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What	  is	  Fault	  LocalizaDon?	  
 	  Problem	  defini-on	  

 Iden-fy	  faulty	  links	  during	  packet	  forwarding	  
 	  A;acker	  Model	  

 Drop,	  modify,	  misroute,	  or	  inject	  packets	  at	  data	  plane	  
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 	  Challenges	  
 Selec-ve	  a;ack:	  break	  ping,	  traceroute,	  etc	  
 High	  overhead	  

Source	   Dest	  
1	   2	   3	   4	   5	  

“Got	  it”	   “Got	  it”	   “Got	  it”	   “Got	  it”	   “Got	  it”	  

Only	  drop	  node	  5’s	  ACKs	   Slander	  &	  framing	  



What	  is	  Fault	  LocalizaDon?	  
 	  Challenges	  (cont’d)	  

 	  A;acks	  against	  sampling	  
 	  Forgery	  a;ack:	  break	  NeSlow,	  Bloom	  Filter,	  etc	  

Only	  modify	  packets	  

100	  pkts	  
“Got	  100”	   “Got	  100”	   “Got	  100”	   “Got	  100”	   “Got	  100”	  
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Source	   Dest	  
1	   2	   3	   4	   5	  

is	  not	  sampled,	  drop	  it!	  

 	  Natural	  packet	  loss	  



Why	  is	  Fault	  LocalizaDon	  Important?	  
 The	  current	  Internet	  

 	  Best	  effort,	  purely	  end-‐to-‐end	  
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Source	   Des-na-on	  

Worst	  case:	  23	  

 	  Fault	  localiza-on	  enables:	  	  
 Data-‐plane	  accountability	  
 Intelligent	  path	  selec-on	  
 Linear	  path	  trial	  

Worst	  case:	  3	  vs	  23	  trials	  



Design	  Goals	  
 Security	  

 	  Against	  drop,	  modify,	  inject,	  and	  replay	  packets	  
 	  Against	  mul-ple	  colluding	  nodes	  

 Efficiency	  
 	  Low	  detec-on	  delay	  	  
 	  Low	  storage,	  communica-on	  and	  computa-on	  overhead	  	  

 Provable	  guarantees	  
 	  Upper	  bound	  of	  damage	  without	  being	  detected	  

 	  Lower	  bound	  of	  forwarding	  correctness	  if	  no	  fault	  detected	  
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ShortMAC	  Key	  Insight	  #1	  
 	  Fault	  Localiza-on	  	  Packet	  authen-ca-on	  

 	  Fault	  Localiza-on	  	  monitor	  packet	  count	  and	  content	  
 	  W/	  pkt	  authen,	  content	  	  count	  
 	  Only	  counts	  	  small	  state,	  low	  bandwidth	  cost	  
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Source	  
6	  

	  A	   B	   C	  
6	   4	  6	  

Detectable!	  

Detectable!	  



ShortMAC	  Key	  Insight	  #2	  
 	  Limi+ng	  a;acks	  instead	  of	  perfect	  detec-on	  

 	  Detect	  every	  misbehavior?	  Costly!	  Error-‐prone!	  
 	  Absorb	  low-‐impact	  a;ack:	  tolerance	  threshold	  
 	  Trap	  the	  a;acker	  into	  a	  dilemma	  
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Source	   Dest.	  

	  	  A;ack	  more?	  
Will	  get	  caught!	  

Stay	  under	  2%?	  
Damage	  is	  bounded!	  

