Detection and Mitigation of Fast-Flux Service Networks

Thorsten Holz, Christian Gorecki, Felix Freiling, Konrad Rieck

Pil - Laboratory for Dependable Distributed Systems

- Yesterday: presentation by Dagon
 - "Corrupt DNS Resolution Paths"
- Today: How attackers use DNS for malicious purposes, e.g., scam hosting

- Yesterday: presentation by Dagon
 - "Corrupt DNS Resolution Paths"
- Today: How attackers use DNS for malicious purposes, e.g., scam hosting

\$ dig isoc.org

;; ANSWER SECTION: isoc.org.

38679 IN A 206.

206.131.241.137

\$ dig dadusual.com

;; ANSWER SECTIO	N:			
dadusual.com.	300	IN	А	125.59.103.156
dadusual.com.	300	IN	Α	218.254.9.205
dadusual.com.	300	IN	А	62.65.233.109
dadusual.com.	300	IN	Α	76.181.194.207
dadusual.com.	300	IN	Α	77.41.18.139
dadusual.com.	300	IN	Α	78.84.69.132
dadusual.com.	300	IN	Α	78.106.115.147
dadusual.com.	300	IN	А	78.106.180.151
dadusual.com.	300	IN	Α	78.106.200.47
dadusual.com.	300	IN	Α	78.106.224.174
dadusual.com.	300	IN	Α	79.120.43.191
dadusual.com.	300	IN	А	80.222.32.58
dadusual.com.	300	IN	Α	84.62.186.63
dadusual.com.	300	IN	А	85.177.42.179
dadusual.com.	300	IN	Α	85.181.225.55
Thadadusutalipscom:Detecti	on and Mitigation	«Serv Id Netv	vorks" A	89.112.4.1 MANNHEIM

- \$ dig dadusual.com
- ;; ANSWER SECTION:

cm125-59-103-156.hkcable.com.hk. cm218-254-9-205.hkcable.com.hk. pc109.host41.starman.ee. cpe-76-181-194-207.columbus.res.rr.com. host-77-41-18-139.qwerty.ru.

dadusual.com.	300	IN	Α
dadusual.com.	300	IN	Α
dadusual.com.	300	IN	Α
dadusual.com.	300	IN	Α
dadusual.com.	300	IN	Α
dadusual.com.	300	IN	Α
dadusual.com.	300	IN	Α
dadusual.com.	300	IN	Α
dadusual.com.	300	IN	Α
		TNN	т уз Л

The and Mitigation 3000 st-Flux Service Networks" A

125.59.103.156 218.254.9.205 62.65.233.109 76.181.194.207 77.41.18.139 78.84.69.132 78.106.115.147 78.106.180.151 78.106.200.47 78.106.224.174 79.120.43.191 80.222.32.58 84.62.186.63 85.177.42.179 85.181.225.55 89.112.4.1.72

Outline

- Introduction
- Automated identification fast-flux domains
- Measurement results
 - Two month period in July / August 2007
- Mitigation (briefly)
- Conclusion

- Availability is important for commercial services
- Techniques from the area of reliability engineering help to achieve availability
 - RAID or failover systems
 - Methods using DNS
 - Round-robin DNS
 - Content distribution networks (CDNs)

- Availability is important for commercial services
- Techniques from the area of reliability engineering help to achieve availability

\$ dig myspace.com

;; ANSWER SECTION:

myspace.com.	3410	IN	Α	216.178.38.104
myspace.com.	3410	IN	Α	216.178.38.121
myspace.com.	3410	IN	Α	216.178.38.116

- Availability is important for commercial services
- Techniques from the area of reliability engineering help to achieve availability

\$ dig myspace.com

;; ANSWER SECTION:

myspace.com.	3409	IN	Α	216.178.38.116
myspace.com.	3409	IN	А	216.178.38.104
myspace.com.	3409	IN	Α	216.178.38.121

- Availability is important for commercial services
- Techniques from the area of reliability engineering help to achieve availability

\$ dig myspace.com

;; ANSWER SECTION:

myspace.com.	3408	IN	Α	216.178.38.121
myspace.com.	3408	IN	Α	216.178.38.116
myspace.com.	3408	IN	Α	216.178.38.104

- Availability is important for commercial services
- Techniques from the area of reliability engineering help to achieve availability
 - RAID or failover systems
 - Methods using DNS
 - Round-robin DNS
 - Content distribution networks (CDNs)

- Note: illegal commercial organizations also need high availability
 - Scammer only earns money if pharmacy shop is online
 - Phisher needs to have phishing site online
- Our starting point:
 - How do attackers achieve high availability?

