tr
ue

 P
os

itiv
e

Ra
te

CA
Ob−1
Ob−4
CA&OB−4
Insider
Random

(b) ROC Curves

Figure 15. The average performance (by signatures) in various attack scenarios.

0

0.2

0.4

0.6

0.8

1

CA Ob−1 Ob−4 CA&Ob−4 Insider Random

Re
ca

ll (
Pr

ec
isi

on
=1

00
%

)

Bry
Jy
ma
Tj

(a) Achievable recall at a 100% precision

0

0.2

0.4

0.6

0.8

1

CA Ob−1 Ob−4 CA&Ob−4 Insider Random

Pr
ec

isi
on

 (R
ec

al
l=

75
%

)

Bry
Jy
ma
Tj

(b) Achievable precision at a 75% recall

Figure 16. The performance (by signature) in various attack scenarios.

are similar to the ones derived based on training sets, sug-

gesting that weight selection over a small training set suf-

fices.

To evaluate the impact of weighted features on verifica-

tion performance, we modified KinWrite so that all 14 di-

mensions of the features were equally weighted. Figure 14

(a,e) show the verification performance on all 35 signatures

of this modified KinWrite. The results demonstrate that

weighting features using the verification rates can improve

the verification performance.

The Role of Dynamic Time Warping. The proposed

DTW allows nonrigid warping along the temporal axis

when measuring the difference between two signatures. To

understand the impact of nonrigid warping on the verifica-

tion performance, we defined the difference between two

signatures (in the form of features) f1(t), t = 1, 2, · · · , N1

and f2(t), t = 1, 2, · · · , N2 as follows. We re-sampled the

signature features so that they had the same length, e.g.,

N = 50 points, and then calculated the Euclidean distance

between the two signature feature vectors. Figure 14 (b)

and (f) shows the testing performance (on all 35 signatures)

when using this difference metric without warping along the

temporal axis. The results show that the use of nonrigid

warping in DTW can substantially improve the verification

performance.

Impact of Kalman Filter and Feature Normalization.
We conducted experiments to justify the choice of Kalman

filter and feature normalization. First, we modified our Kin-

Write so that the Kalman filter was not included, or a differ-

ent feature normalization method was used by the data pre-

processor, and then we conducted the experiment as before.

Figure 14 (c,g) show the verification performance on all 35
signatures when features were normalized linearly to the

range of [0, 1]. The results show that the proposed feature

normalization method based on N (0, 1) distribution leads

to a better performance. Figure 14 (d,h) show the verifica-

tion performance on all 35 signatures when the signatures

were not smoothed by the proposed Kalman filter. From the

results, we can conclude that the use of a Kalman filter can

improve the verification performance.

14

~97% � ~75% �
1.3	

aXempts	 �

23�

How	 to	 Select	 a	 Feature �

  We	 choose	 features	 based	 on	 the	 movements	 and	 geometries	
on	 the	 signature	 trajectories.	

  	 Also	 we	 also	 learnt	 from	 the	 results	 on	 2D	 online	 signature	
verifica*on.	

24�

−2

0

2

−2
−1

0
1

2
3
−5

0

5

x−axisy−axis

z−
ax

is

Raw
Smoothed

(a) 3D

−2 −1 0 1 2
−2

−1

0

1

2

x−axis

y−
ax
is

(b) X-Y Plane

−2 −1 0 1 2
−2

−1

0

1

2

z−axis

x−
ax
is

(c) Z-X Plane

−2 −1 0 1 2
−2

−1

0

1

2

y−axis

z−
ax
is

(d) Y-Z Plane

Figure 5. A comparison between a raw 3D-signature (a Chinese character) and the one smoothed by
a Kalman filter.

by using the propagation technique described above. Other-

wise, we remove the first frame of these K frames and add

the next frame to repeat the initialization process until their

minimum-depth pixels show the required temporal continu-

ity, which reflects the reliability of the fingertip localization

in the initial frames.

