One-time Signature Protocols for Signing Routing Messages

Kan Zhang Computer Laboratory Cambridge University kz200@cl.cam.ac.uk

' *University of Cambridge Computer Laboratory*

&

Attacks on Routing Protocols

- **Replay of old routing messages**
- **Inserting bogus routing messages**

' *University of Cambridge Computer Laboratory*

&

Securing Routing Protocols

Current protection (RIP, OSPF, ISIS, IDRP):

Clear-text passwords

Perlman and others proposed stronger protection mechanisms in which public-key digital signatures are used to provide:

Authenticity

 $\sqrt{2\pi}$

Integrity

&

of routing messages.

Computer Laboratory

FLS by Hauser, Przygienda and Tsudik

Hash table computed by a router for link L_1 to L_n :

where h and f are two hash functions and x_i are **random values.**

Computer Laboratory

&

Limitations

- **Very frequent state changes**
- **Clock drifts**

 $\sqrt{2\pi}$

- **Multiple-valued link costs**
- **Large or changing number of links**
- **Applicability to other routing messages**

' *University of Cambridge Computer Laboratory*

One-time Signature Schemes

 Lamport's original scheme To sign a single bit m, choose x_0 and x_1 and publish $h(x_0)$ and $h(x_1)$

$$
s_m = \left\{ \begin{matrix} x_0 \textbf{ if } m = 0\\ x_1 \textbf{ if } m = 1 \end{matrix} \right.
$$

Improvement by Merkle

 $\sqrt{2\pi}$

- **Improvement by Winternitz**
- **Authentication tree by Merkle, Vaudenay, Bleichen bacher and Maurer**

' *University of Cambridge Computer Laboratory*

Chained One-time Signature Protocol (COSP)

Choose at random as secret key components

$$
x_j, \quad j=1,...,n.
$$

Prepare a table of ⁿ **hash chains of length** ^k**:**

 $\overline{0}$ $h^0(x_1), h^0(x_2), \cdots, h^0(x_n)$ $1 \hspace{1cm} h^{-}(x_1), \hspace{1cm} h^{-}(x_2), \hspace{1cm} \cdots, \hspace{1cm} h^{-}(x_n)$ **..** $k = h(x_1), h(x_2), \cdots, h(x_n)$

Sign and broadcast the ^k**th row of the table .**

Computer Laboratory

&

COSP Signing

- **1. Obtain a** ⁿ**-bit binary string** ^g **by concatenating** $f(M_i)$ with a count field using Merkle's method as **explained above.**
- **2. Form the one-time signature by concatenating the hash values** $h^{k-i}(x_j)$ in the $(k-i)$ th row of the table for all j such that $g_j = 1$, where g_j is the jth bit of **string** ^g**.**

Computer Laboratory

&

COSP Verification

- **1. Obtain the** ⁿ**-bit binary string** ^g **by concatenating** $f(M_i)$ with a count field using Merkle's method as **explained above.**
- **2.** For all j such that $g_i = 1$, check if

 $\sqrt{2\pi}$

$$
h^{i-i'}(r_j) = v_j,\tag{1}
$$

where r_i and v_j are the received and stored value for the jth bit, respectively, and v_i is last updated **for message** ⁱ **.**

3. If true, accept the message and update v_j with value rj **so that when he evaluates Eq. (1) for message** $i''\,>\,i$ in the future he only needs to perform i'' – α is a interval of α **hash computations.**

' *University of Cambridge Computer Laboratory*

Delay-and-Forge Attack

$$
x_2^i = h(x_2^{i+1})
$$

- **Signature are sent at pre-set time interval** ^T
- **Clocks have to be synchronized within time window** ^T
- **Signatures are valid within time window** ^T

Computer Laboratory

&

$\sqrt{2\pi}$ **Independent One-time Signature Protocol (IOSP)**

- **To sign message** Mi**, choose at random as secret key components for next message** x'_i , $j = 1, ..., n$ and $\mathbf{compute}$ one-time public key P' for next message as $P = h(n(x_1) || \cdots || h(x_n))$
- **Obtain a** ⁿ**-bit binary string** ^g **by concatenating** $f(M_i \Vert P')$ with a count field using Merkle's method **as explained above.**
- **Compute one-time signature** ^S **by concatenating signature components** s_j , $j = 1, \dots, n$, given by

$$
s_j = \begin{cases} h(x_j) & \text{if } g_j = 0\\ x_j & \text{if } g_j = 1 \end{cases}
$$

where g_j is the *j*th bit of string g. \$

University of Cambridge Computer Laboratory

IOSP Verification

- **Obtain the** ⁿ**-bit binary string** ^g **by concatenating** $f(M_i \Vert P')$ with a count field using Merkle's method **as explained above.**
- Compute $V = h(v_1||v_2|| \cdots ||v_n)$, where v_j , $j =$ $1, \dots, n$ is given by

$$
v_j = \begin{cases} r_j & \text{if } g_j = 0\\ h(r_j) & \text{if } g_j = 1 \end{cases}
$$

where r_j is the received jth signature component and g_i is the *j*th bit of string g .

• If $V = P$, accept the message and update P with $\mathbf{value} \; P'.$

Computer Laboratory

&

Performance

- COSP verification needs $l + |\log_2 l| + 2$ hash compu**tations while IOSP needs about half of that.**
- **Signature verification using IOSP runs more than 10 times faster than RSA (MD5 vs. 1024/8 RSA on 200MHz/64MB Pentium PC using CryptoLib 1.1)**
- **Both COSP and IOSP signature generation takes negligible time, whereas RSA signature generation is about 100 times slower than verification**

Computer Laboratory

&

Comparison of COSP and IOSP

Advantages of IOSP

 $\sqrt{2\pi}$

- **Signature verification runs twice as fast as COSP**
- **Less memory for storing keys**
- **No timing constraint**
- **Advantages of COSP**
	- **The signature size of COSP is roughly half of that of IOSP (2KB for IOSP and 1KB for COSP using MD5)**
	- **Easy to catch up**

Computer Laboratory

Applicability as efficient alternatives to public-key signatures

- **Fast signature generation and verification**
- **Non-interactive**

 $\sqrt{2\pi}$

As a general approach, the way our protocols being used with public-key systems for message signing is similar to that of secret-key cryptography being used with public-key systems for data encryption.

Computer Laboratory