- If scammers could advertise multiple IP addresses for a given domain, shutdown would be harder
- Botherder could use idea behind RRDNS to split botnet across multiple C&C server
- Technique used: Fast-flux service networks
 - Fast change in DNS answers
 - Recent paper by Honeynet Project

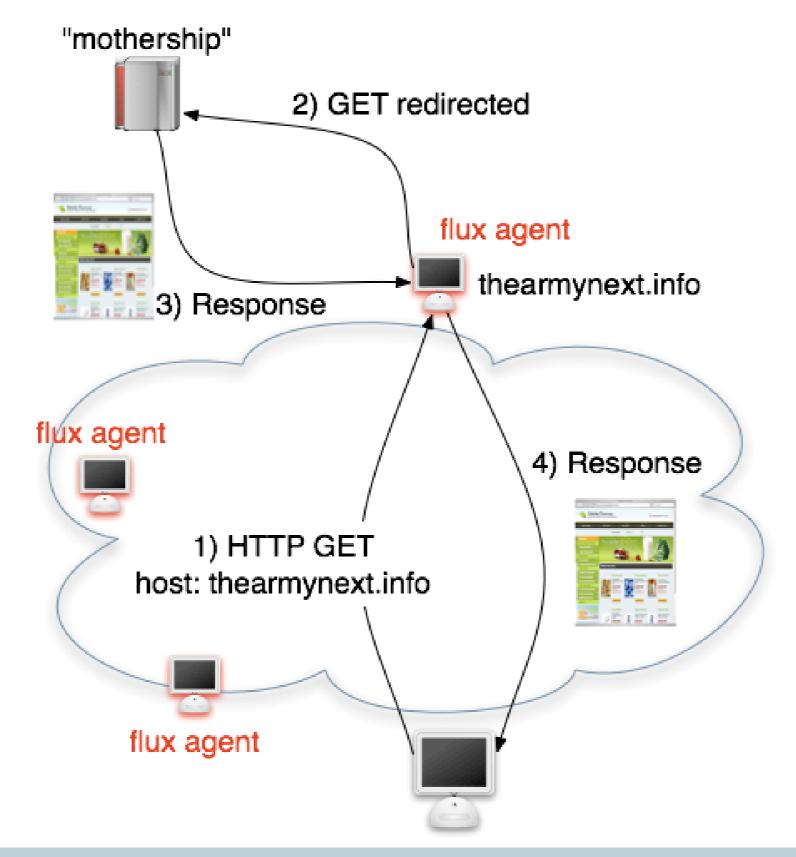
- Given fast-flux domain returns few IP addresses from large pool of compromised machines ("flux agents")
- After the (low) TTL expired, return different subset

- Given fast-flux domain returns few IP addresses from large pool of compromised machines ("flux agents")
- After the (low) TTL expired, return different subset