 	  Enable	  probabilis-c	  algorithms	  with	  provable	  bounds	  



ShortMAC	  Key	  Ideas	  

8	  

 	  Limi-ng	  instead	  of	  perfectly	  detec-ng	  fake	  packets	  
 	  Source	  marks	  each	  packet	  with	  k	  bits	  (with	  keyed	  PRF)	  

 	  The	  ShortMAC	  packet	  marking	  

Source	   Dest	  

1	   2	  

K1	   K2	  K1	   K2	  

Forge	  m?	  50%	  chance	  of	  
inconsistency.	  Detectable!	  

k-‐bit	  MAC,	  
e.g.,	  k	  =	  1	  

(	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  1,	  0,	  1)	  

Kd	  Kd	  

1	  

1	  
K1	  

K2	  
0	  

Kd	  

PRFKd	   (	  	  	  	  	  	  	  	  ,	  	  	  	  	  	  	  	  	  	  	  	  	  SN,	  	  TTLd)	  	  =	  

PRFK2	  (	  	  	  	  	  	  	  	  	  ,	  SN,	  TTL2,	  	  	  	  	  	  	  )	  =	  

PRFK1	  (	  	  	  	  	  	  	  	  	  ,	  SN,	  TTL1,	  	  	  	  	  	  	  ,	  	  	  	  	  	  	  )	  =	  



ShortMAC	  Key	  Ideas	  
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 	  High-‐level	  steps	  

 	  Secure	  repor-ng	  	  
 	  Each	  node	  maintains	  two	  counters	  (counter	  only!)	  

 	  Threshold-‐based	  detec-on	  robust	  to	  natural	  errors	  

forges	  500	  pkt	  

sends	  1000	  pkts	  

1	   2	   3	  

Source	   Dest.	  

1-‐bit	  MAC	   1000	  

0	  

1000	  

0	  

750	  

250	  
625	  

125	  

 	  More	  details:	  Onion	  ACK	  for	  repor-ng,	  threshold-‐based	  
detec-on,	  etc	  



TheoreDcal	  Bounds	  
 The	  math	  

 The	  numbers	  
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2) When fm and fm′ are adjacent (m′ = m + 1), these
two nodes can be regarded as one single “virtual” malicious
node Fm with neighbors fm−1 and fm+2, as shown in Fig-
ure 5. (i) If fm or fm+1 drops packets, a discrepancy will
exist between Cgood

m−1 and Cgood
m+2, no matter what values of

Cgood
m and Cgood

m+1 Fm claims. (ii) If fm or fm+1 injects
packets, Cbad

m+2 will become non-zero and make lm+1 sus-
picious. In any case, an adjacent link of Fm (a malicious
link) will become suspicious.
In the general case with n colluding nodes, we can first

group adjacent colluding nodes into virtual malicious nodes
as in Figure 5, resulting in non-adjacent malicious nodes
(including virtual malicious nodes). Then we can show
non-adjacent malicious nodes can be detected based on the
above analysis.
Despite colluding attackers cannot corrupt packets more

than the same thresholds as an individual attacker on any
single link, they can choose to distribute packet dropping
across multiple links. In this case, the total packet drop rate
by colluding attackers increases (and is still bounded) lin-
early to the number of malicious links in the same path, as
analyzed in Section 6.

6 Theoretical Results and Comparison

We prove the (N, δ)−data-plane fault localization (Def-
inition 4) and (α,β)δ−forwarding security of ShortMAC
(Definition 6), which in turn yield the θ−guaranteed for-
warding correctness (Definition 5). Proofs of the lemmas
and theorems are provided in Appendix A.
Comparison of theoretical results. Before presenting the
theorems, we first summarize and compare ShortMAC the-
oretical results with two recent proposals, PAAI-1 [59] and
Stat. FL [16] (including two approaches denoted by SSS and
sketch). Table 1 presents the numeric figures using an exam-
ple parameter setting for intuitive illustration, while Short-
MAC presents similarly distinct advantages in other param-
eter settings. In this example scenario shown in the table,
the guaranteed data-plane packet delivery ratio is θ = 92%.
The communication overhead for a router in ShortMAC is
1 extra ACK for every 3.8 × 104 data packets in an epoch;
the marking cost is 10 bits for the 2-bit MACs in a path
with 5 hops, and the per-path state at each router is 21 bytes
(16-byte symmetric key, 2-byte Cgood, 1-byte Cbad, and 2-
byte per-path SN ). Though Barak et al. proved the ne-
cessity of per-path state for a secure fault localization pro-
tocol [16], such a minimal per-path state in ShortMAC is
viable for both intra-domain networks with tens of thou-
sands of routers and the Internet AS-level routing among
currently tens of thousands of ASes.
We provide the intuition for ShortMAC’s distinct ad-

