
Measuring Similarity of Binary Programs using
Hungarian Algorithm

Yeongcheol Kim
Dept. of Computer Sci. and Engineering

Chungnam National University
Daejeon, South Korea

aree91@cnu.ac.kr

Seokwoo Choi
National Security Research Institute

Daejeon, South Korea
seogu.choi@gmail.com

Eun-Sun Cho
Dept. of Computer Sci. and Engineering

Chungnam National University
Daejeon, South Korea
eschough@cnu.ac.kr

Abstract—We introduce a similarity matrix based on n-grams
and longest common sequences extracted from pairs of functions.
Devising an adapted Hungarian algorithm for such features,
we envision to get reasonable results for similarity analysis on
different versions of the same functions.

I. INTRODUCTION

Binary program analysis is essential for malware detection,
vulnerable code detection, code theft detection, and so on.
However, due to the complexity of analyses, analyzing binary
programs often costs too much time to make a proper reaction
in time. To solve this problem, one would overlook some
portion of codes which seem less critical. But in this way,
important codes are also likely to be missed, since it is not
trivial to figure out less critical portion of binary codes for
specific goals, usually resulting in inaccuracy of analysis.

In this paper, we aim to spot the portion of codes which
would be safely skipped, suited for fast malware detection.
For this purpose, we try to notice the binaries of well-known
functions which are safe in the sense of malicious behaviours,
so as to enable analyzing suspicious codes effectively by
excluding spotted functions in the analysis process.

We could scan a whole binary program to compare the byte
string or the hash value with those of probably safe functions
which might be embodied in a suspicious program. However,
we should consider several factors that can change the binary
codes slightly, such as the version of the function, the versions
of libraries used in the program, and the sort of the compiler
and the options used to build the binaries from the source
codes. Therefore a program with the same semantics may have
differences in the binary images, so other than exact matching
based on the byte strings or the hashes, we need to introduce
similarity measuring methods between two binary functions.

There have suggested several solutions to measure and de-
termine similarity of binary codes, based on the cosine values
or Longest Common Subsequences (LCS) of two functions,
the comparison results of important features like n-grams and
semantic abstractions of functions, and so on. But most of
them are for different purposes such as code theft detection
and patch detection. Note that over-estimated simiarity in those
cases is not so harmful as in ours; skipping safe-looking
malicious codes (that is, looking similar to well-known safe
functions) would yield wrong results in malware detection.

[1] proposed a method of measuring the similarity by
applying the Longest Common Subsequence (LCS) algorithm
between mnemonics of two functions. However, if the order
of the basic blocks in the CFG constituting the function is
modified, which entails that the order of the mnemonics is
also modified, so the length of the LCS becomes small and
the similarity value is lowered (that is, similarity is under-
estimated.)

[2] introduces a similarity measurement that calculates
the edit distance between Control Flow Graphs (CFGs) of
both functions. Before comparing CFGs of two functions, it
calculates the similarity of basic blocks constituting each CFG.
However, based on graph edit distances and Hungarian algo-
rithm, it suffers from huge overhead of extraction and complex
comparison process of the large amount of information, so
not appropriate to be used to save time for other analysis like
malware detection. Similarly, other approaches [4], [3], mainly
focusing on accuracy, also suffer from overhead of calculation,
not acceptable for spotting safe functions in malware analysis.

In this paper, we propose a similarity measuring method,
which performs sufficiently fast so as to be used as a helper
tool for other analysis, while still works well when two
functions do not exactly match. First we extract the n-grams
from the two functions to be compared, generate the matrix
by applying LCS between the n-grams, and find the matching
relationship between the most similar n-grams in the matrix
through Hungarian algorithm. The final goal of this method
is to support resillience against slight changes in the order
of basic blocks or instructions due to compilers, compile
options and versions, while taking into account semantics of
the function including the instruction execution flow and the
instructions constituting the function.

II. BACKGROUND

A. n-gram and Longest Common Subsequence (LCS)

n-gram is a contiguous sequence of n items that can be
obtained from a given sequence of anything such as text or
speech. When we use n-grams of the instruction lists of two
binaries to be compared, it allows more flexibility than using
intstruction lists; the pair of whole sequences of mnemonics
need not be the same, for high similarity. For instance, applying
the 3-gram method to function A is as follows;

LCS is the longest subsequence that a given two sequences
have in common. The length of the LCS of the mnemonic
sequences of two functions can be used as a simple measure
of similarity [1]. For instance, LCS of function A and function
B is as follows;

B. Hungarian algorithm

The Hungarian algorithm is an algorithm to solve the
n⇥n matching problem. Although the time complexity of the
solution of the n ⇥ n matching problem is O(n!), Hungarian
algorithm, an approximated solution, reduces it to O(n3). In
[2], they use Hungarian algorithm to find the best matching
cost from the CFG edit distance matrix, which means the CFG
similarity between two functions. That is, after a matrix having
edit cost between the nodes constituting the CFG as an element
is generated, the minimum edit cost between the two graphs
is calculated by applying this algorithm. The limitation of this
approach is that O(n3) is still time consuming when it comes
to large amount of data related to CFGs they used.

