LIRA: Lightweight Incentivized Routing for Anonymity

20th Annual Network & Distributed System Security Symposium February 27, 2013

Rob Jansen Aaron Johnson Paul Syverson U.S. Naval Research Laboratory Problem

Onion Routers

Onion Routers

Onion Routers

Tor is Slow

Web (320 KiB)

Bulk (5 MiB)

Tor Utilization

~3000 relays

Tor Utilization

The Tor Project – https://metrics.torproject.org/

Tor's Top 20 Exit Relays

Exit Probability	Advertised Bandwidth	Nickname	Country
7.25%	0.87%	chaoscomputerclub18	DE
6.35%	0.93%	chaoscomputerclub20	DE
5.92%	1.48%	herngaard	US
3.60%	0.66%	chomsky	NL
3.35%	1.17%	dorrisdeebrown	DE
3.32%	1.18%	bolobolo1	DE
3.26%	0.65%	rainbowwarrior	NL
2.32%	0.36%	sdnettor01	SE
2.23%	0.69%	TheSignul	RO
2.22%	0.41%	raskin	DE
2.05%	0.40%	bouazizi	DE
1.93%	0.65%	assk	SE
1.82%	0.39%	kramse	DK
1.67%	0.35%	BostonUCompSci	US
1.53%	0.40%	bach	DE
1.31%	0.73%	DFRI0	SE
1.26%	0.31%	Amunet2	US
1.13%	0.27%	Amunet8	US
0.84%	0.27%	chaoscomputerclub28	DE
0.76%	0.37%	DFRI3	SE
Total: 54.14%		cor	npass.torproject.org

Our Solution

Incentive Scheme

LIRA

Relays' own traffic gets better performance

Incentive Schemes

- LIRA
- Gold star
- Tortoise
- BRAIDS
- Freedom
- PAR
- XPay

Relays' own traffic gets better performance

- Charge users, pay relays

Incentive Schemes

	External payment	Non-relays pay	Efficiency concerns	Anonymity concerns
Freedom	*	*		
PAR	*	*		
XPay	*	*		
Gold star				*
Tortoise				*
BRAIDS			*	

Anonymous Incentives

Problem: Priority identifies user as a relay

Anonymous Incentives

Problem: Priority identifies user as a relay Solutions

1. Give some priority "tickets" to all users (BRAIDS).

Anonymous Incentives

Problem: Priority identifies user as a relay Solutions

- 1. Give some priority "tickets" to all users (BRAIDS).
- 2. Cryptographic lottery gives priority; winning tickets can be (secretly) bought (LIRA).

Bank

Bank gives anonymous coins to relays based on amount of traffic forwarded

Bank sets up lottery with each relay

Clients guess winners

Cryptographic Lotteries

- Lottery at relay r $g_r: \{0,1\}^{2L} \rightarrow \{0,1\}^{2L}$ x wins if
 - $-g_r(x) = y_0 || y_1$ $-0 \le y_0 \oplus y_1$

Cryptographic Lotteries

- Lottery at relay r g_r : {0,1}^{2L} \rightarrow {0,1}^{2L} x wins if
 - $-g_r(x) = y_0 \parallel y_1$
 - $-0 \le y_0 \oplus y_1$

 g_r defined from PRF f_r using a Luby-Rackofflike construction

$$-y_0 = f_r(x_1) \oplus x_0$$
$$-y_1 = f_r(y_0) \oplus x_1$$

 $-g_r(x)=y_0\mid\mid y_1$

Cryptographic Lotteries

- Lottery at relay r g_r : {0,1}^{2L} \rightarrow {0,1}^{2L} x wins if
 - $-g_r(x) = y_0 \parallel y_1$
 - $-0 \le y_0 \oplus y_1$

- g_r defined from PRF f_r using a Luby-Rackofflike construction
 - $-y_0 = f_r(x_1) \oplus x_0$
 - $-y_1 = f_r(y_0) \oplus x_1$
 - $-g_r(x) = y_0 \parallel y_1$
- $f_r(x) = H(x(H(H(x) x_r^d)))$
 - H is a hash function
 - $-x_r$ is public; bank gives x_r^d to r during setup,
 - d is bank's private RSA key

Analysis

Efficiency

		LIRA	BRAIDS	
Bank	Blind signatures/s	127.5+127.5f (256B/sig)	637.5 (488 B/sig)	
Relay	Priority verification	6 hashes (18 us)	PBS verify (1500 us)	
Normal Client	Tickets / connection	0	1	
	<i>f</i> is fraction of credit redeemed. Entire network is transferring 1700 MiB/s. Signature size: 1024 bits. Ticket size: 320 bits. Linux OpenSSL benchmarks on Intel Core2 Duo 2.67 GHz			

Anonymity

 With m buyers and n guessers, the probability that a prioritized circuit source is a given buyer is

 $1 / (m + np^3)$

compared to 1/(m+n) without priority.

• Linked priority degrades anonymity exponentially to 1/*m*.

Performance

Web (320 KiB)

Bulk (5 MiB)

Performance, More Capacity

Web (320 KiB)

Bulk (5 MiB)

lira

5%(+7%)

15%(+17%) 5%(+96%)

15%(+384%)

200

150

Conclusion

- 1. Volunteer-run Tor network is overloaded.
- 2. LIRA provides incentives to contribute by rewards with better network performance.
- 3. LIRA is more efficient than previous schemes while maintaining anonymity.
- 4. Full-network experiments demonstrate better performance and scalability.

Buying winning tickets

- Client chooses y_0 , y_1 , $0 \le y_0 XOR y_1 < p2^L$
- Using using PRF protocol, client reverses Luby-Rackoff process to get $g_r^{-1}(y_0 \parallel y_1)$.

Client *c* and bank *B* evaluate $f_r(x)$ 1. *C* sends $a^e x_r^d$ to B, *a* random. 2. *B* returns abx_r^d , *b* random. 3. *c* sends *b* H(*x*) x_r^d to *B*. 4. *B* returns H(H(*x*) x_r^d) to *c*. 5. *c* outputs $f_r(x) = H(x H(H(x)x_r^d))$.

PRF Protocol

- 1. Client sends tickets to each relay in circuit.
- 2. Relays evaluate tickets. Winners must have unseen PRF inputs. Neighbors sent results.
- 3. If ticket wins and neighbors report wins, circuit is prioritized for next β bytes.

Priority Scheduling

- Proportional Differentiated Services
 - Split traffic into "paid" and "unpaid" classes
 - Prioritize classes using quality differentiation parameters p_i and quality measure Q (EWMA)

 $p_1/p_2 = Q_1(\Delta t) / Q_2(\Delta t)$

Bank secrecy (honest-but-curious)

- Clients oblivious to x_r^d .
- B cannot produce r, input x, or output f_r(x).
- Relay purchases are batched, preventing bank from knowing when prioritized circuits are constructed.

c and B evaluate $f_r(x)$

- 1. c obtains bx_r^d .
- 2. c sends $b H(x)x_r^d$ to B.
- 3. B sends $H(H(x)x_r^d)$ to c.
- 4. c outputs $H(x(H(H(x)x_r^d)))$.

PRF Protocol

Creating winning tickets

- f_r is random in ROM when x_r^d unknown.
- $y_0 XOR y_1$ is random. for y_0 or y_1 unknown
- One-time-use inputs to f_r prevent double spending.
- Tickets not fully purchased win with probability *p*.

$$f_r(x) = \mathsf{H}(x(\mathsf{H}(\mathsf{H}(x) \; x_r^{d})))$$

$$y_0 = f_r(x_1) \bigoplus x_0$$

$$y_1 = f_r(y_0) \bigoplus x_1$$

$$g_r(x) = y_0 \parallel y_1$$

$$0 \leq y_0 \oplus y_1$$

Cryptographic Lottery