vantages. PAAI-1 or Stat. FL used either low-rate packet

sampling or approximation techniques for packet finger-
printing, both of which waste entropy contained in cer-
tain packet transmissions, thus resulting in long detection
delay (e.g., the transmission results of non-sampled pack-
ets will not contribute to the detection phase). In con-
trast, ShortMAC counts every packet transmission thus
achieving much faster detection rate. In addition, secure
packet sampling requires additional packet buffering [59],
and packet fingerprint takes considerable memory [16].

Lemma 1 Injection Detection: Given the bound δ on de-
tection false negative and false positive rates, the injection
detection threshold Tin can be set to Tin =

2 ln 2d
δ

q4 , where
d is the path length and q = 2k

−1
2k is the probability that

a fake packet will be inconsistent with the associated k-bit
MAC. The number of fake packets β an adversary can in-
ject on one of its malicious links without being detected is

limited to: β = Tin

q +

r

(

ln 2
δ

)2
+8qTin ln 2

δ +ln 2
δ

4q2 .

In Lemma 2, we derive N , the number of data packets
a source needs to send in one epoch to bound the detection
false positive and false negative rates below δ. Due to natu-
ral packet loss, a network operator first sets an expectation
based on her domain knowledge such that any benign link
in normal condition should spontaneously drop less than ρ
fraction of packets. We first describe how the drop detection
threshold Tdr is set when N and δ are given. Intuitively,
by sending more data packets (larger N ), the observed per-
link drop rate can approach more closely its expected value,
which is less than ρ; otherwise, with a smaller N , the ob-
served per-link drop rate can deviate further away from ρ,
and the drop detection threshold Tdr has to tolerate a larger
deviation (thus being very loose) in order to limit the false
positive rate below the given δ. On the other hand, a small
N is desired for fast fault localization. We define Detection
Delay to be the minimum value of N given the required δ.

Lemma 2 Dropping Detection and (N, δ)- Fault Local-
ization: Given the bound δ on detection false positive and
negative rates and drop detection threshold Tdr, the detec-
tion delay N is given by: N =

ln( 2d
δ )

2
(

Tdr−ρ
)2(

1−Tdr

)d , where

d is the path length. Correspondingly, the fraction of pack-
ets α an adversary can drop on one of its malicious links
without being detected is limited to: α = 1 − (1 − Tdr)2 +

β
N(1−Tdr)d .

In practice, Tdr can be chosen according to the expected
upper bound ρ of a “reasonable” normal link loss rate such
that a drop rate above Tdr is regarded as “excessively lossy”.

Theorem 1 Forwarding Security and Correctness:
Given Tdr, δ, and path length d, we can achieve
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In practice, Tdr can be chosen according to the expected
upper bound ρ of a “reasonable” normal link loss rate such
that a drop rate above Tdr is regarded as “excessively lossy”.

Theorem 1 Forwarding Security and Correctness:
Given Tdr, δ, and path length d, we can achieve

Protocol ShortMAC PAAI-1 SSS Sketch
Detect. Delay (pkt) 3.8 × 104 7.1 × 105 1.6 × 108 ≈ 106

Comm. (extra %) < 10−5 1 1 < 10−5

Marking Cost (bytes) 2 0 0 0
Per-path State (bytes) 21 2×105 4 × 103 ≈ 500

Table 1. Theoretical comparison with PAAI-1 [59] and Stat. FL [16] (including two approaches SSS
and sketch). Note that the details of sketch are not provided in the published paper [16], and the full
version of [16] does not present the explicit bounds on detection delay. The above figures for sketch
are estimated from their earlier work [?]. In this example scenario, d = 5, δ = 1%, ρ = 0.5%, Tdr = 1.5%,
a symmetric key is 16 bytes, and ShortMAC uses 2-bit MACs. PAAI-1 specific parameters include the
“packet sampling rate” set to 0.01, the end-to-end latency set to 25 ms, the source’s sending rate set
to 106 packets per second, each packet hash is 128 bits.

