
• Repackaging is a severe problem on Android
- 80 % of malware families are create by repackaging
- Financial loss caused by pirated apps

• Countermeasures
1. Detecting repackaged apps on the market

- Code-similarity approach
2. Hardening apps by using tamper-proofing techniques

- Obfuscation, anti-debug, integrity-checking

• Developers should proactively protect their apps before
distributing them, but:
- The robustness of protection depends on developer’s

security awareness and implementation skills

Protecting Android Apps from Repackaging by Self-Protection Code
Fumihiro Kanei, Yuta Takata, Mitsuaki Akiyama, Takeshi Yagi and Takeshi Yada

NTT Secure Platform Laboratories
E-mail: {kanei.fumihiro, takata.yuta, yagi.takeshi, yada.takeshi}@lab.ntt.co.jp, akiyamam@acm.org

1. Introduction

References
[1] Lannan Luo, Yu Fu, Dinghao Wu, Sencun Zhu and Peng Liu “Repackage-proofing Android
Apps,” in Proceedings of the International Conference on Dependable Systems and Networks
(DSN), 2016.

• Self-protection for Android apps
- Verifying integrity of an app

- Repackaged apps refuse to provide their functionalities to
prevent working on user devices

• Evasion attacks against self-protection mechanism
- An attacker uses static and dynamic analysis techniques

to locate and disable the detection code
- Static signature matching, dynamic API monitoring , etc

2. Attack and Defense Model

3. Proposed Method

• Experimental Setup
- Data Set: 27 apps from GooglePlay and F-Droid
- Device: Nexus 5X (physical Device), Android 6.0

• Experiment 1. Feasibility and Side effects
- Dynamically analyze following apps: (1) original, (2)

protected, (3) repackaged after protection
 No functional difference between original and protected apps
 All repackaged apps could not run successfully on the device
 0.1 – 17 % of runtime overhead occurred

4. Evaluation 5. Conclusions and Future work
• Conclusions

- Improve robustness against static signature matching
- Reducing runtime overhead still remaining

• Future work
- Introducing multiple integrity-checking methods

- An attacker would dynamically monitor specific API calls,
such as getPackageInfo(), to extract detection code

- Considering more sophisticated code injection strategy
- We have to compete with advanced analysis techniques

such as dataflow analysis and program slicing
- Considering other evaluation methodologies

- How to evaluate “difficulty of repackaging” quantitatively?

• Automatically build the capability of repackaging detection into the bytecode
• Randomize the implementation of the detection code for improving robustness
 An attacker would be forced to analyze individual implementation

• Step 2: Detection Code Randomization
 Randomly split the predefined detection code template

into several parts
 The size of smallest unit of separation is one instruction

of Dalvik bytecode
 Fine-grained randomization

compared with existing
method[1]

• Experiment 2. Robustness against static analysis
- Evaluating robustness against static signature matching in terms

of false positives from viewpoint of attackers
 Idea: If original bytecode contains sequence of instructions

similar to detection code, an attacker will meet false
positives when they try to find detection code

invoke-virtual {p0}, ... getPackageManager() ...
move-result-object v2
invoke-virtual {p0}, ... getPackageName() ...
move-result-object v1
const/4 v0, 0x0
const/16 v5, 0x40
invoke-virtual {v2, v1, v5}, ... getPackageInfo(...) ...
move-result-object v0
iget-object v5, v0, ... signatures:[...
const/4 v6, 0x0
aget-object v3, v5, v6
invoke-virtual {v3}, ... hashCode() ...
move-result v4
const v5, -0x10e4a14f
if-eq v4, v5, :cond_0
invoke-static {}, ... detected() ...
:cond_0 return-void

Compiled detection code An example of split detection code

invoke-virtual {p0}, ... getPackageManager() ...
move-result-object v2
invoke-virtual {p0}, ... getPackageName() ...
move-result-object v1
const/4 v0, 0x0
const/16 v5, 0x40
invoke-virtual {v2, v1, v5}, ... getPackageInfo(...) ... move-result-
object v0
iget-object v5, v0, ... signatures:[...
const/4 v6, 0x0
aget-object v3, v5, v6
invoke-virtual {v3}, ... hashCode() ...
move-result v4
const v5, -0x10e4a14f
if-eq v4, v5, :cond_0
invoke-static {}, ... detected() ...
:cond_0 return-void

• Step 1: Bytecode Analysis
 Determine where to inject detection code

- Extract and analyze methods that are called few times

• Step 3: Code Insertion
 Insert respective parts of detection

code into extracted method
 Fix partial code so as not to break

original functionalities
 Add virtual registers
 Add Exception handling code

Some instructions are not separable
• invoke and move-result
• if-XX and corresponding basic blocks

Proposed method Existing method[1]
False-positive score
(Average number of exact matches) 15.66 4.392

An example of code insertion

The execution order of
detection code is retained

// Get certificate information
PackageManager pm = context.getPackageManager();
String pname = context.getPackageName();
PackageInfo pi = pm.getPackageInfo(pname,

PackageManager.GET_SIGNATURES);
Signature signature = pi.signatures[0];
// Calculate hash value of certification
int sigHash = signature.hashCode();
// Compare with hard-coded value
if (sigHash != 283418959) {

detected();
}

An example of predefined detection code
(Simplified for the sake of readability)

Protected
APKAPK

Step 1
Bytecode
Analysis

Step 2
Detection Code
Randomization

Step 3
Code Insertion

Detection Code
template

0

2

4

6

8

10

12

14

16

18

0 100 200 300 400 500 600 700 800 900 1000

O
ve

rh
ea

d
(%

)

of Inserted detection code

• Runtime overhead is NOT
simply proportional to the
amount of inserted detection
code

• Count the number of
method calls by a debugging
API, startMethodTracing()

• Input user event by Monkey
tool

Dynamic Analysis Static Analysis

• Construct control flow
graph(CFG)

• Find all dominator
nodes of a randomly
selected basic block

- Result

5 : sget-object …
6 : invoke-virtual …
7 : move-result …

1 : new-instance …
2 : invoke-virtual …
3 : iget-object …
4 : invoke-static …

1 : new-instance …
2 : invoke-virtual …
3 : iget-object …
4 : invoke-static …
5 : sget-object …
6 : invoke-virtual …
7 : move-result …
8 : invoke-static …
9 : if-neq …
10: invoke-static …

Randomized by
proposed method

8 : invoke-static …
9 : if-neq …
10: invoke-static …

Original
Bytecode of

protected apps
Signature
matching

split detection code

Randomized by
existing method[1]

Bytecode sequence
contained in each separated
part are used for signature

	スライド番号 1

