
Efficient Privacy-Preserving Biometric Identification

Yan Huang
U. of Virginia

yhuang@virginia.edu

Lior Malka
Intel∗

lior34@gmail.com

David Evans
U. of Virginia

evans@virginia.edu

Jonathan Katz
U. of Maryland

jkatz@cs.umd.edu

Abstract

We present an efficient matching protocol that can be used
in many privacy-preserving biometric identification systems
in the semi-honest setting. Our most general technical con-
tribution is a new backtracking protocol that uses the by-
product of evaluating a garbled circuit to enable efficient
oblivious information retrieval. We also present a more ef-
ficient protocol for computing the Euclidean distances of
vectors, and optimized circuits for finding the closest match
between a point held by one party and a set of points held
by another. We evaluate our protocols by implementing a
practical privacy-preserving fingerprint matching system.

1 Introduction

Matching biometric data is critical to many identifi-
cation systems including fingerprint- and face-recognition
systems widely used in law enforcement. Such systems
typically consist of a server-side database that holds a set
of biometric readings (with associated records), and clients
who submit candidate biometric readings to the server for
identification. Formally, we assume a server who holds
a database ⟨vi, pi⟩Mi=1, where vi denotes the biometric data
corresponding to some identity profile pi, and a client who
holds a biometric reading v′ and wants to learn the identity
pi∗ for which vi∗ is the closest match to v′ with respect to
some metric (e.g., Euclidean distance), assuming this match
is “close enough” (specifically, within some distance pa-
rameter ε).

Our work focuses on privacy-preserving biometric iden-
tification. The goal is to enable biometric identification of
the sort described above without revealing any information
about the client’s biometric data to the server, and without
disclosing anything about the database to the client (other
than the closest match, if within distance ε , or the non-
existence of any close match). We assume both parties are
semi-honest; namely, they are assumed to execute the proto-

∗Work done while at the University of Maryland.

col as specified but may try to learn additional information
from the transcript of the protocol execution.

Several researchers have considered similar problems in
the context of face recognition [5, 20, 15] and fingerprint
matching [1] (see Section 8 for further details). A com-
mon structure in those works is to start with a distance-
computation phase in which the distances d1, . . . ,dM be-
tween the candidate v′ and each of the potential matches
vi are implicitly computed. At the end of this phase
one party holds M random masks r1, . . . ,rM and the other
party holds d1 + r1, . . . ,dM + rM . The distance-computation
phase is followed by a matching phase that computes i∗ =
argmini(d1,d2, . . . ,dM). Finally there is a retrieval phase
(which in some previous work is combined with the match-
ing phase) that computes the output for the client: either a
profile pi∗ (if di∗ < ε) or ⊥ (if di∗ ≥ ε).

1.1 Our Contributions

We describe new protocols that substantially reduce the
computation and bandwidth costs of each of the phases in
typical privacy-preserving biometric matching protocols.

Distance-computation phase (Section 4). We present a
fast, oblivious, Euclidean-distance protocol appropriate for
use in many privacy-preserving applications. Our protocol
builds on a previous Euclidean-distance protocol by Erkin
et al. [5] and adopts the packing technique from Sadeghi et
al. [20]. We provide an order-of-magnitude improvement
in both computation time and bandwidth by using packing
more aggressively.

Matching phase (Section 5). We use Yao’s garbled-circuit
technique [22] to perform the matching phase. (However, in
our work we do not compute i∗ explicitly; rather, this phase
merely provides the client with sufficient information to re-
cover the corresponding record in the next phase.) Here,
each gate of a circuit is associated with four ciphertexts (a
garbled table) by one party. The collection of garbled tables
(the garbled circuit) is sent to the other party, who uses in-
formation obtained via oblivious transfer to learn the output
of the function on the parties’ inputs. The computation and

communication costs for both parties are directly related to
the number of gates in the circuit. By carefully integrat-
ing the subtraction and comparison computations, and by
avoiding the need to propagate indices, we provide a circuit
that uses dramatically fewer gates than prior work.

Retrieval phase (Section 6). Our most novel contribution is
a new backtracking technique that allows oblivious recov-
ery of the record pi∗ corresponding to the closest matching
vector vi∗ . Separating this retrieval step from the match-
ing phase turns out to be more efficient that computing
matching-plus-retrieval as one larger garbled circuit. The
reason is simple: the record information can be quite large,
and so including the records directly in the garbled circuit
would dramatically increase the complexity and cost of the
computation. Our main insight is to use the intermediate
wire labels, a by-product of evaluating the garbled circuit
in the matching phase, to efficiently perform oblivious re-
trieval.

We have implemented our protocols to build an effi-
cient privacy-preserving fingerprint-matching system. For
the underlying matching algorithm we could have used
the same PCA (principal component analysis) technique
used in several privacy-preserving face-recognition sys-
tems [5, 20]; however, this would have required a projection
phase in addition to the distance-computation phase which
would degrade performance. Instead, we use the Finger-
Code technique [7] (also used by Barni et al. [1]), which
only requires secure computation of Euclidean distances.
Aspects of our implementation are described in each of the
relevant sections, and we report on the overall performance
of the system in Section 7.

2 Background

The primary cryptographic tools we use are homomor-
phic encryption, oblivious transfer, and garbled circuits. We
summarize each of these standard techniques briefly here.

Homomorphic encryption. Given a number a, we write
the encryption of a using public key pk as JaKpk , or sim-
ply JaK when the public key is clear from the context. An
encryption scheme is additively homomorphic if given JaK
and JbK it is possible to compute Ja+b (mod p)K, for some
integer p which may depend on pk, without the decryption
key. (From now on, we leave p implicit.) It follows that
given JaK and an integer c, one can also compute Jc ⋅aK.

There are many public-key cryptosystems satisfying this
property. In our implementation we use Paillier’s cryptosys-
tem [16]. In this scheme, the public key is a modulus n;
encryption of m ∈ ℤn is done by choosing a random r ∈ ℤ∗n
and computing (1+n)m ⋅ rn mod n2.

Oblivious transfer. An oblivious transfer protocol allows a

sender to send one of a possible set of values to a receiver;
the receiver selects and learns only one of the values, and
the sender does not learn which value the receiver selected.
A 1-out-of-2 oblivious transfer protocol, denoted OT2

1, al-
lows a sender holding strings b0 and b1 to interact with a
receiver, who holds a selection bit σ ∈ {0,1}, so the re-
ceiver learns bσ while neither the sender nor receiver learn
anything else.

