KinWrite: Handwriting-based Authentication Using Kinect

Jing Tian*, Chengzhang Qu **, Wenyuan Xu* and Song Wang*

*Dept. of Computer Science and Engineering, University of South Carolina

**School of Computer Science, Wuhan University

Roadmap

- Authentication Background
- □ KinWrite Framework
 - Data processing
 - Enrollment & Verification
- **Experiments**
 - + Legitimate users
 - + Attackers
- Conclusions & On-going work

Authentication Background

- □ What you know text passwords
 - What is secure is hard to remember
- What you own token
 - Lost or stolen token
- Who you are Physical biometrics
 - + Limited number

Goal: address all the limitation.

Our Solution: 3D-Signature

- 3D signature: handwriting in 3D space
 - Write short, easy to remember passwords in the space,
 - ♦ 2 or 3 characters
 - + Behavioral biometrics:
 - ♦ Can be updated
 - ♦ Difficult to duplicate
 - A weak typed password can still be strong if it is written in 3D space

- + Challenges:
 - ♦ Change over time?
 - ♦ Reject malicious users?
 - ♦ Accept genuine users?

Our Solution: KinWrite -- Kinect + 3D-Signature

Microsoft Kinect

- + A motion input RGB-D sensor
- Launched by Microsoft for Xbox 360 and Windows PCs
- Advantages
 - ♦ Low cost
 - ♦ Captures 3D information
 - Depth sensor
 - ♦ Works in the dark
- Disadvantages
 - \diamond Low resolution
 - ♦ Measurement errors

KinWrite: Overview

KinWrite: Data Processing

Data Processing: Acquisition

- **Subject:** raise a hand and use a fingertip
- □ Kinect: record the writing motion in the space

8

Data Processing: Preprocessing

Data Processing: Feature Extracting

O Spaceboint

Quantify the similarity of 3D-signatures

Approach--Dynamic Time Warping (DTW)

 DTW distance represents the similarities between two 3Dsignature samples --Warping along the temporal axis

Euclidean Distance

Dynamic Time Warping

+ Requires a small number of training samples

KinWrite: Enrollment & Verification

- Template: best represent the signature
- + Threshold: determine whether two signatures are from the same user
 - ♦ DTW distance < threshold \rightarrow pass
 - ♦ DTW distance > threshold → fail to pass

Experiments: Setup

Experiment setup

- 3 Kinect sensors
- + Distance \rightarrow 1.5 2.5 meters
- + A sample \rightarrow a video clip (2-12s),

~30 frames/second, depth frames

Evaluation metrics:

- Precision = verified genuine users / all verified users
 - ♦ Security
- + *Recall* = verified genuine users / all genuine users
 - ♦ Usability

Experiments: Scenarios

Scenario 1 – Legitimate users

- Let the subjects write their genuine signatures:
 - ♦ 18 users, 35 signatures
 - 18 47 3D-signature samples for each signature over a period of 5 months
 - 1180 samples in total

Results: Legitimate Users

Results: Legitimate Users

16

Experiments: Scenarios

Scenario 2 – Attackers

- Attack model
 - ♦ Random attacker
 - ♦ Content-aware attacker
 - ♦ Observer attacker
 - ♦ Educated attacker
 - ♦ Insider attacker

Unknown: spelling,

how to sign

Known: spelling , Unknown: how to sign

> Unknown: spelling , Known: how to sign

Attack Type	# 'attacker'	# samples from each	# 'victim'	# samples
Random Attack	34	14~42	4	1040
Content-Aware Attack	6	10	4	240
1-Observer Attack	12	5	4	240
4-Observer Attack	12	5	4	240
Educated Attack	12	5	4	240
Insider Attack	12	5	4	240

17

Results: Attack Scenarios

18

Conclusions and On-going Work

Conclusions

- Designed a behavior-based authentication system (KinWrite)
- Our experiment results based on over 2000 samples showed that 3D-signatures can be used to verify users

On-going Work

- Compare usability among 3D signatures and existing authentication methods
- + Study other types of 3D signatures

Thank you!

Questions?

Results: Legitimate User

Also we also learnt from the results on 2D online signature verification.

An illustration of path angle and curvature

24

Related Work

- This is basically a signature verification problem, which is based on research on 2D online signature.
- And also it is a behavior biometrics method, which is also related to gesture recognition and classification;
- while it is also a new way of Kinect application.

How to Select Template & Threshold

+ **Template** Selection

- ♦ The template has the minimum DTW distance to others
- + Threshold Selection
 - Select a threshold that leads to a zero false positive rate among training samples.