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Abstract

This paper describes a system that supports high
availability of data, until the data should be expunged,
at which time it is impossible to recover the data. This
design supports three types of assured delete; expira-
tion time known at file creation, on-demand deletion of
individual files, and custom keys for classes of data.
The obvious approach, of course, is to encrypt the data
on nonvolatile storage, and then destroy keys at the
appropriate times. However, managing ephemeral
keys; robustly keeping them for some amount of time,
and then reliably destroying every copy, is difficult. We
partition the problem so that the burden of ephemeral
key management can be outsourced to a minimally
trusted third party we refer to as an “ephemerizer”,
with negligible performance overhead, resulting in a
file system that is easy and inexpensive to manage.

1. Introduction
With traditional systems, making data highly recov-

erable after a disaster makes it hard to reliably delete it.
Making it recoverable requires making a lot of backup
copies, and keeping them in diverse locations. The
more copies are made, the harder it is to find all copies
to delete them.

This paper simultaneously solves two problems:
1. Making all state in a file system (other than files

which have been expunged) recoverable by autho-
rized parties from backup media, and 

2. making data that has been expunged unrecover-
able by anyone.

The goal of the design is to make the file system
inexpensive and easy to manage, and to provide
assured delete without imposing anything more than
negligible performance overhead over a simple (with-
out assured delete) encrypted file system.

This is done by storing data encrypted, and then
deleting keys to make data unrecoverable. We call keys
that must at some point be deleted ephemeral keys.
Ephemeral keys are much more difficult to manage
than permanent keys (keys that do not need to inten-
tionally become irrevocably lost). The reason is that to
ensure ephemeral keys are not prematurely lost, copies
must be made and stored in many locations, which
makes it difficult to ensure that all copies are deleted
after their lifetime.

To make the file system easy to manage we design it
so that ephemeral key management can be outsourced
to a minimally trusted third party which we refer to as
an ephemerizer.

As we will show, a single ephemerizer, and a single
set of time-based keys can serve many mutually dis-
trustful domains, freeing the customers it serves from
the burden of managing ephemeral keys. And since our
design does not require high reliability of individual
ephemerizers (since we use a quorum scheme),
ephemerizers become easy enough to manage that
many companies, especially those that have many geo-
graphic locations to store ephemerizers, can manage
some or all of the ephemerizers they use.

Many file systems assume client-side encryption/
decryption and, for instance, store files encrypted with
the public keys of the authorized readers. Although
ephemerizers could be used by the clients (rather than
the file system), that would require interacting with
ephemerizers on every file open. Instead, the design in
this paper handles ephemerization at the file system,
which as we will see, gives dramatically better perfor-
mance while not hindering end-to-end security mecha-
nisms.

We will present designs for three different methods
of assured delete:
• time-based: files, when created, are declared to have

an expiration time. An example application for this
form of assured delete might be a medical test which



promises that results can be obtained for a period of
time, and then afterwards, all information about the
test will be expunged.

• individual file deletion on-demand: files can be
deleted individually at any point. As we will show in
section 3.3.1, this form is dangerous, and we do not
know of compelling applications for it, although we
do show how to implement it in a scalable way.

• custom classes that can be deleted on-demand:
sets of files can be encrypted with a custom
ephemerizer key, and policy can be applied at any
time for that key, such as deleting it, or suspending
its use until some action is taken. One example
application is protecting a spy ship that could be cap-
tured. If all data is locked with a remote key, then the
remote custom key need not be destroyed in order to
make the data unrecoverable by the enemy. Instead,
the ephemerizer can be notified to revoke use of the
key to anyone captured with the ship. Another appli-
cation of custom keys is a law firm that might need
to expunge all records associated with a particular
client once the client severs ties with the firm.

These different types of deletion can be used in com-
bination in the same file system. For example, some
files might be created with time-based assured delete,
others might be created to never need to be assuredly
deleted. These types of assured delete can also be com-
bined for the same file. For example, there might be a
custom key for a whole directory, plus files within the
directory can have time-based assured delete. If the
custom key for the directory is deleted, all files in the
directory, regardless of expiration date, become unre-
coverable. As long as the custom key remains, files in
that directory remain readable until their expiration
date.

To support time-based ephemerization, assuming
expiration granularity of a day, and lifetimes of up to
30 years, this requires the ephemerizer to have 10,000
ephemeral public keys. This is a scalable solution
because the same 10,000 ephemerizer public keys can
be uitlized by all organizations. In other words, there is
no loss in security for mutually distrustful organiza-
tions to use the same ephemerizer, and the same
ephemerizer public keys, to provide time-based
ephemerization for their file systems.