Garbled circuits. Yao introduced the idea of using gar-
bled circuits to perform secure two-party computation [22];
Lindell and Pinkas provide a full description and complete
proof of security [10]. Garbled circuits enable two semi-
honest parties, P0 and P1, holding inputs x0 and x1, respec-
tively, to compute f (x0,x1) for an arbitrary function f with-
out leaking any information about their respective inputs be-
yond what is revealed by the outcome itself. The idea is for
one party (the circuit generator) to represent boolean wire
values on each wire with a cryptographic key called that
wire’s wire label, and to replace each gate’s truth table with
a corresponding garbled gate. Garbled gates are constructed
by encrypting outgoing wire labels for each gate using an
appropriate combination of the two input wire labels. The
second party (the circuit evaluator) obtains the input wire
labels using oblivious transfer, after which the evaluator can
evaluate the rest of the circuit without any further commu-
nication. For each garbled gate, the evaluator can decrypt
exactly one entry for the outgoing wire based on the wire
labels she knows for the two input wires. The circuit gen-
erator also sends the mapping from wire labels to boolean
values for any output wires, so the evaluator can map its
final output-wire labels to boolean values.

3 System Overview

Although the techniques we propose could be applied to
many different biometric-matching systems, our implemen-
tation targets fingerprint recognition.

Fingerprint recognition (or fingerprint identification) is
the task of searching for the best match in a database of
fingerprints with a given candidate fingerprint. In contrast,
fingerprint authentication seeks to determine if a candidate
fingerprint matches a particular registered fingerprint. Tech-
niques for matching fingerprints have been extensively stud-
ied, and we only provide a brief summary here; Maltoni et
al. [12] provides more comprehensive information.

Depending on the sensing technology, fingerprint im-
ages exhibit traits at different levels of image quality. At the
global level, ridge-lines shapes fall into one of several pat-
terns such as loop, whorl, and arch. At the local level, there
are about 150 different types of local ridge characteristics
(minute detail). At an even finer level, intra-ridge details
are identified and used in high-end fingerprint applications.

Figure 1. System Overview

In the last decade, many fingerprint-recognition techniques
have been developed that combine various features of the
fingerprint [2, 18, 19, 21]. Most of them involve sophisti-
cated training and classification algorithms, which are not
suitable for developing an efficient privacy-preserving fin-
gerprint recognition system.

In our work we use the filterbank-based approach [3]
(also used by Barni et al. [1]) because it provides good accu-
racy and leads to an efficient privacy-preserving protocol. In
this approach, fingerprints are represented by a FingerCode
derived from the raw fingerprint image. For our purposes,
it is important only to know that the FingerCode of each
fingerprint is an N-dimensional (typically N = 640) feature
vector, each entry of which is an 8-bit integer. The dis-
tance between two fingerprints is defined as the Euclidean
distance between the two corresponding feature vectors.

We assume a server (“Alice”) holding a database that
contains M fingerprint feature vectors, each of which is as-
sociated with corresponding profile information (e.g., name,
age, criminal record). Given a candidate fingerprint image,
a client (“Bob”) first locally derives the associated Finger-
Code feature vector. An advantage of using the filterbank-
based algorithm is that fingerprint images can be trans-
formed to their feature vector representation locally; hence,
each party can do the relevant image-processing on its own
using a standard image-processing program.

Our system design can be decomposed into the three
stages shown in Figure 1: a secure Euclidean-distance pro-
tocol (Section 4), a secure closest-match protocol (Sec-
tion 5), and an oblivious retrieval protocol (Section 6). In
our implementation, the first two phases are each divided
into a preparation stage which can be performed off-line
(i.e., independently of the client’s candidate fingerprint) and
an on-line execution stage.

Looking only at the feature vectors (and ignoring the as-
sociated profile records for now), we may view the server’s
database as an M×N matrix [vi, j]M×N , where each vi, j is
an 8-bit integer. Each of the M row vectors, written as vi

(where 1 ≤ i ≤ M), represents the vector corresponding to
some fingerprint. The database can also be viewed as N col-
umn vectors [c1, . . . ,cN]. The client’s input is denoted by a
vector v′ = [v′1, . . . ,v′N], where each v′j is an 8-bit integer.

Our Euclidean-distance protocol is based on an addi-
tively homomorphic encryption scheme. The server’s in-
put to this protocol is the matrix [vi, j]M×N , and the client’s
input is a single feature vector [v′1, . . . ,v′N]. The squared
Euclidean distance between vi and v′ is denoted di:

di =
N

∑
j=1

(vi, j− v′j)
2.

At the end of this protocol, the server obtains a list of M
random numbers r = [r1, . . . ,rM] and the client obtains d′ =
[d′1, . . . ,d′M], where d′i = di + ri. (Addition here is done
over the integers, but statistical masking of the di values
can be achieved by setting the bit-length of ri large enough
relative to the maximum possible value of di.)

In the second phase, the client and server (implicitly)
compute the minimum difference between the candidate fin-
gerprint vector and the vectors in the database, if this dis-
tance is less than some threshold ε . If no fingerprint in the
database is within distance ε of the candidate fingerprint,
the client (implicitly) receives a “no match” response; oth-
erwise, the client (implicitly) learns the index i∗ of the clos-
est match. We implement this phase using a garbled circuit
which takes as inputs r and d′ as output by the previous
phase. Conceptually, the garbled circuit computes d′− r to
produce d=[d1, . . . ,dM], which is then fed into a minimum
circuit to find the minimal component di∗ . Finally, di∗ is
compared to ε to see if it is a close-enough match. For ef-
ficiency, our design combines the difference, comparison,
and threshold check into one circuit.

In the final phase, the client learns the record associated
with the closest match (if a close enough match exists). This
is done using the wire labels from the garbled circuit used
in the previous phase. Section 6 describes the backtracking

protocol we use to efficiently and obliviously retrieve the
matching profile record.

As in other scenarios where garbled circuits are used,
our system is flexible in terms of who learns the result. If
only the server should learn the outcome, then the client can
just send back the wire labels of the final outputs. Then the
server, who knows the label-to-signal mappings, learns the
index of the closest match (if that match is close enough).

On the other hand, if the client is supposed to be the only
party learning the final outcome, the server only needs to
send to the client a pair

〈
r′0∥Hλ 0(r′0),r

′
1∥Hλ 1(r′1)

〉
, where H

is a random oracle, r′0,r
′
1

U←{0,1}n, and λ 0,λ 1 are the wire
labels denoting 0 and 1 respectively, for each of the final
output wires, then followed by the backtracking tree proto-
col. In this case, the client knows from the additional pairs
how his final output wire labels binds to wire signals. After
seeing if a match really happens, he then decides whether to
go on evaluating the backtracking tree.

Note that even a secure two party computation can leak
information about both participants’ private inputs via re-
vealing the correct final output. For both fingerprint recog-
nition system setups above, the server’s threshold value ε

can be used as a security parameter that controls the infor-
mation leakage through final outputs. By choosing a small
enough ε , the server can ensure that no information (other
than the absence of a close match) is revealed unless the
client has a candidate fingerprint that is a close match to
one in the database. This satisfies the requirements for ap-
plications such as identifying a criminal while keeping the
database of known criminals secret while preserving the pri-
vacy of non-criminals.