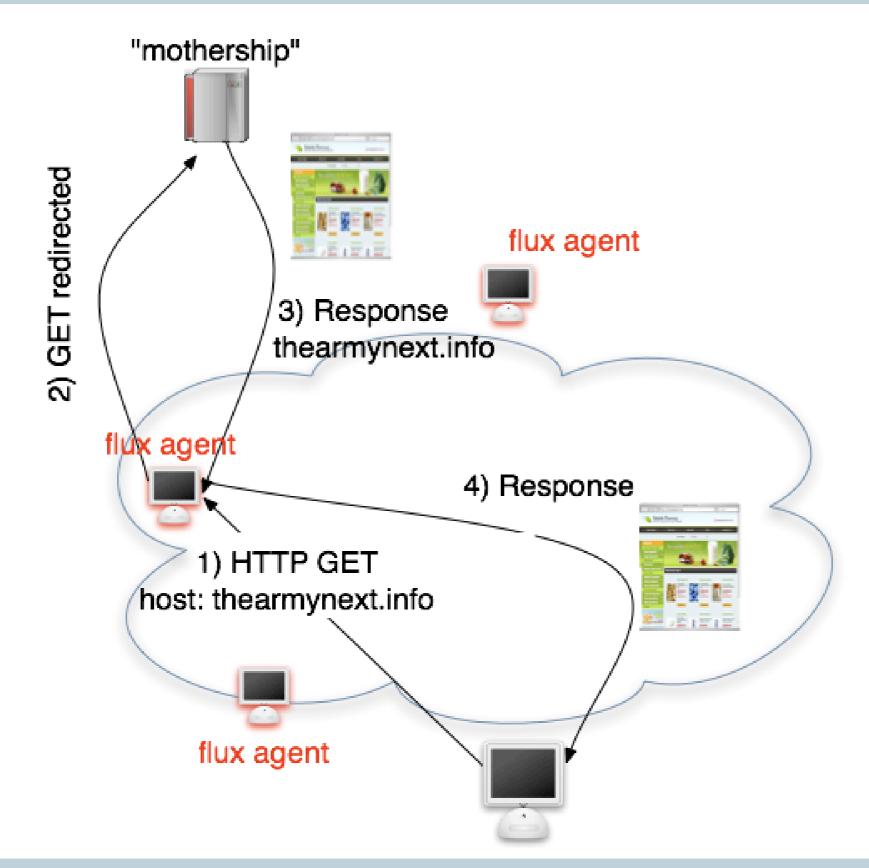
;; ANSWER SECTION:				
thearmynext.info.	600	IN	A	69.183.26.53
thearmynext.info.	600	IN	A	76.205.234.131
thearmynext.info.	600	IN	A	85.177.96.105
thearmynext.info.	600	IN	A	217.129.178.138
thearmynext.info.	600	IN	А	24.98.252.230

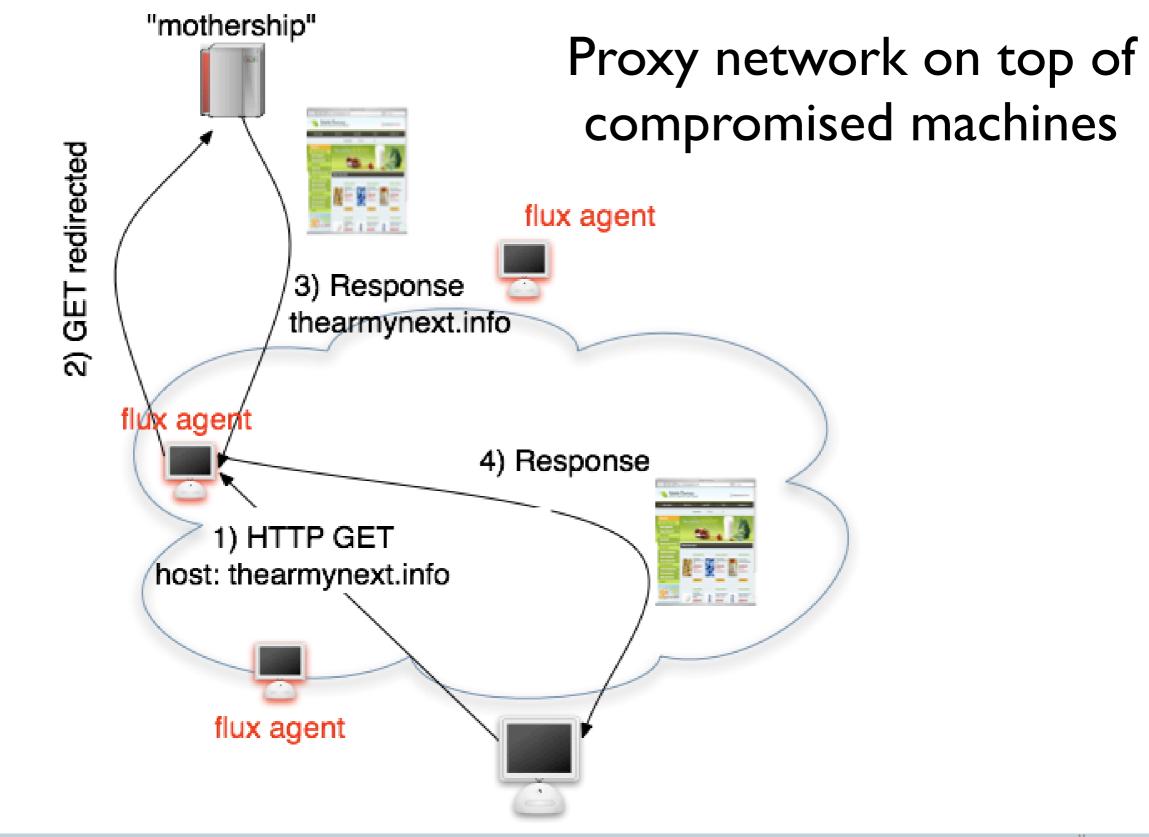
- Given fast-flux domain returns few IP addresses from large pool of compromised machines ("flux agents")
- After the (low) TTL expired, return different subset