(α,β)δ−forwarding security where α is given by Lemma 2
and β is given by Lemma 1. We also achieve (Ω, θ)-
Guaranteed forwarding correctness with Ω equal to
the number of malicious links in the network, and
θ = (1 − Tdr)d − β

N . where N is derived from Lemma 2

In Theorem 2, we analyze the protocol overhead with the
following three metrics (we further analyze the throughput
and latency in Section 8 via real-field testing):
1) The communication overhead is the fraction of extra
packets each router needs to transmit.
2) The marking cost is the number of extra bits a source
needs to embed into each data packet.
3) The per-path state is defined as the per-path extra bits
that a router stores for the security protocol in fast memory
needed for per-packet processing.4

Theorem 2 Overhead: For each router, the communica-
tion overhead is one packet for each epoch of N data pack-
ets. The marking cost is k ·d bits for the k-bit MACs where d
is the path length. The per-path state comprises one lg N -
bit Cgood counter, one lg β-bit Cbad counter, one lg N -bit
last-seen per-path SN , and one epoch symmetric key.

7 SSFNet-based Evaluation

In addition to analyzing the theoretical performance,
we implement ShortMAC prototype on the SSFNet sim-
ulator [6] to study the detection delay and security of
ShortMAC. Section 8 further investigates ShortMAC’s
throughput and latency. These experimental results provide
average-case performance with various attack strategies to

4The buffering space needed for the Onion-ACK construction of
report messages in ShortMAC is not a major concern, as the Onion-
ACK is computed only once every epoch, which can be buffered in off-chip
storage.

complement the theoretical results derived in the worst case
scenario (due to multiple mathematical relaxations such as
Hoeffding inequality) and constant dropping/injection rates.

Evaluation scenario and attack pattern. Since Short-
MAC provides a natural isolation across paths due to
its per-path state, our evaluation focuses on a single
path. Specifically, we present the result of a 6-hop path
(routers f1, f2, f3, f4, f5 and the destination f6) since our
experiment yields the same observation with other path
lengths. We simulate both an (i) independent packet cor-
ruption pattern where a malicious node drops/injects each
packet independently with a certain drop/injection rate, and
(ii) random-period packet corruption pattern where the be-
nign (non-attack) period Tb and attack period Ta (when the
malicious node drops/modifies all legitimate packets) are
activated in turns. The durations for both periods are ran-
domly generated. For both attack patterns, we control the
average packet drop/injection rates and observe that both
attack patterns yield similar observations. Hence, in the fol-
lowing experiment, we only show the results for the inde-
pendent packet corruption pattern. Also, we infuse natural
packet loss rate ρ for each link to simulate natural packet
loss, which is not provided by SSFNet. As Section 5 elab-
orates ShortMAC security against colluding attacks, we
only show the representative results for a single malicious
node f3. For each simulation setting, we run the simulation
1000 times and present the average results.