For custom keys, the ephemerizer needs to keep a
key for each class of file, so presumably an organiza-
tion would pay the ephemerizer to maintain the custom
keys for that organization. To support on-demand
secure deletion of individual files, as we will see, the

ephemerizer only needs to keep two public keys per
file system.

Ephemerizers create, advertise, and maintain ephem-
eral public keys. Ephemerizers should not make back-
ups of keys. Instead of relying on ephemerizers to be
reliable, the file system uses multiple ephemerizers,
with independent sets of keys. Rather than making an
ephemerizer robust by having it make n copies of its
keys, robustness is achieved instead by the file system,
by having the file system use n independent ephemer-
izers, any (quorum (see [25])) of whom can unlock the
encrypted data.

Putting the onus of reliability on the file system, by
assuming it will be using multiple independent
ephemerizers, makes management of an ephemerizer
easier, since it is not a disaster for its clients if it loses
its keys. It is easier for the ephemerizer to avoid mak-
ing any copies of keys than it would be to attempt con-
trolled key copying.

Our design, as we will see, places minimal trust in
the ephemerizers. The protocol for requesting decryp-
tion uses blinding [6], so the ephemerizer cannot see
what it is decrypting. Decryption requests (for time-
based ephemeral keys) can even be done anonymously
[10]. The only threats an untrustworthy ephemerizer
presents are to not forget the keys when it promises to,
or to forget the keys prematurely. These threats are mit-
igated by having the file system use a quorum of
ephemerizers, and to be somewhat careful to choose
reputable ephemerizers.

Our system does not, by itself, prevent users, or the
file system, from copying and storing the decrypted
data, which would violate the assured deletion guaran-
tee. Our system could be coupled with a tamper-proof
reader that prevented the client from using the data in a
way other than the way our system intends. But it is not
part of our system.

2. Previous Work
There are various “disk-scrubbing” systems that con-

centrate on deleting data on disk [14], [20], by tech-
niques such as overwriting data many times. It might
be possible to make data on a disk unrecoverable, but it
would be extremely difficult to guarantee that all cop-
ies of backup media are destroyed.

There are many designs for encrypting file systems
without assured delete, such as CFS [3], SiRius [13],
EFS [24], and Plutus [16]. Most of these assume client
side encryption/decryption. The assured delete design
in this paper is complementary to these schemes.
Although individual users could use the ephemerizer,
as assumed in [21], this is inefficient, since it requires



interaction with (a quorum of) ephemerizers on each
file open. The design in this paper instead relies on
ephemerization being done by the shared file system,
which allows dramatic performance gains and does not
interfere with end-to-end security.

Assured deletion was implemented by a company
named Disappearing, Inc. [11]. Their system involved
a key manager that created and maintained a secret key
for every file. A file creator asked the key manager for
a key, and it returned a (key ID, key). The file reader
requested the key by sending the key ID. This system
requires the key manager to create and store a key for
every message, and the key manager had to be com-
pletely trusted, since it could read all messages.

There are several products being introduced for man-
aging keys for backups [19]. These involve buying one
or more boxes that maintain keys, usually a key for
each tape. Assuming the database of keys is not backed
up (because if it is, then there is no longer assured
delete), and assuming the customer has bought suffi-
ciently many copies of the key manager boxes so that
the database is never lost, assured deletion can be done
by deleting the key from the database. The boxes syn-
chronize with each other so that commanding one of
the boxes to delete a key will cause it to tell the others
to delete the key from their database as well. As we
will explain, the design in our paper is less expensive
(because the customer can do replication using tapes
rather than expensive boxes), and more robust, as we
will explain in section 3.3.1.

In [4], a scheme is presented in which a file system
keeps a table of keys for all files in the system. We will
call this table the F-table (where each file is encrypted
with its own key F). The F-table is backed up,
encrypted with a key of a key manager. The key man-
ager maintains several keys (where “several” is a
parameter, say “s”, and creates new keys with some
frequency (also a parameter, but let’s say one per day),
so that at all times the key manager maintains s key
pairs. When the key database needs to be recovered
from backup, the key manager is asked to decrypt it.