;; ANSWER SECTION:				
thearmynext.info.	600	IN	A	69.183.26.53
thearmynext.info.	600	IN	А	76.205.234.131
thearmynext.info.	600	IN	А	85.177.96.105
thearmynext.info.	600	IN	А	217.129.178.138
thearmynext.info.	600	IN	А	24.98.252.230
;; ANSWER SECTION:				
thearmynext.info.	600	IN	А	213.47.148.82
thearmynext.info.	600	IN	А	213.91.251.16
thearmynext.info.	600	IN	А	69.183.207.99
thearmynext.info.	600	IN	A	91.148.168.92
thearmynext.info.	600	IN	А	195.38.60.79


- Given fast-flux domain returns few IP addresses from large pool of compromised machines ("flux agents")
- After the (low) TTL expired, return different subset

IP address returned in A record	Reverse DNS lookup for IP address	ASN	Country
69.183.26.53	69.183.26.53.adsl.snet.net.	7132	US
76.205.234.131	adsl-76-205-234-131.dsl.hstntx.sbcglobal.net.	7132	US
85.177.96.105	e177096105.adsl.alicedsl.de.	13184	DE
217.129.178.138	ac-217-129-178-138.netvisao.pt.	13156	PT
24.98.252.230	c-24-98-252-230.hsd1.ga.comcast.net.	7725	US





Automated Identification

Finding Fast Flux Service Networks

Metric

- Attacker's restrictions in establishing FFSNs
 - IP address diversity
 - No physical agent control

- Attacker's restrictions in establishing FFSNs
 - IP address diversity
 - No physical agent control
- Possible distinguishing parameters
 - Number of unique A records n_a in all lookups
 - Number of NS records in single lookup n_{NS}
 - Number of unique ASNs for all A records nASN

Flux-Score

- Vector $x = (n_{A_1}, n_{NS_1}, n_{ASN})$, weight vector ω
- Linear decision function

 $F(x) = \begin{cases} w^T x - b > 0 & \text{if } x \text{ is a fast-flux domain} \\ w^T x - b \le 0 & \text{if } x \text{ is a benign domain} \end{cases}$

- Use corpus of FF and benign domains to derive values for ω and b
- Compute optimal hyperplane
 - Efficient computation with linear programming