4.1.2 Scaling and Translation

By connecting the fingertip points sequentially, we get a raw

signature, which is a 3D curve in the x− y − z space. One

global feature of a signature is its size, which can be de-

fined by the size of the bounding box around the signature.

The size of a signature in the x − y image plane may vary

when the distance between the user and the Kinect sensor

changes. In addition, users may intentionally sign in a larger

or smaller range during different trials, resulting in different

sizes of signatures. To achieve a reliable verification, we

scale the raw 3D-signatures into a 1× 1× 1 bounding box.

To make the different 3D-signatures spatially compara-

ble, we perform a global translation on each signature so

that the rear-right corner of its 3D bounding box becomes

its origin. Finally, we normalize each position such that

it follows a normal Gaussian distribution N (0, 1) over all

the frames. We denote the position of the fingertips after

the scaling, translation, and normalization to be ps(t) =
(psx(t), p

s
y(t), p

s
z(t))

T
.

4.1.3 Signature Smoothing

As shown in Figure 5, the raw 3D-signature obtained by a

Kinect is usually highly jagged and noisy. Such jagged sig-

natures are caused by the limited resolution of the Kinect

depth sensor. For example, a small area around the finger-

tip may have similar depths. By selecting the minimum-

depth pixel, the above fingertip localization algorithm may

not capture the correct fingertip position.

To address this issue, we apply a Kalman filter to smooth

the raw 3D-signatures that have been normalized. For sim-

p(t-1)

p(t) p(t+1)
p(t+2)

p(t+3)
p(t+4)

α(t)

y-axis

x-axis

z-axis

1/κ

Figure 6. An illustration of path angle and cur-
vature.

plicity, we smooth the three coordinates of the raw 3D-

signature separately. Take the x-coordinate as an example.

We denote the prediction of the underlying fingertip posi-

tion to be p(t) = (px(t), py(t), pz(t))T at the t-th frame

and define the state x(t) = (px(t), ṗx(t), p̈x(t))T at the t-th
frame as a vector of the predicted fingertip position, velocity

and acceleration. The state transition of the Kalman filter is

then x(t) = Ax(t − 1) + wx(t). Based on the theory of

motion under a constant acceleration, we can define

A =

1 �t �t2

2
0 1 �t
0 0 1

 (1)

where �t is the time interval between two consecutive

frames. Given the typical rate of 30 frames per second for a

Kinect sensor, we have �t = 1
30 seconds.

For the observation in the x coordinate, we only have the

raw fingertip position psx(t) but no velocity or acceleration.

Thus, we can write an observation equation for the Kalman

filter as psx(t) = cx(t) + vx(t), where c = (1 0 0). We

model the process noise wx(t) and the measurement noise

vx(t) to be zero-mean Gaussian distributions. For the pro-

cess noise, we choose the same covariance matrix Qx for

all the frames. More specifically, Qx is a 3 × 3 diagonal

matrix with three identical diagonal elements, which equals

the variance of acceleration (along x coordinate) estimated

7

An	 illustra,on	 of	 path	
	 angle	 and	 curvature�

Related	 Work �

  This	 is	 basically	 a	 signature	 verifica*on	 problem,	 which	 is	
based	 on	 research	 on	 2D	 online	 signature.	 	

  And	 also	 it	 is	 a	 behavior	 biometrics	 method,	 which	 is	 also	
related	 to	 gesture	 recogni*on	 and	 classifica*on;	 	

  while	 it	 is	 also	 a	 new	 way	 of	 Kinect	 applica*on.	

25�

How	 to	 Select	 Template	 &Threshold�
  Template	 Selec*on	

  The	 template	 has	 the	 minimum	 DTW	 distance	 to	 others	

  Threshold	 Selec*on	

  Select	 a	 threshold	 that	 leads	 to	 a	 zero	 false	 posi*ve	 rate	 among	 training	
samples.	

26�

