
Taming Hosted Hypervisors with
(Mostly) Deprivileged Execution
Chiachih Wu†, Zhi Wang*, Xuxian Jiang†

†North Carolina State University, *Florida State University

Virtualization is Widely Used
2

  “There are now hundreds of thousands of companies
around the world using AWS to run all their business, or
at least a portion of it. They are located across 190
countries, which is just about all of them on Earth.”

Werner Vogels, CTO at Amazon
AWS Summit ‘12

  “Virtualization penetration has surpassed 50% of all
server workloads, and continues to grow.”

Magic Quadrant for x86 Server Virtualization Infrastructure
June ‘12

Threats to Hypervisors

  Large Code Bases

Hypervisor Vulnerabilities

Xen 41

KVM 24

VMware ESXi 43

VMware Workstation 49

Hypervisor SLOC

Xen (4.0) 194K

VMware ESXi1 200K

Hyper-V1 100K

KVM (2.6.32.28) 33.6K

1: Data source: NOVA (Steinberg et al., EuroSys ’10)

Data source: National Vulnerability Database (‘09~’12)

3

  Vulnerabilities

Threats to Hosted Hypervisors

Hypervisor

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

4

Can we prevent the compromised hypervisor
from attacking the rest of the system?

DeHype

  Decomposing the KVM hypervisor codebase
 De-privileged part user-level (93.2% codebase)
 Privileged part small kernel module (2.3 KSLOC)

Guest VM

KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

DeHyped
KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

DeHyped
KVM’

HypeLet

De-privilege

5

~4% overhead

Challenges
6

  Providing the OS services in user mode

  Minimizing performance overhead

  Supporting hardware-assisted memory
virtualization at user-level

Challenge I

  Providing the OS services in user mode

Hypervisor

Physical Hardware

Host OS

Hypervisor

Physical Hardware

Host OS

User

Kernel

De-privileged Hypervisor

HypeLet

7

Original Hosted Hypervisor DeHype’d Hosted Hypervisor

Dependency Decoupling

  Abstracting the host OS interface and
providing OS functionalities in user mode

  For example
 Memory allocator: kmalloc/kfree, alloc_page, etc.
 Kernel APIs for memory access: virt_to_page, etc.
 Scheduling, signal handling, invoking system calls

 Leveraging GLIBC

8

Dependency Decoupling

Name Function
VMREAD Read VMCS fields
VMWRITE Write VMCS fields
GUEST_RUN Perform host-to-guest world switches
GUEST_RUN_POST Perform guest-to-host world switches
RDMSR Read MSR registers
WRMSR Write MSR registers
INVVPID Invalidate TLB mappings based on VPID
INVEPT Invalidate EPT mappings
INIT_VCPU Initialize vCPU
MAP_HVA_TO_PFH Translate host virtual address to physical frame

10 privileged services provided by HypeLet

9

Privileged
instrustions

Service
routines

Challenge II

  Minimizing performance overhead

QEMU

KVM

QEMU

195187 privileged instructions

HypeLet
195187 system calls

1system call

Time

User

Kernel 1function call

10

DeHyped

~10%

Optimization: Caching VMCS

  VMCS (Virtual Machine Control Structure)
 ~90% of the privileged instructions issued by the

hypervisor are for accessing VMCS

 Accessed by the hypervisor for monitoring or
controlling the behavior of the guest VM

  Indirectly affected by the guest VM throughout the
running period in guest mode

11

Optimization: Caching VMCS

  Maintaining cached copy of VMCS in user-level
  Caching only the most frequently accessed fields

  Caching 8 VMWRITE’d fields: 98.28% VMWRITE
system calls reduced

Top 8 Most Frequently VMWRITE’d VMCS Fields
CPU_BASED_VM_EXEC_CONTROL EPT_POINTER_HIGH EPT_POINTER GUEST_RIP

VM_ENTRY_INTR_INFO_FIELD GUEST_RFLAGS GUEST_CR3 GUEST_RSP

12

  Caching 28 VMREAD’d fields: 99.86% VMREAD
system calls reduced

Challenge III

  Supporting hardware-assisted memory
virtualization at user-level
 Maintaining nested page tables which translate

guest-physical to host-physical addresses
 Memory may be paged out
 Virtual-physical mapping information is unknown

 Preventing the untrusted hypervisors from
accessing memory areas not belonged to them
 Bactch-processing NPT updates with sanity checks in

HypeLet

13

Implementation and Evaluation
14

  Prototype
 KVM 2.6.32.28 with qemu-kvm-0.14.0
 ~93.2% of KVM codebase is de-privileged
 2.3K SLOC small kernel module (HypeLet)

  Evaluation
 Security benefits
 Non-security benefits
 Performance

Testing real-world vulnerabilities

  CVE-2010-0435
 Guest OS causing a NULL pointer

dereference (accessing debug registers with
MOV) in KVM running in privileged mode

15

KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

Guest VM

KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

KVM’

HypeLet

DeHype

Whole System
Crashes

Particular
Instance of
QEMU+KVM
Crashes Only

Facilitating hypervisor development

  e.g., debugging the
NPT fault handler with
GDB

set breakpoint
continue the program

NPT fault occurs

register dump

call trace

16

Running multiple hypervisors

  Running each hypervisor in a different security level
 Suspicious guests: running on VMI-enabled hypervisors
 Others: running on normal hypervisors

  Live-migrating guests to another hypervisor in the
same host computer
1.  New vulnerability reported and fixed
2.  Starting a patched hypervisor
3.  Live-migrating all guests one-by-one

17

Performance Evaluation

  Test platform
 Dell OptiPlex 980: Intel Core i7 860 + 3G RAM
 Host: Ubuntu 11.10 desktop + Linux kernel

2.6.32.28
 Guests: Ubuntu 10.04.2 LTS server

  Benchmarks
Software Package Version Configuration
SPEC CPU2006 v1.0.1 Reportable int
Bonnie++ 1.03e bonnie++ -f -n 256
Linux kernel 2.6.39.2 untar_kernel: tar zfx <KERNEL-

TARBALL>
make_kernel: make defconfig vmlinux

18

Relative Performance

93%
94%
95%
96%
97%
98%
99%

100%

DeHype
DeHype+VMCS caching
DeHype+VMCS caching+securely NPT updates

19

Discussion
20

  HypeLet and the host OS are a part of the TCB
  HypeLet is the main attack surface in the cloud

environment
  HypeLet is highly constrained (2.3 KSLOC, 10 services)

  Prototype limitations
  Pinning guest memory

  Could be extended with Linux MMU notifier
  Not supporting all KVM features

  SMP
  Para-virtualized I/O

Related Work

  Improving hypervisor security
  seL4 (Klein et al., SOSP ’09), NOVA (Steinberg et al.,

EuroSys ’10), HyperLock (Wang et al., EuroSys ’12)
…

  Isolating untrusted device drivers
 Nooks (Swift et al., SOSP ‘03), Microdrivers

(Ganapathy et al., ASPLOS ‘08) …

  Applying virtualization to host security
 HookSafe (Wang et al., CCS ‘09), Lockdown

(Vasudevan et al., TRUST ‘12) …

21

Conclusion

  DeHype substantially reduces hosted hypervisor’s
attack surface and brings additional benefits
 Better development and debugging
 Concurrent execution of multiple hypervisors

22

DeHyped
KVM

Applications

Guest OS

Physical Hardware

… Applications

Guest OS

Host OS

DeHyped
KVM’

HypeLet

93.2% of
original KVM

2.3 KSLOC

Thanks, Questions?

Chiachih Wu cwu10@ncsu.edu

23

Backup Slides

24

Memory Rebasing
virtual

physical

1. Pre-allocating pinned
memory in kernel space

k_bas
e

u_base

u_addr

k_addr

p_addr

2. Remapping the
pinned memory
to user space

3. u_addr k_addr

4. k_addr p_addr

25

user
kernel

Securely Update NPT Entries

  Preventing the untrusted hypervisor from
updating the NPT tables directly
 Recording the update operations into buffer
 Batch-processing the updates in next host-to-

guest switch with sanity check (by HypeLet)
  Issue: the hypervisor needs the actual NPTs to

traverse the layer-based NPTs

A

i

j

k
l
m

R B
C

Update entry l
1. Allocate A; R[i]=A
2. Allocate B; A[j]=B
3. Allocate C; B[k]=C
4. Update C[l]

Update entry m
1. A=R[i]
2. B=A[j]
3. C=B[k]
4. Update C[m]

Recording only
Cannot traverse

26

Pseudo NPT

i

j

k

R’
A’

B’
C’

i

j

k

R
A

B
C

Time

VM Entry Privileged Service Request

Buffer

Allocate A; R[i]=A
Allocate B; A[j]=B
Allocate C; B[k]=C

Real NPTs (allocated from
the remapped memory pool)

Pseudo NPTs (allocated from heap)

27

Host mode, User-level

Host mode, Kernel-level

Guest Mode

Guest
Access

Intel VT-x: World Switches
28

  VM Entry
  Transition from VMM to Guest (VMLAUNCH/VMRESUME)
  Enters VMX non-root operation (guest mode)
  Saves VMM state in VMCS
  Loads Guest state and exit criteria from VMCS

  VM Exit
  Transition from Guest to VMM (VMEXIT)
  Enters VMX root operation (host mode)
  Saves Guest state in VMCS
  Loads VMM state from VMCS Hypervisor

Virtual Machine

Applications

Guest OS

Physical Hardware

…

Virtual Machine

Applications

Guest OS

Host OS

VM Entry VM Exit

Optimization: Caching VMCS

Top 28 Most Frequently VMREAD’ed VMCS Fields
GUEST_INTERRUPTIBILITY_INFO EXIT_QUALIFICATION GUEST_CS_BAS

E
GUEST_RSP

IDT_VECTORING_INO_FIELD GUEST_CS_SELECT
OR

GUEST_DS_BAS
E

GUEST_RIP

GUEST_PHYSICAL_ADDRESS_HI
GH

GUEST_CS_AR_BYTE
S

GUEST_ES_BAS
E

GUEST_CR0

GUEST_PHYSICAL_ADDRESS GUEST_PDPTR0_HIG
H

GUEST_PDPTR0 GUEST_CR3

VM_EXIT_INTR_INFO GUEST_PDPTR1_HIG
H

GUEST_PDPTR1 GUEST_CR4

VM_EXIT_INSTRUCTION_LEN GUEST_PDPTR2_HIG
H

GUEST_PDPTR2 GUEST_RFLAGS

CPU_BASED_VM_EXEC_CONTRO
L

GUEST_PDPTR3_HIG
H

GUEST_PDPTR3 VM_EXIT_REASON

29

Combining privileged instructions

  VMPTRLD: a privileged instruction to load guest states before
switching to guest mode

  CPU intensive workload
  KVM handles most VM Exits
  One VMPTRLD is followed by multiple runs of (VMRESUME, VMEXIT)
  The latency of VMPTRLD is not significant

30

DeHype’d KVM

HypeLet

User
Kernel

VMPTRLD VMRESUME VMEXIT
guest

Time

VMRESUME VMEXIT
guest …

QEMU

…

KVM_RUN

Combining privileged instructions

  IO intensive workload
  QEMU handles most VM exits for issuing IO instructions
  One VMPTRLD is followed by one run of (VMRESUME, VMEXIT)
  VMPTRLD introduces significant latency

  Postponing the VMPTRLD instruction until the first VMRESUME
instruction

31

DeHype’d KVM

HypeLet

User
Kernel

VMPTRLD VMRESUME VMEXIT
guest

Time

QEMU

KVM_RUN

HypeLet
VMPTRLD VMRESUME VMEXIT

guest

Testing real-world vulnerabilities

  CVE-2009-4031
 KVM attempting to interpret wrong-size (too

long) instructions
 Being exploited

 Causing large latencies in non-preempt hosts

 With DeHype
  Instruction emulation is done in user-level where

preemption is natively enabled

32

Testing real-world vulnerabilities

  CVE-2010-3881
 KVM copying certain data structures to user

program without clearing the padding
 Being exploited

 QEMU processes potentially obtaining sensitive
information from kernel stack

 With DeHype
 QEMU process obtaining information from the stack

of the hypervisor paired with it, not from the kernel
stack

33