• Obtain scoring metric f

$$f(x) = w^T x = w_1 \cdot n_A + w_2 \cdot n_{ASN} + w_3 \cdot n_{NS}$$

- Instantiate model with weights
 - I 28 manually verified FF domains and 5,803 benign domains
 - **I0-fold cross validation using different parameters** $f(x) = 1.32 \cdot n_A + 18.54 \cdot n_{ASN} + 0 \cdot n_{NS}$

with b = 142.38

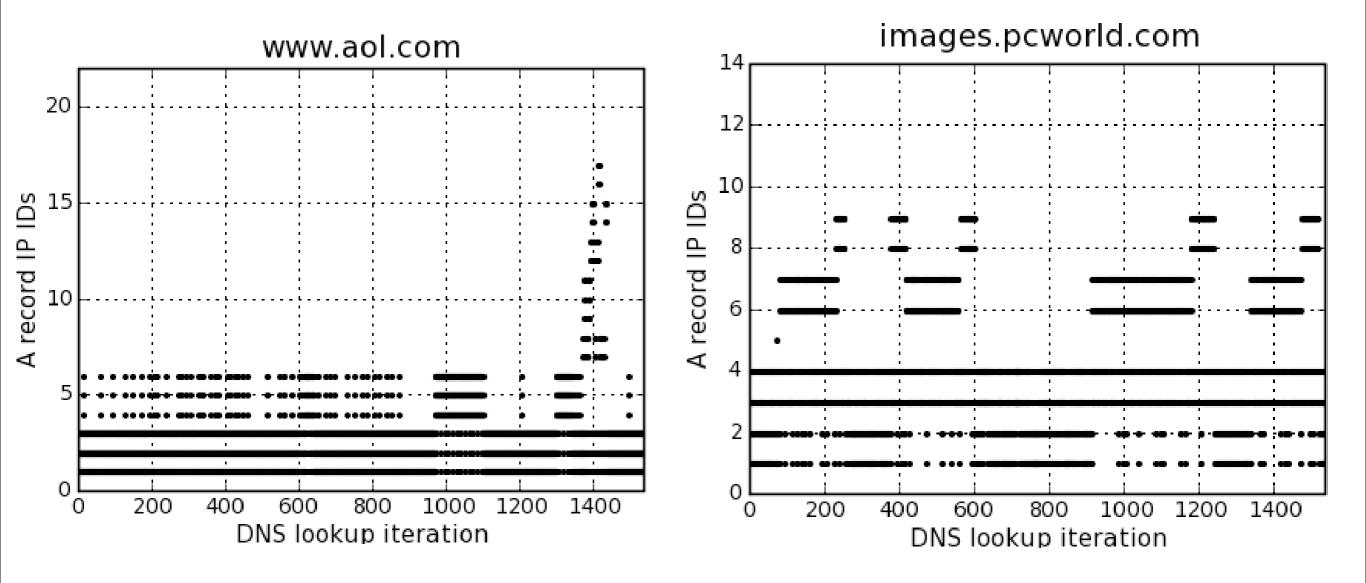
detection accuracy 99.98%, standard deviation 0.05%