4 Euclidean-Distance Protocol

As has been observed before (see, e.g., Erkin et al. [5]),
computation of the squared Euclidean distance di between
ri (one of the vectors in the server’s database) and v′ (the
candidate vector) can be broken into three parts:

di = ∥vi−v′∥2 =
N

∑
j=1

(vi, j− v′j)
2

=
N

∑
j=1

v2
i, j︸ ︷︷ ︸

Si,1

+
N

∑
j=1

(−2vi, j ⋅ v′j)︸ ︷︷ ︸
Si,2

+
N

∑
j=1

v′j
2

︸ ︷︷ ︸
S3

(Note that the last component does not depend on i.)
We will compute each of the above values in encrypted

form. In our application (in contrast to the settings con-
sidered in [5, 20]) the client holds v′ and so can compute
JS3K locally. Similarly, the server can compute JSi,1K lo-
cally. Thus, all that remains is to provide a secure method
for evaluating JSi,2K.

The distance protocol in the basic settings of both
Erkin’s secure face recognition systems begins with the
server (the server) having all the vi, j values while the client
(the client) has the v′j value encrypted under the server’s
public key (pkS). For the secure face recognition algorithm,
the client cannot learn v′j’s because v′j’s can carry informa-
tion about the eigenfaces that must be kept private to the
server. The

r
v′j

z
’s are derived from eigenfaces using secure

dot-product computations. In our application, the client can
compute v′ from the fingerprint image directly, so can com-
pute JS3K locally. This is similar to the Public Eigenfaces
scenario mentioned by Erkin et al. [5].

The next subsection describes the previous privacy-
preserving Euclidean-distance protocols [5, 20]. Section 4.2
presents our improved protocol that reduces the bandwidth
and computation cost by an order of magnitude.

4.1 Prior Euclidean-Distance Protocols

A basic version of the protocol begins by having the
client publish a public key pkC for a homomorphic encryp-
tion scheme. The client computes J−2v′1K, . . . , J−2v′NK and
JS3K and sends these ciphertexts to the server. The server
computes JSi,1K (for 1≤ i≤M) by herself. The server then
computes JSi,2K (for 1 ≤ i ≤ M) using the following for-
mula:

JSi,2K =
N

∏
j=1

q
−2v′j

yvi, j =

t
N

∑
j=1

(
−2vi, j ⋅ v′j

)|
.

Finally, for 1 ≤ i ≤ M the server chooses random ri from
some appropriate range and computes:

q
d′i

y
= Jdi + riK = JSi,1 +Si,2 +S3 + riK

= JSi,1K ⋅ JSi,2K ⋅ JS3K ⋅ JriK .

The {Jd′iK} are sent to the client, who decrypts and recovers
d′1, . . . ,d

′
M; the server outputs r1, . . . ,rM .

As noted by Sadeghi et al. [20], packing can be ap-
plied to save bandwidth in the second round of the proto-
col. The basic idea is to send M

ℓ ciphertexts of the formq
d′i∥d′i+1∥⋅ ⋅ ⋅∥d′i+ℓ

y
instead of M ciphertexts of the form

Jd′iK, where the maximum value of ℓ depends on the max-
imum range of the d′i and the bit-length of plaintexts in
the encryption scheme being used. If each d′i satisfies
0 ≤ d′i < 2σ , then ciphertexts of the required form can be
computed as,

q
d′1∥d′2∥⋅ ⋅ ⋅∥d′ℓ+1

y
=

ℓ+1

∏
j=1

q
d′j

y2(ℓ+1− j)⋅σ
.

Note that this method of packing cannot be applied to the
initial message from the client to the server in the basic pro-
tocol described above, hence it only reduces the bandwidth
required for the final response from the server to the client.

Improved Privacy-Preserving Euclidean-Distance Protocol

Input to the server: a matrix {vi, j}M×N .
Input to the client: a vector v′ = [v′1, . . . ,v′N].

Output of the server: M random integers [d′1, . . . ,d′M], where d′i = di + ri.
Output of the client: M integers [r1, . . . ,rM].

Preparation:

1. The server generates a key pair ⟨pkS,skS⟩.
2. For 1≤ j ≤ N, the server computes

q
2c j

y
pkS

.

3. The server computes JS1K =
q

S1,1∥S2,1∥⋅ ⋅ ⋅∥SM,1
y

.
4. The server sends J2c1K, . . . , J2cNK, and JS1K to the client.

Execution:

Server Client

® The server decrypts to
get [d′1, . . . ,d′M].

 Send Jd′1∥d′2∥⋅⋅⋅∥d′MK.
←−−−−−−−−−−−−−−−

¬ The client chooses [r1, . . . ,rM],
and computes
Jd′K =

q
d′1∥d′2∥⋅ ⋅ ⋅∥d′M

y
.

Figure 2. Improved Euclidean-distance protocol.

4.2 Improved Euclidean-Distance Protocol

Our improved protocol, summarized in Figure 2, uses
packing more aggressively throughout the protocol to re-
duce both computation and bandwidth. One key idea is to
move as much computation as possible to a pre-processing
step that can be done by the server alone (independent
of the client’s input). Since we expect in most applica-
tions the database changes infrequently, the costs of this
step are amortized over a series of queries on the same,
fixed database. Second, we slice the fingerprint database in
columns (that cross-cut individual fingerprint vectors) in-
stead of rows. This enables more efficient use of packing
throughout the protocol.

In contrast to the protocol from the previous section, in
our protocol most of the computation is done on the client
and data is encrypted with the server’s public key pkS. The
protocol begins by having the server pack an entire column
vector into a single ciphertext. (Here, for simplicity, we
assume that M is small enough to pack M scalars of suffi-
cient bit-length into a single ciphertext. If not, the protocol
is repeated on sub-matrices of the server’s original matrix.)
Namely, if c j =

[
v1, j,v2, j, ⋅ ⋅ ⋅ ,vM, j

]
is the jth column of the

server’s input matrix, the server computes an encryption of
c j as

J2c jK
def
=

q(
2v1, j

)
∥
(
2v2, j

)
∥⋅ ⋅ ⋅∥(2vM, j)

y
.

Note that this involves only a single encryption, as the
server can concatenate the values (padded as necessary) be-

fore encrypting. The server also computes

JS1K = JS1,1∥S2,1∥⋅ ⋅ ⋅∥SM,1K .

The server sends J2c1K, . . . , J2cNK, and JS1K to the client.