Against various dropping attacks. Figure 6(a) depicts the
detection delay N and error rates δ with per-link natural
loss rate ρ as 0.5%, drop detection threshold Tdr as 1%,
and a stealthy malicious drop rate as 2%. We see that even
against stealthy dropping attacks with a dropping rate as low
as 2%, ShortMAC can successfully localize a faulty link in
< 2000 packets with an error rate δ < 1%, which is orders
of magnitudes faster than the worst-case theoretical bound
(Lemma2). Figure 6(b) depicts different detection delays

 	  PAAI-‐1:	  X.	  Zhang,	  A.	  Jain,	  and	  A.	  Perrig,	  “Packet-‐dropping	  
Adversary	  Iden-fica-on	  on	  Data-‐plane	  security.”	  
 	  SSS,	  Sketch:	  B.	  Barak,	  S.	  Goldberg,	  D.	  Xiao,	  “Protocols	  and	  
Lower	  Bounds	  for	  Failure	  Localiza-on”	  

Protocol	   ShortMAC	   PAAI-‐1	   SSS	   Sketch	  

Delay	  (pkt)	   3.8×104	   7.1×105	   1.6×108	   ≈106	  

State	  (bytes)	   21	   2×105	   4×103	   ≈500	  



Experimental	  EvaluaDon	  

 Average-‐case	  performance,	  proof	  of	  concept	  

 Simula-on	  +	  Prototyping	  
 Simula-on:	  large-‐scale,	  security	  proper-es	  

 Prototype:	  computa-onal	  overhead	  

 SSF-‐net	  based	  simula-on	  
 	  Single	  6-‐hop	  path	  
 	  Malicious	  node	  in	  the	  middle	  

 	  Independently	  dropping/injec-ng	  packets	  
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SimulaDon	  Results	  
 False	  rates,	  detec-on	  delay,	  and	  comparison	  	  
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(c) Injection attacks.
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(d) Combined attacks.

Figure 6. In this set of simulations, f3 is the malicious router performing attacks. The parameter are
set as follows: (a) The malicious drop rate is 2%, Tdr = 1%, and natural drop rate ρ = 0.5%. (b) The
malicious drop rate is 2%, and Tdr = 1%. (c) The malicious injection rate is 2% using 2-bit MACs,
natural loss rate ρ = 0.5%, and Tdr = 1%. (d) “drop p inject q” denotes the use of p% dropping rate
and q% injection rate at f3.

with different natural packet loss rates, demonstrating that
larger |Tdr − ρ| yields higher detection accuracy and lower
detection delay.

Against various injection attacks. Figure 6(c) shows the
results when f3 injects packets at a 2% rate (relative to
the legitimate packet sending rate). It shows that the error
rates stay below 1% in a few hundred packets, indicating
that even with 2-bit MACs, an adversary can only inject up
to around ten packets without being detected. We further
investigate the effects of using different lengths of k−bit
MACs, and Figure 7 shows that the detection delay and er-
ror rate dramatically diminish as k increases.

Against combined attacks. Figure 6(d) shows how the
combinations of dropping and injection attack strategies (in
our setting, dropping/injection rates are chosen between 2%
– 5%) influence the protocol. We observe that the detection
delay is mainly determined by the dropping detection pro-
cess, which is much slower than the injection detection pro-
cess. This also indicates that a malicious node cannot gain

any advantage (and actually can only harm itself) by inject-
ing bogus packets in attempt to bias the counter values.

Variance due to different malicious node positions. To in-
vestigate the influence of the position of the malicious node,
we consider a path with 6 forwarding nodes f1, f2, . . . , f6

and place the malicious node at each position (1 to 6) in
turn. We limit the error rate < 1% and obtain the corre-
sponding detection delays. Figure 8 shows one represen-
tative scenario where both dropping and injection rates are
5%. We can see that (i) the dropping detection delay in-
creases linearly when the malicious node is farther away
from the source. This is because in the ShortMAC detec-
tion process, the source always inspects the closer links first
and stops once the first “faulty” link is detected. The FP rate
thus increases when more links exist between the source and
the malicious node due to natural packet loss on each link.
(ii) In contrast, the injection detection delay exhibits little
variance (cannot be seen from the figure as the detection
delay is determined by the dropping detection), which can