Empirical Results

Measuring FFSNs in July / August 2007

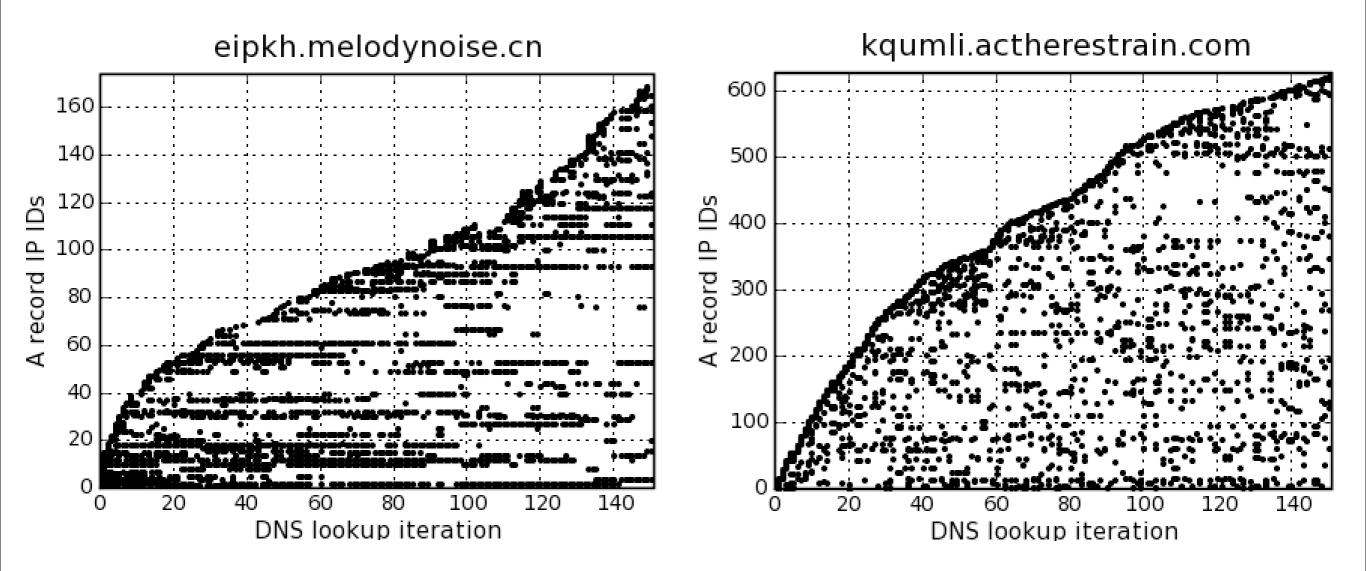
Scam Hosting

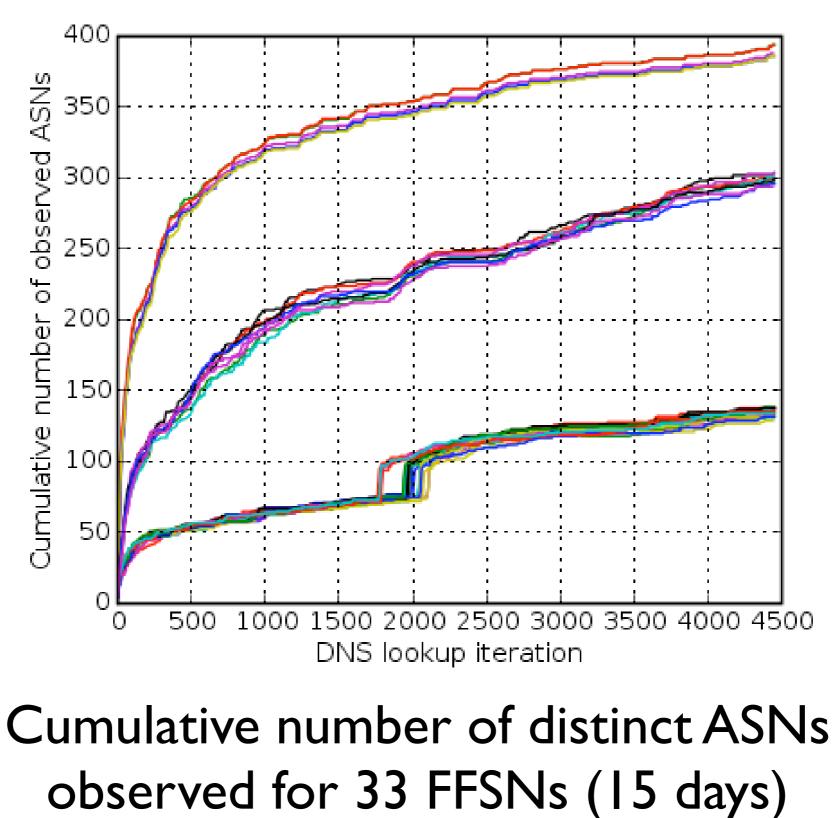
- Spamscatter (USENIX'07, Anderson et al.)
 - No FFSNs identified
 - 6% of scams hosted on multiple IPs (45 IPs max)
- Spamcorpus with 22K mails from August 2007
 - Contained 7,389 unique domains
 - Based on flux-score, 2, 197 (29.7%) are FFSNs
 - 563 unique fast-flux domains (w/o wildcards)
 - 1,737 unique IP addresses