This is similar to the on-demand scheme we present
in section 3.3, with two problems that we will fix:
• backups of the key database are readable by the key

manager if the key manager has ever been asked to
decrypt that version of the database

• if a file system using this system were down for sev-
eral days (say, after a natural disaster that lasts more
than s days), then all the data would be lost, since the
key manager is forgetting keys on a predetermined
schedule.

Another difference between the on-demand scheme
in [4] and the on-demand variant of assured delete we
will present is that in [4], encryption is only done at
backup time, so the data on the local disk is unen-
crypted. Therefore, to really delete data, this scheme
would need to also employ disk-scrubbing. The
scheme would also need an extra level of key, for hav-
ing the file system authenticate to the key manager. We
add this detail in this paper, but we also argue (see sec-
tion 3.3.1) that an on-demand scheme is risky, even
with the enhancements we provide in this paper, and
therefore we would advise relying instead on the other
two types of assured delete that we present in this
paper.

In [7], a scheme is presented in which a large trusted
store for secrets, from which individual secrets can be
expunged and made unrecoverable, can be achieved
using a small tamper-resistant module with that prop-
erty, connected to a larger general purpose memory.
This scheme could be used to make our ephemerizers
out of cheaper components, but is otherwise orthogonal
to what we are presenting in this paper.

3. Our Design
We will present three different types of assured

delete (time-based, custom keys, and on-demand).

3.1  Concepts Used by all Variants

First we present concepts used by all the variants,
and then we discuss, for each type of assured delete,
how to structure the file system to use it.
Classes

Two of our designs (time-based expiration, and cus-
tom classes) group data into classes. A class is a set of
files that will be deleted simultaneously. For instance,
with time-based expiration, files with the same expira-
tion date will be in the same class. 
Overall File System Secret G

We assume there is a secret G associated with the file
system. G is accessible to the system administrators,
and is necessary to unlock the entire file system.

G might be in the form of a passphrase, kept in the
head of multiple system administrators. Or for a more
secure approach, G could be a high quality secret. It
could be broken into n shares for a quorum scheme
[25] where any k shares can recover G. Each system
administrator is given a smart card, each with its own
independent high quality secret. Each of the n shares of
G is encrypted with one of the system administrator’s
secrets, and the encrypted shares can be stored on



backup media and replicated for robustness. Any quo-
rum of k system administrators can insert their acti-
vated smart cards to recover G, where “activating” the
smart card might involve inputting a passphrase or a
biometric.

Knowledge of G, together with backups of the state
of the file system, enable restoration of the state of the
file system (other than files which have been
expunged).
Ephemerizers

An ephemerizer is a service that creates, certifies,
and publishes ephemeral keys, decrypts using a speci-
fied key when requested, and discards keys at the
appropriate time. An ephemerizer might be managed
by the same organization that manages the file system,
or it could be a public service.

An ephemerizer has a permanent public key, which
the file system is either securely configured with, or
which the file system can find through a PKI. An
ephemerizer uses its permanent public key to certify its
ephemeral public keys, or to authenticate, in the case of
certain operations that require authentication, such as
management of custom keys.

An ephemerizer does not need to be highly trusted,
because the keys it knows will not allow it to decrypt
data. It might, however, fail in one of two ways:
1. forget keys prematurely, or be unavailable when

decryption is needed, or 
2. fail to forget keys when it should.

Both these failure modes can be handled with a quo-
rum scheme. However, even in a 1 out of n scheme, to
gain access to data, a malicious ephemerizer would not
only need the retained ephemeral key, but also would
need access to the encrypted backup media, and G. 
Blind Decryption Protocol

The protocol that we will use, for having the file sys-
tem request a decryption from the key manager, we call
“blind decryption”. Blind decryption was introduced,
and is described more fully in [21]. Blind decryption is
conceptually very similar to Chaum’s blinded signa-
tures [6]. The idea for blind decryption is to come up
with blinding functions (B,U) for “blind” and
“unblind” which commute with the (encrypt, decrypt)
functions of the ephemerizer’s key. If the file system
has Ei(M), (a quantity M that is encrypted with the
ephemerizer’s public key ID i), the file system does the
following:

To request that the ephemerizer decrypt the
encrypted quantity Ei(M):

• The file system creates an ephemeral blinding pair of

functions (B, U) that commute with the ephemer-
izer’s E (encrypt) and D (decrypt) functions.

• The file system performs the blind function B on the
encrypted M to obtain B(Ei(M)).

• The file system sends BEi(M)) to the ephemerizer,
together with i, to tell the ephemerizer which decryp-
tion key to use.