The client computes JS3K
def
= JS3∥S3∥⋅ ⋅ ⋅∥S3K, followed

by
r

2v′j ⋅ c j

z
= J2c jKv′j for 1 ≤ j ≤ N. Multiplying these

latter ciphertexts together, the client obtains a packed en-
cryption of the {Si,2}:

JS2K
def
= JS1,2∥S2,2∥⋅ ⋅ ⋅∥SM,2K

=
q

2v′1 ⋅ c1
y
⋅
q

2v′2 ⋅ c2
y
⋅ ⋅ ⋅

q
2v′N ⋅ cN

y
.

The client then chooses values r1, . . . ,rM from some appro-
priate range, and computes JrK def

= Jr1∥⋅ ⋅ ⋅∥rMK. Finally, the
client sets

q
d′

y
= JS1K ⋅ JS2K−1 ⋅ JS3K ⋅ JrK

= Jd1 + r1∥⋅ ⋅ ⋅∥dM + r+MK

and sends this to the server.
Table 1 compares the online computation and commu-

nication required for the two protocols. Compared to the
protocol from Section 4.1 (even when using packing there),
our protocol has several advantages:

1. The initial round of our protocol can be pre-computed
by the server based only on its database.

2. Our protocol saves substantial computation because it
performs arithmetic over several packed scalars using

Protocol Encryptions Decryptions Exponentiations Bandwidth
Previous (4.1) N +M+1 M M(N +1) N +M/κ +1
Improved (4.2) M/κ M/κ MN/κ M/κ

Table 1. Comparison of two Euclidean-distance protocols.
For our improved protocol, we measure complexity of the second round only (i.e., we assume pre-processing is
being done, and tabulate the complexity per query). We let κ denote the number of scalars that can be packed into
a single ciphertext. Bandwidth is tabulated in terms of the number of ciphertexts communicated.

a single homomorphic operation. The number of ho-
momorphic operations is reduced by the number of
scalars, κ , that can be packed into a single ciphertext.

3. Our protocol uses less bandwidth. If we assume a
client making multiple queries, then the communica-
tion cost of the first round can be amortized over a large
number of queries (with the client only sending a new
second-round message for each query).

Security. Security of this protocol (as well as the prior pro-
tocols [5, 20]) depends on the r values adequately masking
the entries of d. We stress that addition here is computed
over the integers rather than modulo some value; thus, we
obtain statistical hiding rather than perfect hiding. Con-
cretely, if each di is a δ -bit integer and ri is a uniform ρ-
bit integer, then releasing d′i = di + ri gives statistical secu-
rity roughly 2δ−ρ for the value of di. (Formally, for any
fixed d0

i ,d
1
i the statistical difference between the random

variables d0
i + ri and d1

i + ri is approximately 2δ−ρ .) By
choosing ρ suitably, we can make this probability arbitrar-
ily low. Increasing the maximum mask value, however, re-
duces κ as discussed next.

Packing Implementation. Suppose each of vi, j and v′j is
a σ -bit integer and each additive random mask ri is a ρ-
bit integer. From the formulas for computing di and d′i , it is
clear that δ = 2σ +⌈logN⌉ bits are sufficient to represent di;
as for d′i , since we need ρ > δ for statistical security we see
that δ ′ = ρ +1 bit suffice to represent d′i .

Let θ ≥ δ ′ denote the number of bits designated for each
of the κ units being “packed” in one ciphertext. We cannot
set θ = δ ′ because we need to handle possible overflow of
intermediate values in the computation. We allocate σ +
⌈logN⌉ bits for overflow; thus,

θ = δ
′+σ + ⌈logN⌉

= ρ +1+σ + ⌈logN⌉.

As a concrete example, for σ = 8,N = 640,ρ = 32 we
get θ = 51. Therefore, if a 1024-bit modulus is used in
Paillier’s cryptosystem, κ = 20 units can be packed into a
single ciphertext.

Results. Table 2 provides a comparison between our im-
proved distance protocol and the standard protocol (from

Section 4.1) as the size of the modulus for Paillier’s encryp-
tion varies. Details on the implementation and experimental
setup are provided in Section 7.

The results are consistent with our quantitative analy-
sis in Table 1 and demonstrate nearly twenty-fold improve-
ments in both time and bandwidth for a 1024-bit Paillier
modulus. Our distance protocol also has better scalabil-
ity with respect to the security parameter of Paillier’s cryp-
tosystem. This is because as the length of the modulus in-
creases we can pack more values into each ciphertext: thus,
e.g., each encryption with a 2048-bit modulus can be used
to perform twice as many underlying computations as with
a 1024-bit modulus.

5 Finding the Closest Match

This stage begins with the server knowing [d′1, . . . ,d′M]
and the client knowing [r1, . . . ,rM]. This stage can be
viewed as allowing the client to learn the index i∗ minimiz-
ing di = d′i− ri, assuming di∗ < ε . In fact, though, the client
does not learn i∗ explicitly; rather, the client learns wire la-
bels for “active” wires in a garbled circuit prepared by the
server, and this will be sufficient to enable to client to learn
the desired record (that corresponds to index i∗) in the back-
tracking stage we describe in Section 6.

Section 5.1 describes the circuit we evaluate securely
to find the closest match, and Section 5.2 explains how we
implement the matching phase using this circuit.

5.1 Circuit Design

The overall functionality of this stage is implemented
by the circuit SubReduceMin shown in Figure 3. The
server’s inputs are [d′1, . . . ,d′M] and the client’s inputs are
[r1, . . . ,rM], where each of these values is an l-bit integer;
the parties also know ε , a k-bit threshold value (k < l).

We use several sub-circuits to implement the desired
functionality. The SubReduce circuit is used, roughly, to
compute the difference d′i − ri and then output either the
low-order k bits of the result or ε . Formally, this sub-circuit

Paillier Modulus 1024 2048 3072
Time/Bandwidth s KB s KB s KB

Exec.
Standard 123.6 190.8 574.3 350.6 1510.6 511.4
Improved 6.8 9.8 14.4 8.9 23.9 8.3
Savings 94.5% 94.9% 97.5% 97.5% 98.4% 98.4%

Table 2. Execution Phase Costs for Euclidean Distance Protocols.

computes the function

SubReduce(d′i ,ri,ε) =

⎧⎨⎩ ε, if d′i − ri ≥ 2k

k low-order bits of
d′i − ri,otherwise

Figure 4(a) shows how the SubReduce circuit. Our start-
ing point in building this sub-circuit was the work of
Kolesnikov et al. [8], and the SUB and MUX sub-circuits
are taken directly from their work. However, we reduce the
size of the overall circuit by avoiding unnecessary compar-
isons and removing the need to propagate indexes.