Long-Term

- 33 FFSNs were tracked for 7 weeks every 300s
 - 18,214 unique IP addresses monitored
 - Does not take churn by DHCP into account
 - NAT is no problem since machines need to be reachable
 - 818 unique AS (43.3% in top 10 AS)

1)	7132	(AT&T Internet Services, US)	2,677	2)	9304	(Hutchison Global, HK)	1,797
3)	4766	(Korea Telecom, KR)	590	4)	3320	(Deutsche Telekom, DE)	500
5)	8551	(Bezeqint Internet, IL)	445	6)	12322	(Proxad/Free ISP, FR)	418
7)	8402	(Corbina telecom, RU)	397	8)	1680	(NetVision Ltd., US)	361


Diversity


Diversity

Long-Term

Other Abuses

- Storm Worm uses fast changing DNS entries to host web site with malware binary
 - Observed more than 50K IP addresses in four week period
- Rock Phish, a large phishing group, uses FFSNs to host phishing site
 - Observed 1,121 unique IP addresses in 4 days
- FFSNs could be used to host IRC, SMTP, ...

Stopping the Threat

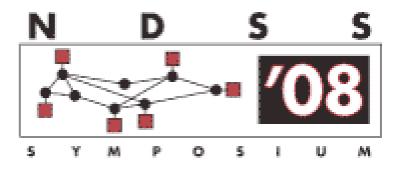
Mitigation

- Domain blacklist
 - Collaboration with registrar / monitoring DNS
 - Content-based spam filtering
- Identifying control node
 - Tracing in proxy network is hard
 - Mark specific request and trace it through network (needs ISP collaboration)

Conclusion

- First empirical study of FFSNs, a new and emerging threat
- Developed a metric to automatically identify fastflux domains
- Empirical measurement results
- Future work
 - Improve flux-score
 - Estimate size of FFSN based on capturerecapture methods