 2-‐bit-‐MAC	  



Prototyping	  Results	  
 Pure-‐sosware	  router	  prototype	  in	  Linux/Click	  

 Evalua-on	  of	  fast	  path	  performance	  
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put of a ShortMAC router and a ShortMAC source sepa-
rately to better illustrate the throughput of each component,
while the end-to-end path throughput can be easily derived
by taking the minimum throughput of the two evaluation
results. Then we evaluate the end-to-end latency with dif-
ferent path lengths ranging from 2 to 64. We also exploit
the multi-core parallel processing at the source node via
OpenMP API [5].
Summary of evaluation results. The evaluation results
of our Linux software prototype demonstrate that both a
ShortMAC router and source node can retain more than
92% of the baseline throughput (no ShortMAC operations
are employed). Furthermore, the additional latency due to
ShortMAC operations is negligible (tens of microseconds)
even with a path length of 64 hops. The results further in-
dicate the ShortMAC scheme is fully scalable as the num-
ber of processing cores increases in a software-based imple-
mentation, while we anticipate hardware implementation of
the MAC operations in ShortMAC can further boost the
protocol throughput. Details of the evaluation results are as
follows.
Router throughput with different PRF implemen-
tations. We first evaluate the throughput of a user-
level ShortMAC router with different PRF implemen-
tations (i.e.,UMAC [51], HMAC-SHA1 [30], and AES-
CMAC [50]) with the support of the new Intel AES-NI in-
structions [26]. The ShortMAC router connects a source
machine and a destination machine, with the source sending
TCP packets via Netperf as fast as possible to the destina-
tion to stress-test the router. For comparison, we use the
Linux kernel forwarding throughput without ShortMAC
operations as the base line. The ShortMAC router runs as
a single user-space process without exploring parallelism,
which already matches up the base line speed as shown be-
low.
Figure 10 depicts the results with packet sizes from 100

to 1500 bytes, showing that UMAC-based PRF implemen-
tation yields the highest throughput, which retains more

than 90% of the baseline throughput (e.g., 92% with 1.5KB
packet size and 96% with 1KB packet size ). With a small
packet size of 100 bytes, both the baseline and ShortMAC
throughput dropped substantially (similar to other public
testing results [3]), because the network drivers used in
our experiments are running under interrupt-driven mode,
which hampers throughput when packet receiving rate is
high. However, UMAC-based PRF still retains 53.84

57.52=94%
of the baseline throughput.
Source node throughput.We further evaluate the through-
put of a ShortMAC source node with different path length
d, where for each path length the source needs to per-
form d − 1 UMAC-based PRF operations. Originally, it
might seem that the ShortMAC source node represents the
throughput bottleneck as the source needs to compute mul-
tiple k-bit MACs. However by parallelizing the Short-
MAC operations on readily-available multi-processor sys-
tems, the throughput of a ShortMAC source node can fully
cope with the base line rate even with a path length of 8.
For comparison, we use the source node throughput with-
out ShortMAC operations as the baseline. We evaluate two
different parallelizations based on widely used OpenMP [5]
API. Our first implementation (internal parallelism in short)
uses multiple OpenMP threads to parallelize the computa-
tion of multiple k-bit MACs per packet. Our second imple-
mentation (external parallelism in short) assigns different
packets to different OpenMP threads.
We evaluate the ShortMAC source throughput with var-

