One-time Signature Protocols for Signing Routing Messages

Kan Zhang Computer Laboratory Cambridge University kz200@cl.cam.ac.uk

Attacks on Routing Protocols

- Replay of old routing messages
- Inserting bogus routing messages

Securing Routing Protocols

Current protection (RIP, OSPF, ISIS, IDRP):

• Clear-text passwords

Perlman and others proposed stronger protection mechanisms in which public-key digital signatures are used to provide:

- Authenticity
- Integrity

of routing messages.

FLS by Hauser, Przygienda and Tsudik

Hash table computed by a router for link L_1 to L_n :

	L_1		• • •	L_n	
	up	down	• • •	up	down
1	$h^1(x_1)$	$f^{1}(x_{1})$	•••	$h^1(x_n)$	$f^1(x_n)$
2	$h^2(x_1)$	$f^{2}(x_{1})$	• • •	$h^2(x_n)$	$f^2(x_n)$
:		:	•••		•
k	$h^k(x_1)$	$f^k(x_1)$	•••	$h^k(x_n)$	$f^k(x_n)$

where h and f are two hash functions and x_i are random values.

Limitations

- Very frequent state changes
- Clock drifts
- Multiple-valued link costs
- Large or changing number of links
- Applicability to other routing messages

One-time Signature Schemes

 Lamport's original scheme To sign a single bit m, choose x₀ and x₁ and publish h(x₀) and h(x₁)

$$s_m = \begin{cases} x_0 & \text{if } m = 0\\ x_1 & \text{if } m = 1 \end{cases}$$

• Improvement by Merkle

message	00101100	
sign	00101100	101

- Improvement by Winternitz
- Authentication tree by Merkle, Vaudenay, Bleichenbacher and Maurer

Chained One-time Signature Protocol (COSP)

• Choose at random as secret key components

$$x_j, \quad j=1,...,n.$$

• Prepare a table of n hash chains of length k:

• Sign and broadcast the kth row of the table .

COSP Signing

- **1.** Obtain a *n*-bit binary string g by concatenating $f(M_i)$ with a count field using Merkle's method as explained above.
- 2. Form the one-time signature by concatenating the hash values $h^{k-i}(x_j)$ in the (k-i)th row of the table for all j such that $g_j = 1$, where g_j is the jth bit of string g.

COSP Verification

- **1.** Obtain the *n*-bit binary string g by concatenating $f(M_i)$ with a count field using Merkle's method as explained above.
- **2.** For all j such that $g_j = 1$, check if

$$h^{i-i'}(r_j) = v_j, \tag{1}$$

where r_j and v_j are the received and stored value for the *j*th bit, respectively, and v_j is last updated for message *i'*.

3. If true, accept the message and update v_j with value r_j so that when he evaluates Eq. (1) for message i'' > i in the future he only needs to perform i'' - i hash computations.

Delay-and-Forge Attack

message M_i	00101100	101
message M_{i+1}	01101100	100
fake message M'_i	01101000	101

$$x_2^i = h(x_2^{i+1})$$

- \bullet Signature are sent at pre-set time interval T
- Clocks have to be synchronized within time window T
- \bullet Signatures are valid within time window T

Independent One-time Signature Protocol (IOSP)

- To sign message M_i, choose at random as secret key components for next message x'_j, j = 1, ..., n and compute one-time public key P' for next message as P' = h(h(x'₁)|| ··· ||h(x'_n))
- Obtain a *n*-bit binary string g by concatenating $f(M_i || P')$ with a count field using Merkle's method as explained above.
- Compute one-time signature S by concatenating signature components s_j , $j = 1, \dots, n$, given by

$$s_j = \begin{cases} h(x_j) & \text{if } g_j = 0\\ x_j & \text{if } g_j = 1 \end{cases}$$

where g_j is the *j*th bit of string g.

IOSP Verification

- Obtain the *n*-bit binary string g by concatenating $f(M_i || P')$ with a count field using Merkle's method as explained above.
- Compute $V = h(v_1 || v_2 || \cdots || v_n)$, where v_j , $j = 1, \cdots, n$ is given by

$$v_j = \begin{cases} r_j & \text{if } g_j = 0\\ h(r_j) & \text{if } g_j = 1 \end{cases}$$

where r_j is the received *j*th signature component and g_j is the *j*th bit of string *g*.

• If V = P, accept the message and update P with value P'.

Performance

- COSP verification needs $l + \lfloor \log_2 l \rfloor + 2$ hash computations while IOSP needs about half of that.
- Signature verification using IOSP runs more than 10 times faster than RSA (MD5 vs. 1024/8 RSA on 200MHz/64MB Pentium PC using CryptoLib 1.1)
- Both COSP and IOSP signature generation takes negligible time, whereas RSA signature generation is about 100 times slower than verification

- Advantages of IOSP
 - Signature verification runs twice as fast as COSP
 - Less memory for storing keys
 - No timing constraint
- Advantages of COSP
 - The signature size of COSP is roughly half of that of IOSP (2KB for IOSP and 1KB for COSP using MD5)
 - Easy to catch up

Applicability as efficient alternatives to public-key signatures

- Fast signature generation and verification
- Non-interactive

As a general approach, the way our protocols being used with public-key systems for message signing is similar to that of secret-key cryptography being used with public-key systems for data encryption.