First, instead of computing a full comparison between
d′i − ri and ε , we compute the logical OR of the high-order
l− k bits of the difference. If the result is 1, then d′i − ri is
greater that ε , and there is no need to compare the other bits.
The output of the (l−k)-bit OR gate (implemented as a tree
of binary OR gates) is used as the selector bit for a MUX
that selects between the low-order k bits of the difference
and ε . Since the bit length of ε is significantly smaller than
that of di + ri, this modification substantially reduces the
number of gates.

Next, we compute the minimum of the values output by
the M SubReduce circuits. This is done using a M-to-1
Min circuit which is simply a tree of 2-to-1 Min circuits
(with the latter being constructed as in [8]). The output is
then compared with ε using another 2-to-1 Min circuit.

In contrast to the work of [8], we only need to compute
the minimum value rather than the index of the minimum
value. This is a consequence of the backtracking protocol
that we present in the next section. This allows us to reduce

the number of gates by roughly M− logM overall.
Table 3 summarizes the number of non-XOR gates in

each of our circuits (using the free-XOR technique [9],
XOR gates do not contribute significantly to the cost of the
garbled circuit since they do not require any encryption op-
erations).

SubReduce 2-to-1 Min M-to-1 Min SubReduceMin
2l−1 2k 2k(M−1) (2l +2k−1)M

Table 3. The number of non-free binary gates
in each circuit.

5.2 Implementation

To implement the matching phase, we follow the stan-
dard garbled-circuit methodology with the exception that
there is no need to send the client the semantic wire map-
pings at the end of the protocol. Our implementation has
the following stages:

1. The server prepares a garbled version of the circuit de-
scribed in the previous section, in the standard way.
The resulting garbled circuit is sent to the client. The
server also sends the client the wire labels correspond-
ing to its own input bits.

2. The client and server use oblivious transfer so that the
client can obtain the wire labels corresponding to its

Figure 3. SubReduceMin circuit for finding the closest match.

Figure 4. Circuits for SubReduce and 2-to-1 Min.

own input bits. We use OT extension [6] to reduce
an arbitrary number of OTs to secure evaluation of
just k OTs, where k is a statistical security parame-
ter. As our base OT we use the Naor-Pinkas proto-
col [14] which achieves semi-honest security based on
the decisional Diffie-Hellman assumption. We also use
the standard technique of pre-processing [4] to push
most of the cost of the oblivious transfer step into a
pre-computation phase. The details of our oblivious
transfer protocol are described in the Appendix.

Differing from prior work, however, in our implementation
the server does not send the client the mappings from any
of the wire labels to actual bits. Thus, the client receives no
semantic output from this phase. Nevertheless, we show in
the following section how the client can use the wire labels
that it learned in this step to recover the record correspond-
ing to the closest match.

6 Backtracking Protocol

At the end of the circuit evaluation, the client has one of
each pair of wire labels. In traditional garbled circuit proto-
cols, the last step is to convert the final output wire labels to
meaningful values. Our solution shows that the overhead of
propagating the indexes and retrieving the information can
be avoided while enabling arbitrary information about the
match to be transmitted obliviously.

In a conventional garbled circuit, wire signals (0 or 1)
are denoted by randomly-chosen nonces known as wire la-
bels. The bindings between wire labels and the wire sig-
nals are known by the circuit generator, but hidden from the
circuit evaluator (except for the bindings for the final out-
put wires which are disclosed to reveal the result). Wire
labels are merely used for intermediate computation. How-
ever, these apparently meaningless nonces can be exploited
in later stages of the protocol. We take advantage of the key
property of garbled circuit evaluation: the evaluator only
learns one of the two possible output wire labels for each
gate, as determined by the obliviously-selected input wire
labels and evaluation of the rest of the circuit. These wire

labels can serve as keys for encrypting useful information.
The wire labels of the output wires of GT comparison

circuits in the n-to-1 Minimum tree can be used to reveal a
path from the inputs to the minimum value. Figure 5 shows
an example comparison tree for a four record database. In
each of the 2-to-1 Min circuits the GT circuit takes two in-
puts and outputs a bit indicating which value is greater. We
denote that bit as gh,i and the corresponding wire labels λ 0

h,i
(when the greater than comparison is false) and λ 1

h,i (when
the comparison is true). When the more closely matching
entry match is on the left side of this gate, the client learns
λ 0

h,i; when it is on the right side he learns λ 1
h,i. The final gate

in the diagram compares the best match with ε . We use
the gε output to prevent the client from learning any infor-
mation from the backtracking tree when there is no match
within the ε threshold.

Our backtracking tree protocol involves a tree generator
(the server), who produces and sends a tree encoding en-
crypted paths to the profile records, and a tree evaluator (the
client), who follows a single path through the tree to open
the best matching profile record. To generate a backtracking
tree, the server starts by filling the leaf nodes (level 0) with
the desired information corresponding to each database en-
try. Then, she fills in the internal nodes of a binary tree
with those leaves, as illustrated by the left tree in Figure 6.
Note that the structure of this tree is identical to that of the
comparison tree in Figure 5.

Next, she generates new nonces for each non-leaf node
in the tree, and encrypts those nonces with keys that com-
bine the appropriate wire labels and the nonce of its parent
node. The wire label used for node h, i (the ith node at level
h) is either λ 0

h,i or λ 1
h,i, depending on whether it is the left

or right child of its parent). Thus, the label pair the server
uses for each node comes from the labels of gh,i in the cor-
responding 2-to-1 Min circuit she generated for the match-
finding protocol. The root node is encrypted using λ 0

ε , the
label the client will learn when the closest match is closer
than ε . The right tree in Figure 6 shows the backtracking
tree corresponding to the example circuit in Figure 5.

Starting from the root of the tree, which the client can
only open when gε = 0, the client can follow a single path

Figure 5. Example Find Closest Match Circuit

through the tree, learning the keys along that path, and even-
tually the key needed to decrypt the encrypted record infor-
mation at the leaf. When he evaluates the garbled SubRe-
duceMin circuit, the client obtains either λ 0

h,i or λ 1
h,i from

each label pair. Since each key in the backtracking tree de-
pends on a complete path from the root to that tree, this
means the client can only open a single path through the
tree; specifically, the single path from the root to the leaf
corresponding to the closest match.

Figure 7 summarizes the backtracking protocol. The
algorithms to generate and evaluate the tree are shown in
Algorithm 1 and Algorithm 2. For the tree generation al-
gorithm (Algorithm 1), the inputs a vector of the profile
data to send and an array of the wire label pairs for each
comparison gate in the generated circuit. The output is the
backtracking tree, but only the node labels are transmitted
to the evaluator. For the tree evaluation algorithm (Algo-
rithm 2), the inputs are the tree (where the label for each
node is the encrypted label in the generated tree) and the
wire labels learned by the evaluator in evaluating the gar-
bled circuit. The output is the decrypted profile information
for the closest matching entry, if there is one within ε .