ious packet sizes, and observe that in all cases ShortMAC
incurs negligible throughput degradation. Hence we only
show the results with packet size set to 1500 bytes in Fig-
ure 11. We can see that external parallelism yields the best
performance, which matches the baseline case where the
source performs no ShortMAC operations.
ShortMAC latency. We also evaluate the additional la-
tency incurred by a ShortMAC source node for computing
the k-bit MICs with different path lengths and packet sizes;
while the end-to-end latency can be derived base on our re-
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put of a ShortMAC router and a ShortMAC source sepa-
rately to better illustrate the throughput of each component,
while the end-to-end path throughput can be easily derived
by taking the minimum throughput of the two evaluation
results. Then we evaluate the end-to-end latency with dif-
ferent path lengths ranging from 2 to 64. We also exploit
the multi-core parallel processing at the source node via
OpenMP API [5].
Summary of evaluation results. The evaluation results
of our Linux software prototype demonstrate that both a
ShortMAC router and source node can retain more than
92% of the baseline throughput (no ShortMAC operations
are employed). Furthermore, the additional latency due to
ShortMAC operations is negligible (tens of microseconds)
even with a path length of 64 hops. The results further in-
dicate the ShortMAC scheme is fully scalable as the num-
ber of processing cores increases in a software-based imple-
mentation, while we anticipate hardware implementation of
the MAC operations in ShortMAC can further boost the
protocol throughput. Details of the evaluation results are as
follows.
Router throughput with different PRF implemen-
tations. We first evaluate the throughput of a user-
level ShortMAC router with different PRF implemen-
tations (i.e.,UMAC [51], HMAC-SHA1 [30], and AES-
CMAC [50]) with the support of the new Intel AES-NI in-
structions [26]. The ShortMAC router connects a source
machine and a destination machine, with the source sending
TCP packets via Netperf as fast as possible to the destina-
tion to stress-test the router. For comparison, we use the
Linux kernel forwarding throughput without ShortMAC
operations as the base line. The ShortMAC router runs as
a single user-space process without exploring parallelism,
which already matches up the base line speed as shown be-
low.
Figure 10 depicts the results with packet sizes from 100

to 1500 bytes, showing that UMAC-based PRF implemen-
tation yields the highest throughput, which retains more

than 90% of the baseline throughput (e.g., 92% with 1.5KB
packet size and 96% with 1KB packet size ). With a small
packet size of 100 bytes, both the baseline and ShortMAC
throughput dropped substantially (similar to other public
testing results [3]), because the network drivers used in
our experiments are running under interrupt-driven mode,
which hampers throughput when packet receiving rate is
high. However, UMAC-based PRF still retains 53.84

57.52=94%
of the baseline throughput.
Source node throughput.We further evaluate the through-
put of a ShortMAC source node with different path length
d, where for each path length the source needs to per-
form d − 1 UMAC-based PRF operations. Originally, it
might seem that the ShortMAC source node represents the
throughput bottleneck as the source needs to compute mul-
tiple k-bit MACs. However by parallelizing the Short-
MAC operations on readily-available multi-processor sys-
tems, the throughput of a ShortMAC source node can fully
cope with the base line rate even with a path length of 8.
For comparison, we use the source node throughput with-
out ShortMAC operations as the baseline. We evaluate two
different parallelizations based on widely used OpenMP [5]
API. Our first implementation (internal parallelism in short)
uses multiple OpenMP threads to parallelize the computa-
tion of multiple k-bit MACs per packet. Our second imple-
mentation (external parallelism in short) assigns different
packets to different OpenMP threads.
We evaluate the ShortMAC source throughput with var-

ious packet sizes, and observe that in all cases ShortMAC
incurs negligible throughput degradation. Hence we only
show the results with packet size set to 1500 bytes in Fig-
ure 11. We can see that external parallelism yields the best
performance, which matches the baseline case where the
source performs no ShortMAC operations.
ShortMAC latency. We also evaluate the additional la-
tency incurred by a ShortMAC source node for computing
the k-bit MICs with different path lengths and packet sizes;
while the end-to-end latency can be derived base on our re-



Phew…	  the	  end	  

 	  Limi+ng	  instead	  of	  perfectly	  detec-ng	  
 Enables	  efficient	  algorithms	  

 	  Provable	  security	  guarantee	  
 Theore-cal	  bounds,	  against	  strong	  adversaries	  

 	  High	  efficiency	  
 Low	  detec-on	  delay,	  router	  state,	  comm.	  overhead	  

 	  Probabilis+c	  packet	  authen-ca-on	  
 Building	  block	  for	  other	  applica-ons	  
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QuesDons?	  
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