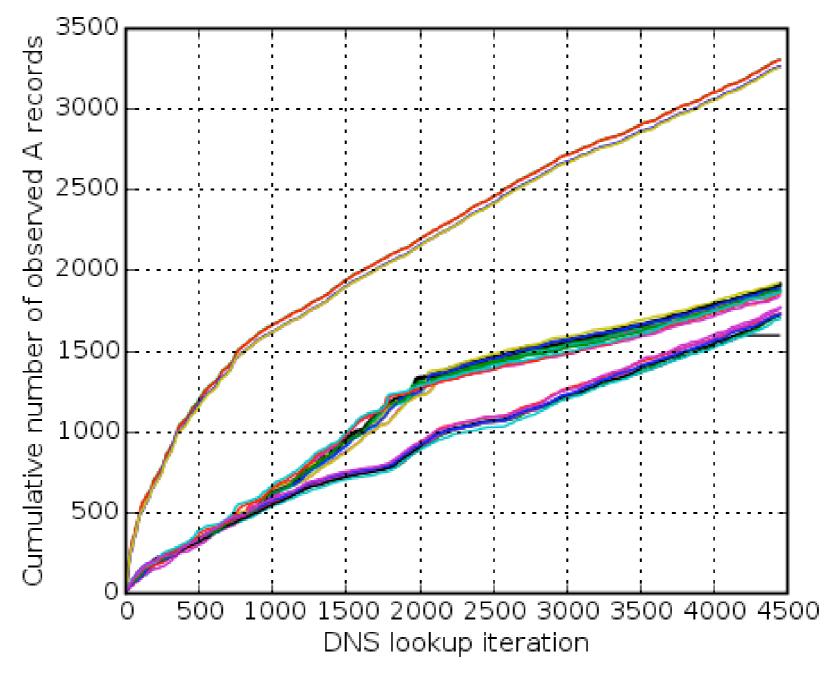
Thorsten Holz


http://pil.informatik.uni-mannheim.de/ thorsten.holz@informatik.uni-mannheim.de

Acknowledgments: Thanks to anonymous reviewers and Fabian Monrose

Data available: <u>http://pil.informatik.uni-mannheim.de/fast-flux</u>

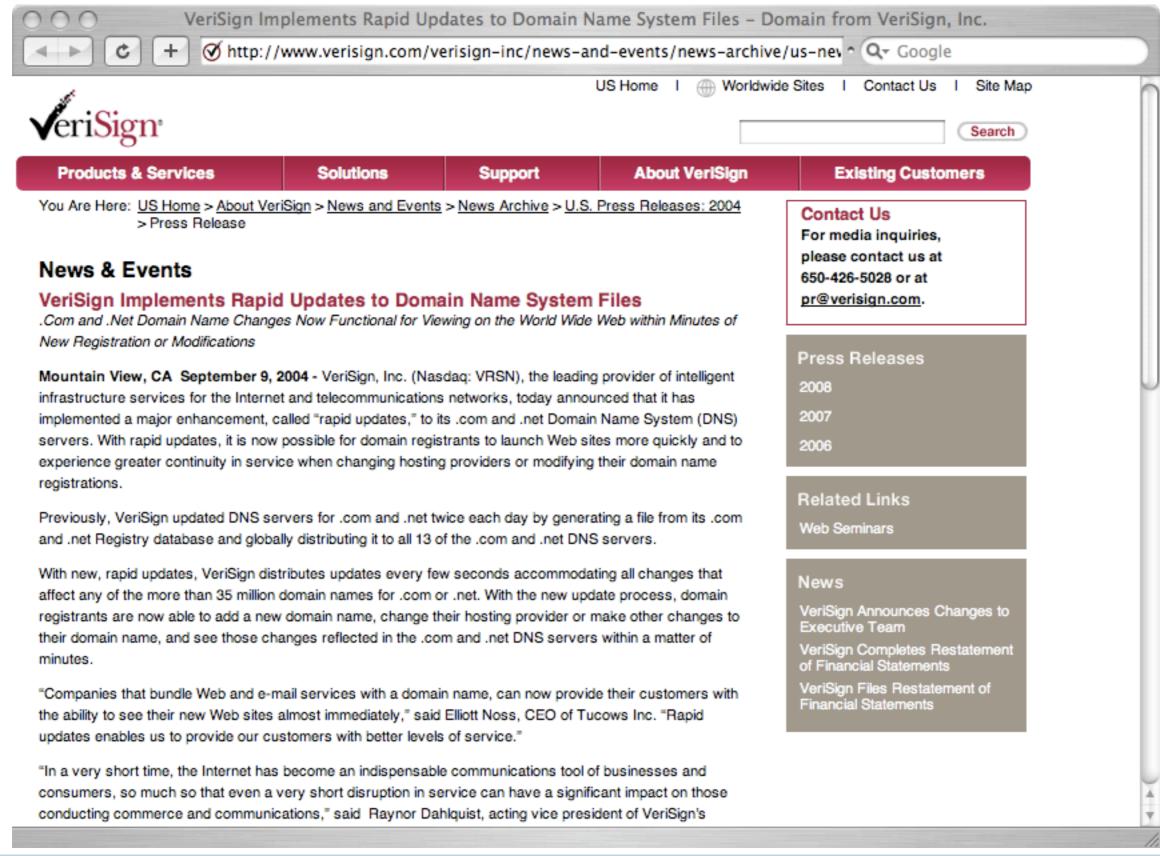
Pil - Laboratory for Dependable Distributed Systems



Fluxiness

- Metric to distinguish FFSNs from benign domains can be defined as function of $n_{a,} n_{NS}$, and n_{ASN}
- Fluxiness: $\varphi = n_a / n_{single}$
 - n_{single} is number of A records in single lookup
 - $\phi = 1.0$: constant set of A records returned
 - $\phi = 2.0$ in previous example
 - Implicitly contained in n_A and n_{ASN}

Long-Term



Cumulative number of distinct A records observed for 33 FFSNs (15 days)

Updates

Thorsten Holz • NDSS'08 - "Detection and Mitigation of Fast-Flux Service Networks"

UNIVERSITÄT MANNHEIM