Security. The backtracking tree protocol is secure if both

of the following properties hold:

1. The generator (the server) gains nothing.
2. The evaluator (the client) gains nothing other than the

data associated with the closest match.

The first property trivially holds since the client sends noth-
ing back to the server. The second property follows from
two facts:

1. With a semantically secure encryption scheme, no in-
formation is leaked by the encryption (i. e., without
also revealing the keys).

2. Wire labels in a garbled circuit convey no information
unless their mappings to wire signals are known some-
how. This follows from the garbled circuit security
proof [10].

In every iteration of the loop in Algorithm 2, the client
only gets to know the nonce of one of current node’s two
children, and proceeds using that value. The whole subtree
of the failed branch remains unknown to the client since the
nonce is needed to open any configurations on that subtree.
Thus, the client can only follow a single path in the tree
corresponding to the path leading to the closest match.

Figure 6. Backtracking Tree Example

Backtracking Tree Protocol

Input to Tree-Generator: (1) an array [data1, . . . ,dataM] denoting M pieces of data stored in the database;
(2) a number of pairs [label pair1, . . . , label pairM−1],

where label pair
def
=⟨label0, label1⟩, organized as a tree.

Input to Tree-Evaluator: (1) a backtracking tree tree;
(2) a number of labels [label1, . . . , labelM−1] organized as a tree.

Protocol Output: Tree-Evaluator learns datai∗ , where di∗ = minM
i=1(di). Tree-Generator learns nothing new.

Execution:

Tree-Generator Tree-Evaluator

¬ tree=treeGen(data, label pair) tree−−−−−−−−−−−−→ ® datai∗ = treeEval(tree, label)

Figure 7. The Backtracking Tree Protocol.

Note that if the server’s database is released in encrypted
format beforehand as in the Improved Euclidean Distance
protocol, the server may not want the client to learn extra in-
formation from the position of the matched records. Hence,
the server should randomly permute the order of database
records before beginning the Euclidean distance protocol.
This random permutation needs only to be done once, since
once the database is permuted relative positions of opened
records reveal no information.

Multiple matches. In the unlikely case where multiple fin-
gerprints match the candidate fingerprint equally well, a
straightforward implementation of garbled circuits always
returns either the left-most or the right-most matched leaf
node. This poses potential threats to the server’s privacy.
For example, if the minimum tree is known to always re-
turn the left-most matched leaf node, then the client learns
there can’t be another equally-well matched fingerprint in
the server’s database. A straightforward but costly way to
fix this vulnerability would be to add an equality test circuit

and a MUX for each 2-to-1 Min to randomly choose a num-
ber to output. Instead, we use a simple fix that does not re-
quire adding any new circuitry. We modify the circuit gen-
erator to randomly choose the internal carry-in bit for GT,
instead of always using signal 0. Setting this internal carry-
in bit to 1 is equivalent to making the GT test x+1> y. This
change does not affect the functionality when x > y. When
x = y, the modified GT outputs 0 (if the internal carry-in
bit is 0) and 1 (if the internal carry-in bit is 1) with equal
probability 1

2 .

7 Evaluation

To measure the impact of our improvements and eval-
uate the practicality of privacy-preserving biometrics, we
implemented a privacy-preserving fingerprint matching sys-
tem. Our implementation comprises about 5400 lines of
Java 1.6 code, available from http://mightbeevil.org.

We set up the server and the client on separate machines

Algorithm 1 treeGen(data, label pairs)
Require: data.length= M; label pairs.length= M−1; M = 2h, where h is an integer.

1: Generate a perfect tree tree of size 2M−1.
2: Fill the M leaf nodes with the M values in data.
3: for all node in tree do
4: node.nonce

U←{0,1}k;
5: end for
6: for ℓ← h−1 to 1 do
7: for all node at level ℓ do
8: lp← label pairs[pos(node)], the labels for the gate corresponding to node in the tree;
9: node.leftChild.label← Encnode.nonce∣∣lp.label0(node.leftChild.nonce);

10: node.rightChild.label← Encnode.nonce∣∣lp.label1(node.rightChild.nonce);
11: end for
12: end for
13: return tree;

Algorithm 2 treeEval(tree,wire labels)

1: msg← 0;
2: current node← tree.root;
3: while current node has children do
4: m← Decmsg∣∣wire labels[pos(current node)](current node.leftChild.label);
5: if m is valid then
6: msg←m;
7: current node← current node.leftChild;
8: else
9: msg← Decmsg∣∣wire labels[pos(current node)](current node.rightChild.label);

10: current node← current node.rightChild;
11: end if
12: end while
13: return msg;

connected by a LAN. Both machines are homogeneously
configured, each with an Intel Xeon CPU (E5504) running
at 2.0GHz. The JVMs are configured with a memory cap of
4GB, both on the server and the client.

We use randomly generated 640-entry vectors as our
benchmark. Note that we are not evaluating the finger-
print matching algorithm here, since our privacy-preserving
protocol uses exactly the original filterbank-based finger-
print matching algorithm which has been extensively eval-
uated [7]. The evaluation time is independent of the actual
fingerprint vectors. In our experiments, the client’s feature
vector is randomly picked from the feature vectors in the
database.

Our implementation used the following parameters: in
the Euclidean-distance protocol, the bit length allocated for
each packed value (i.e., θ) was 64 and the bit length of the
random mask was 45. We use Paillier encryption with a
1024-bit modulus. We set ε to be a 16-bit integer. In our
garbled circuit implementation, 80-bit wire labels are used.

Table 4 shows the running time and bandwidth usage for
our protocol as a function of M, the number of entries in the
database. We report the computation time and bandwidth
for each of eight protocol sub-stages. The first three sub-
stages are preparation sub-stages, which do not depend on
the candidate fingerprint and only need to be done once: (1)
Euclidean distance preparation (Distance): the server com-
puting and transmitting the encrypted packed columns and
JS1K); (2) Garbled circuit preparation (Circuit): the server
generating the SubReduceMin garbled circuit (except for
the wire labels and garbled tables, which must be regen-
erated for each execution); (3) OT preparation (OT): the
preparation steps for the oblivious transfer. The prepara-
tion time is dominated by the time required to compute the
encrypted distance vectors, which scales approximately lin-
early with the size of the database. Since this is done only
once by the server, though, it is not prohibitively expen-
sive even for large databases. The preparation phase of the

OT protocol depends only on the security parameters we
choose, so its cost does not scale with M.

The final five sub-stages are the execution sub-stages
which must be done once for each candidate fingerprint ex-
ecution: (4) Euclidean distance protocol execution (Dis-
tance), (5) the server resetting the initial input wire la-
bels and transmitting the wire labels representing her in-
put to the client (Reset Labels), (6) the client learning the
wire labels corresponding to his inputs obliviously (OT);
(7) garbled circuit evaluation, including the server’s gen-
erating and transmitting the intermediate wire labels and
garbled truth tables and the client’s evaluating the circuit
(Circuit), and (8) the backtracking protocol (Backtracking),
which comprises generating, transmitting, and evaluating
the backtracking step.