Instead of CFGs, we extract two n-gram sets of mnemonic
sequences of two functions, apply LCS to the pairs of n-
grams from two n-gram sets to generate a matrix having the
number of sequences in common as elements, and measure the
similarity of two functions by applying Hungarian algorithm.
Additionally, we also propose a method to reduce false posi-
tives by using indices of matrix computed through Hungarian
algorithm.

III. PROPOSED METHOD USING N-GRAM & HUNGARIAN
ALGORITHM

We use n-gram, LCS, and Hungarian algorithm to measure
the similarity between two functions. The following is the
process of measuring similarity;

Step 1) After generating an n-gram set from the instructions
that constitute the function, a matrix is generated with the
length of the LCS calculated by applying LCS algorithm to
the elements between the sets.

Step 2) Apply Hungarian algorithm to the generated matrix,
and calculate the indices of the matrix that constitute the
largest sum of elements that do not select rows and columns
as duplicates.

Step 3) Detect the same function more precisely using
indices calculated through Method I and Method II, as below;

Method I: Using counts of indices on the relation of y = x

As shown in Figure 1, the larger the number of indices
with a slope of 1 from the coordinates (0,0) in the indices of
the matrix calculated by Hungarian algorithm, the higher the
probability that the two functions to compare are the same. The
formula for calculating the similarity using the n ⇥ n matrix
described in this part is as follows.

similarity =
of a slope between index and (0, 0) is 1

n

Calculating the similarity of the Figure 1 according to the
formula, it is measured as 5/5 = 1.

Method II: Using frequencies of consecutive indices keeping
the slope 1 between indices

Given the indices of the matrix computed by Hungarian
algorithm as shown in Figure 2, the higher the frequency that
the slope between the indices becomes successively 1, the
higher the probability that the two functions to compare are
the same. When the n ⇥ n matrix and m indices maintain a
slope of 1 continuously, the similarity formula for the method
described in this part is as follows.

similarity =
of slope of m consequtive indices is 1

n�m+ 1

When m = 2, the similarity of the Figure 2 is calculated
according to the formula, and it is measured as 5/(7� 2 + 1)
= 5/6. For the case of m = 3, the similarity is calculated as
4/(7� 3 + 1) = 4/5.

Fig. 1. Example of
Method I

Fig. 2. Example of Method II

IV. PRELIMINARY EXPERIMENTS AND DISCUSSIONS

We conduct experiments on functions from two different
versions (1.0.1f and 1.0.2h) of OpenSSL DLL files, which are
assumed safe and often appear in suspicious codes. When we
apply only Hungarian algorithm on LCSs of two n-gram sets,
but omitting Step 3 without applying method I or II, F-measure
(that is, the harmonic mean of precision and recall [5]) is not
more than 0.329. However, F-measure gets up to 0.517 when
we complete the whole steps from Step 1 to Step 3, applying
both method I and method II. We believe that this result shows
a good sign of feasibility.

The proposed method reduces the amount of information
needed and the analysis time, and also expected to be robust
even when the order of mnemonics is modified by block,
because considering flow of instructions in a block (by using
n-grams) as well as between blocks (by using the slop value
of the indices.) We envision that it will effectively save binary
analysis time for malware detection.

REFERENCES

[1] Jong-Cheon Choi, Seong-Je Cho, Open Source Software Detection based
on Opcode k-gram at Binary Code Level, Journal of KIISE, 2014. 2.

[2] Patrick P.F. Chan and Christian Collberg, A Method to Evaluate CFG
Comparison Algorithms, Quality Software (QSIC), 2014

[3] Lannan Luo et. al, Semantics-Based Obfuscation-Resilient Binary Code
Similarity Comparsion with Applications to Software Plagiarism Detec-
tion, Quality Software (QSIC), 2014

[4] Yaniv David, Nimord Patrush and Eran Yahav, Statistical Similarity of
Binaries, ACM SIGPLAN conference on PLDI, 2016

[5] Tiffanry Bao, et. al, ByteWeightL Learning to Recognize Functions in
Binary Code, USENIX Security Symposium, 2014

2

	NDSS_Poster.pdf
	Measuring Similarity of Binary Programs �using Hungarian Algorithm��Yeongcheol Kim*, Seokwoo Choi** and Eun-Sun Cho*�*Department of Computer Science and Engineering, Chungnam National University, Korea�{aree91,eschough}@cnu.ac.kr�**NSRI, Korea�seogu.choi@gmail.com

