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Fig. 1. TLS records in the Google query trace. (+) indicates outgoing packets
and (-) indicates incoming packets

Search queries a user makes to Internet Search Engines
contain a great deal of private and personal information about
the user. Thus, popular search engines such as Google and
Bing, and ISPs, are in a position to collect sensitive details
about users. These search queries have also been among the
targets of censorship [7] and surveillance infrastructures [2]
built through the cooperation of state and private entities. One
of mitigations against such privacy leaks is to use Tor [10],
where the identity of clients is concealed from servers and the
contents and destinations of connections are concealed from
network adversaries, by sending connections through a series
of encrypted relays. However, Tor cannot always guarantee
the user anonymity since the timing and volume of traffic
still reveal some information about the user browsing activity,
which has been actively explored in Website Fingerprinting
(WF) researches. [1], [3], [5], [8], [9], [11], [12]

In this work, we describe a new type of traffic analysis
attack on Tor, a Keyword Fingerprinting (KF). In this attack
model, a local passive adversary attempts to infer keywords
that users query, based only on analysing traffic intercepted
between the client and the entry guard in the Tor network.
A KF attack proceeds in two stages. First, the attacker must
identify which Tor connections carry the search result traces
of a particular search engine against the other webpage traces.
The second is to determine whether a target query trace is in
a list of “monitored keywords” targeted for identification or
to classify each query trace correctly to predict the keyword
that the victim typed.

In particular, we discover new task-specific feature sets
focusing on the specific portion of the search query trace,
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Fig. 2. Principal Component Analysis (PCA) Plot of Google and Duckduckgo
query traces and background webpage traces based on CUMUL feature set

TABLE I
TPR, FPR, and within-monitored accuracy comparing to those of

cumulTLS [8].

Metric cumulTLS Aggr4
TPR(%) 34.95 82.56
FPR(%) 3.94 8.09

WM-Accuracy(%) 0.01 56.52

called ”response” portion (Figure 1), and demonstrate the
feasibility of the KF attacks using Support Vector Machine
(SVM) [4] with a variety of experiment settings. As shown
in Figure 2, existing feature sets used in WF do not carry
sufficient information for identifying specific keywords, we
conduct an in-depth feature analysis using Kruskal-Wallis H
test [6]. Based on �2 statistics, we selectively choose feature
sets where each keyword group has statistical difference
enough to be identified by the KF and aggregate them, named
Aggr4 in this work.

Table I presents that while state-of-the-art WF features [8]
perform very well for the first stage of our attack, our feature
sets, Aggr4, significantly improves the accuracy in the second
stage identifying keywords. This new feature set is powerful
across different experiment settings.

As shown in Figure 3, when we vary the size of monitored
and background keyword sets, both metrics decrease with
increasing the size of background set, however the size of
monitored set has no impact on those in the binary-label
learning and minimal impact on the precision in the multi-
label learning. Based on Figure 4, when we consider different
Tor Browser settings, the incremental search setting with
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(a) Binary-Label Learning
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(b) Multi-Label Learning

Fig. 3. Precision & recall for binary classification when varying the number
of monitored and background Google keywords (Note that ratio means
|monitored set|:|total set| and we used 30 instances for each monitored
keyword)

0 0.2 0.4 0.6 0.8 1

Ratio of Monitored Keyword

0

10

20

30

40

50

60

A
cc

u
ra

cy
 w

ith
in

 M
o
n
ito

re
d
 (

%
)

100 classes
200 classes
300 classes

(a) Incremental Query Setting
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(b) One Shot Query Setting

Fig. 4. Within-monitored (WM) accuracy for multi-class classification when
varying the size of classes and instances of monitored Google keywords (Note
that we used 30 instances for each monitored keyword)

Java Script (JS) enabled (by default) such as Google Instant
ensures better WM accuracy (The number of traces from
monitored keywords classified with the correct label over the
total number of monitored traces.) than “high security” search
with JS disabled (via Noscript configuration). This is because
the former carries additional rich information such as traffic
for auto-complete. According to Figure 5, the KF can be
applicable to most search engines since their query responses
contain an informative response portion, however the degree of
fingerprintability varies with the search engine. Google shows
better WM accuracy because it discloses additional traffic
pattern led by incremental search results returned by Google
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(b) Bing

Fig. 5. Within-monitored (WM) accuracy CCDF when varying the size of
classes of background keywords (Note that we use 80 instances for each 100
monitored keyword and 10k⇠40k background keywords)

Instant. The binary classification further makes it feasible
to identify “related keyword” searches containing keywords
that are not in the training set but are semantically closed
to monitored keywords (TPR=68.8% and FPR=0.0005% to
detect 20,000 related searches). Finally, we investigate the
relationship between the degree of complexity in search result
HTML and the fingerprintability of that keyword, which helps
to understand how search engines and users mitigate such
attacks.

In conclusion, all experimental results indicate that use of
Tor alone may be inadequate to defend the content of users’
search engine queries.

Note that while KF and WF attacks share some common
techniques, the KF focuses on the second stage of this at-
tack, distinguishing between multiple results coming from a
single web application, which is challenging for existing WF
techniques. As shown in Table I, when differentiating between
monitored keywords, classifiers based on recent WF features
perform no better than random guessing (0.01%). Thus, the
different level of application as well as the multi-stage nature
of the attack make it difficult to directly use or compare results
from the WF setting.
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