The distance protocol dominates the execution time.
The other two substantial sub-stages are circuit and OT, and
the time for the backtracking protocol is negligible. As ex-
pected, the results in Table 4 confirm that every sub-stage of
the execution phase scales approximately linearly with the
size of the database. The bandwidth in the execution phase
is dominated by the circuit, due to transmitting a large num-
ber of garbled truth tables. This is dominated by traffic from
the server to the client, which accounts for 88% of the over-
all traffic.

8 Related Work

The protocols presented here build upon, and could be
applied to improve the efficiency of, several previous sys-
tems for privacy-preserving biometric identification.

Erkin et al. [5] developed an efficient privacy-preserving
face recognition system based on the standard Eigenfaces
recognition algorithm. Similar to our work, it also com-
putes Euclidean distances between vectors using additive
homomorphic encryption. Their work does not use garbled
circuits but relies heavily on homomorphic encryption for

Database Size (M) 128 256 512 1024
Time/Bandwidth s KB s KB s KB s KB

Prep.
Distance 145.08 1288.99 277.35 2577.25 555.87 5153.77 1089.42 10306.81
Circuit 0.35 None 1.09 None 2.95 None 6.28 None

OT 0.52 21.91 0.48 21.91 0.48 21.91 0.45 21.91

Exec.

Distance 1.68 2.93 3.36 5.21 6.82 9.79 13.33 18.95
Reset Labels 0.01 57.94 0.03 115.72 0.08 231.28 0.24 462.40

OT 0.13 237.13 0.25 467.69 0.61 928.82 1.38 1851.06
Circuit 0.39 656.14 0.67 1313.64 1.58 2628.64 3.12 5258.63

Backtracking 0.01 12.70 0.02 25.45 0.03 50.95 0.04 101.94
Exec Sub-Total 2.22 966.84 4.33 1927.71 9.12 3849.48 18.11 7692.98

Table 4. Running Time (seconds) and Bandwidth (KB) for Protocol Phases

all the core computation. This limits the scalability of their
system. The length of vectors is 12 in their system (com-
pared to 640 in our experiments). For a database of 320
faces, the whole system takes 18 seconds online computa-
tion to serve a query, and generates about 7.25MB network
traffic.

Sadeghi et al. [20] improved the efficiency of Erkin’s
work by constructing a hybrid protocol that uses homomor-
phic encryption to compute Euclidean distances and garbled
circuits for minimum. They also devised the idea of pack-
ing, which, however, they use merely used to save commu-
nication cost. Our Euclidean distance protocol builds on
this protocol, but improves its efficiency by also incorpo-
rating packing in the computation steps. They do not use
any minimum circuit to identify the best match. Instead,
matches were found by securely comparing distance values
with individual threshold values. In contrast to our work,
Sadeghi et al. [20] generated their garbled circuit using a
generic compiler FairplaySPF [17], which is in turn based
on Fairplay [11]. Such compilers are convenient, but cannot
take advantage of application-specific properties to develop
more efficient custom circuits.

SCiFI [15] is a practical privacy-preserving face identi-
fication system. It uses a component-based face identifica-
tion technique with a binary index into a vocabulary repre-
sentation. The distance between faces is the Hamming dis-
tance between their bit-vectors. One notable design choice
the authors made for SCiFI is that both the secure Hamming
distance and secure minimum algorithms are purely based
on additive homomorphic encryption and oblivious trans-
fer. The authors present several optimization techniques
specific to their application. In contrast, we argue that a
hybrid scheme combining both homomorphic encryption
and garbled circuits tends to be superior. They report that
identification takes 31 seconds of online computation for a
database of size 100 (with 900-bit vectors, in comparison
to our 640-byte = 5120-bit vectors), while no bandwidth
consumption is reported. Rather than computing the global

minimum, their implementation produces the indexes of all
entries within a threshold value of the candidate.

The most similar work to ours is the privacy-preserving
fingerprint authentication by Barni et al. [1] which uses the
same FingerCode biometric as we do. Like Erkin et al.’s
approach, it is also a system based purely on homomorphic
encryption. They do not support the computation of global
minimum, but instead output the indexes of all matches
within some threshold. They report results from an exper-
iment with a database of 320x16 7-bit where their proto-
col completes in 16 seconds and uses 9.11MB bandwidth.
In contrast, our system’s performance results for the most
comparable but larger experiment are 3.47s and 3.76MB for
a database of 512x16 8-bit integers.

9 Conclusion

Privacy-preserving computation offers the promise of
obtaining results dependent on private data without expos-
ing that private data. The main drawback is that current pro-
tocols for privacy-preserving computations are very expen-
sive and impractical for real-scale problems. In this work,
we have shown that those costs can be substantially reduced
for a large class of biometric matching applications by de-
veloping efficient protocols for Euclidean distance, finding
the closest match, and retrieving the associated record. Our
approach involves using the normal by-products of a gar-
bled circuit evaluation to enable very efficient oblivious in-
formation retrieval, and we believe this technique can be ex-
tended to many other applications. Our experimental results
support the hope that privacy-preserving biometrics are now
within reach for practical applications.

Acknowledgements

This work was partially supported by a MURI award
from the Air Force Office of Scientific Research, and grants
from the National Science Foundation and DARPA. The
contents of this paper do not necessarily reflect the posi-
tion or the policy of the US Government, and no official
endorsement should be inferred. The authors thank Yikan
Chen and Aaron Mackey for insightful discussions about
this work.

References

[1] M. Barni, T. Bianchi, D. Catalano, M. D. Raimondo,
R. D. Labati, P. Faillia, D. Fiore, R. Lazzeretti, V. Pi-
uri, F. Scotti, and A. Piva. Privacy-Preserving Finger-
code Authentication. In 12th ACM Multimedia and
Security Workshop, 2010.

[2] A. Bazen and S. Gerez. Systematic Methods for the
Computation of the Directional Fields and Singular
Points of Fingerprints. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002.

[3] A. Bazen, G. Verwaaijen, S. Gerez, L. Veelenturf, and
B. van Der Zwaag. A Correlation-Based Fingerprint
Verification System. In ProRISC2000 Workshop on
Circuits, Systems and Signal Processing, 2000.

[4] D. Beaver. Precomputing Oblivious Transfer. In 15th
International Conference on Cryptology (CRYPTO),
1995.

[5] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser,
I. Lagendijk, and T. Toft. Privacy-Preserving Face
Recognition. In 9th International Symposium on Pri-
vacy Enhancing Technologies, 2009.

[6] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extend-
ing Oblivious Transfers Efficiently. In 23rd Interna-
tional Conference on Cryptology (CRYPTO), 2003.

[7] A. Jain, S. Prabhakar, L. Hong, and S. Pankanti.
Filterbank-Based Fingerprint Matching. IEEE Trans-
actions on Image Processing, 2000.

[8] V. Kolesnikov, A. Sadeghi, and T. Schneider. Im-
proved Garbled Circuit Building Blocks and Applica-
tions to Auctions and Computing Minima. In Cryptol-
ogy and Network Security, 2009.

[9] V. Kolesnikov and T. Schneider. Improved Garbled
Circuit: Free XOR Gates and Applications. In 35th In-
ternational Colloquium on Automata, Languages and
Programming (ICAPL), 2008.

[10] Y. Lindell and B. Pinkas. A Proof of Security of
Yao’s Protocol for Two-Party Computation. Journal
of Cryptology, 22(2), 2009.

[11] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fair-
play — A Secure Two-Party Computation System. In
USENIX Security Symposium, 2004.

[12] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar. Hand-
book of Fingerprint Recognition. Springer, 2009.

[13] M. Naor and B. Pinkas. Efficient Oblivious Transfer
Protocols. In ACM-SIAM Symposium on Discrete Al-
gorithms, 2001.

[14] M. Naor and B. Pinkas. Computationally Secure
Oblivious Transfer. Journal of Cryptology, 18(1),
2005.

[15] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich.
SCiFI: A System for Secure Face Identification. In
IEEE Symposium on Security and Privacy (Oakland),
2010.

[16] P. Paillier. Public-key Cryptosystems Based on Com-
posite Degree Residuosity Classes. In 17th Interna-
tional Conference on Theory and Application of Cryp-
tographic Techniques (EUROCRYPT), 1999.

[17] A. Paus, A. R. Sadeghi, and T. Schneider. Practical
Secure Evaluation of Semi-Private Functions. In In-
ternational Conference on Applied Cryptography and
Network Security (ACNS), 2009.

[18] S. Prabhakar and A. Jain. Decision-Level Fusion in
Fingerprint Verification. Pattern Recognition, 2002.

[19] A. Ross, A. Jain, and J. Reisman. A Hybrid Finger-
print Matcher. Pattern Recognition, 2003.

[20] A. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient
Privacy-Preserving Face Recognition. In International
Conference on Information Security and Cryptology,
2009.

[21] H. Xu, R. Veldhuis, A. Bazen, T. Kevenaar, T. Akker-
mans, and B. Gokberk. Fingerprint Verification us-
ing Spectral Minutiae Representations. IEEE Trans-
actions on Information Forensics and Security, 2009.

[22] A. C. Yao. How to Generate and Exchange Secrets. In
27th Symposium on Foundations of Computer Science,
1986.

Appendix: Oblivious Transfer Protocol

Our protocol is summarized in Figure 8. It combines
the protocols from Naor and Pinkas [13] (which we refer
to as NPOT) and Ishai et al. [6] using an aggressive pre-
computation strategy to produce an efficient OT protocol.

We denote the ith column vector of a matrix T by ti,
and the ith row vector of T by ti. The preparation phase
can be done before any of the selection bits are known.
At the end of the preparation phase, SNDER has k1 keys
keyi,si

, and RCVER has k1 key pairs ⟨keyi,0,keyi,1⟩, where
(1 ≤ i ≤ k1). These keys are later used to transmit the ma-
trix Q efficiently. By using pre-computation, the on-line
phase of our OT implementation requires only 2(k1 + m)
symmetric encryptions and k1 +m symmetric decryptions.

The correctness and security of this protocol follow di-
rectly from the proofs for NPOT [13] and Ishai et al.’s ex-
tended OT protocol [6].

Correctness. The RCVER can learn xi,ri for all 1 ≤ i ≤ m
following this case analysis:

1. If ri = 0, then qi = ti no matter what value si takes.
Thus, RCVER knows the key ti, which is used to en-

crypt xi,0.
2. When ri = 1, the value of si selects whether qi =

ti, or r⊕ ti. However, this “selection” effect is can-
celed by xor-ing s and qi, so that it is always true that
s⊕qi = ti, which is the key used to encrypt xi,1.

Security. The security of our protocol follows from these
two points:

1. The RCVER can never learn anything about xi,ri be-
cause it is encrypted using a different secret key which
differs from that used for xi,ri by s, the SNDER’s ran-
dom bit vector that is never revealed to the RCVER.
The security property of NPOT used in the preparation
phase guarantees that the selection bits of s are not re-
vealed to RCVER.

2. In the first round of communication, either ti or r⊕ti is
sent to the SNDER, but not both. Thus, the fact that the
SNDER can never learn anything about the RCVER’s
selection bits r is derived directly from the security
property of NPOT used in the preparation phase [13].

The Oblivious Transfer Protocol

Input to SNDER: m pairs ⟨xi,0,xi,1⟩ of l-bit strings, where 1≤ i≤ m.
Input to RCVER: m selection bits r = [r1, . . . ,rm].

Protocol Output: RCVER outputs {x1,r1 ,x2,r2 , ⋅ ⋅ ⋅xm,rm} while knowing nothing of {x1,r1 ,x2,r2 , ⋅ ⋅ ⋅xm,rm}. SNDER learns
nothing.

Preparation:

1. RCVER generates a m× k1 matrix T of random bits.
2. RCVER generates k1 pairs ⟨keyi,0,keyi,1⟩ of k2-bit strings, where 1≤ i≤ k1.
3. SNDER generates a vector s =

[
s1, . . . ,sk1

]
of random bits.

4. RCVER and SNDER execute NPOT for k1 times, where RCVER acts as the sender, SNDER as the receiver. At the ith

execution of OT2
1, the message pair to send is ⟨keyi,0,keyi,1⟩, and the selection bit is si.

Execution:

SNDER RCVER

® SNDER derives a bit matrix Q,
where qi = Deckeyi,si

(msgi,si
). Then

the SNDER prepares m pairs
msg′i = ⟨msg′i,0,msg′i,1⟩=
⟨Encqi(xi,0),Encs⊕qi(xi,1)⟩, where
1≤ i≤ m.

[
msg1, . . . ,msgk1

]
.

←−−−−−−−−−−−−−−−−−−−−

¬ RCVER prepares k1 pairs
msgi = ⟨msgi,0,msgi,1⟩=
⟨Enckeyi,0

(ti),Enckeyi,1
(r⊕ ti)⟩, where

1≤ i≤ k1.

¯ [msg′1, . . . ,msg′m].−−−−−−−−−−−−−−−−−−−−→ ° ∀1≤ i≤ m, RCVER outputs
xi,ri = Decti(msg′i,ri

).

Figure 8. The Oblivious Transfer Protocol.