• The key manager then operates on B(Ei(M)) with its
private key i, getting Di(B(Ei(M))), but since D and
E are inverses, and B and E commute, the result is
B(M), which the key manager returns.

• The file system applies U to read M, and then dis-
cards B and U.
Any blind signature function will work, with

straightforward modification, as a blind decryption
scheme. However one could use more types of func-
tions for blindable decryption, since there is no neces-
sity to have a public key with which signatures could
be verified. The ephemerizer’s keys could even be
blindable secret keys, in which case the file system
would have to perform a blinded encryption request in
order to encrypt M.

We present three examples of blind decryption proto-
cols in section 7.

Our blind decryption protocol is extremely efficient.
Performing a decryption request requires the ephemer-
izer to perform only a single private key operation, and
is just a single message request/response. The key
manager does not need to keep any state; just return a
single response to a single request. The message only
needs to contain a set of bits as big as a public key
block (say, 4000 bits for RSA), and a key ID (perhaps 4
bytes). This easily fits into a single IP packet, and
therefore there is no need to even create a TCP connec-
tion. Perhaps in practice, however, to get through fire-
walls, the protocol would have to be layered over
HTTP.

Because the interaction is blinded, there is no need
for authentication in either direction, so there is no
need to establish a security association. (Certain opera-
tions, like request to create or delete a custom key,
would require authentication, but the security of
decryption, even with custom keys, does not require
authentication of the party requesting the decryption.)

In contrast, the more traditional approach to having
something like an external key manager decrypt E(M)
would be to establish an SSL connection to the key
manager, ask it to decrypt E(M), and have it return M.
To contrast that with our protocol:
• this would involve at least two private key opera-



tions for the key manager (one to establish the SSL
channel, and one to do the decryption),

• would not be as secure (since the key manager, with-
out blind decryption, would directly see M which
would enable it to directly decrypt some files on the
backups),

• and would involve many packets, for establishing the
TCP connection and the SSL handshake.

3.2  Our Time-Based Scheme

The basic idea is that files, when created, will have
an expiration date. One or more ephemerizers will be
used, which advertise public keys with expiration
dates. Data with a particular expiration date will be
encrypted with the ephemerizer public key with that
expiration date.
Approach 1: Interaction per file

The straightforward approach would be to have each
file encrypted with its own key K, and to store K,
encrypted with the corresponding ephemerizer’s key,
in the metadata of the file. However, this would require
the file system to interact with the key manager when-
ever each file was opened. It would also require a lot of
storage in each file’s metadata, since although K would
be a secret key, of perhaps 128 bits, once K is
encrypted with a public key, it will be much larger (say
4000 bits if it is an RSA key). And to be decryptable by
k out of n ephemerizers, would require n times as much
storage.

This is the approach that would be taken if this sys-
tem were used for ephemerizing messages end-to-end,
say if Alice creates a file that will expire at some point,
that Bob is authorized to read. However, for a file sys-
tem, we can do much better than this, with the follow-
ing optimizations.
Optimization 1: Single interaction per expiration
date upon boot

With this optimization, as we will see, instead of
having the file system interact with the ephemerizer(s)
every time a file is opened, the file system will need to
interact with the ephemerizers, upon reboot, to build a
table of (symmetric) master keys, one for each possible
expiration date, which the file system will keep in vola-
tile storage. Once the reboot process completes, the file
system can act autonomously from the ephemerizers,
and there is no further overhead from the ephemeriza-
tion.

The file system generates a secret key Si, for each
expiration time i, and all files with the same expiration
time will be encrypted with the same Si. (See figure 1).

There is no loss of security in using the same Si for
all files with the expiration time, because at this layer
the file system is trusted to read all files (except those
that have expired), and to enforce access control. If the
file system is not trusted by a user, the user can employ
an additional level of encryption layered over the file
system, and use the file system encryption only for the
assured delete property.

There is a one-to-one correspondence between file
system secret master keys and ephemeral public keys
kept by the ephemerizers. In other words, if there is an
expiration time of November 8, 2010, then each
ephemerizer used by the file system will have a public
key that expires on November 8, 2010, and the file sys-
tem will have a secret key S that expires on November
8, 2010.

The metadata for a file will contain an indication of
which S the file has been encrypted with. For instance,
the metadata might contain the expiration time of the
file.

The file system contains, in volatile storage, a table
we will call the “S-table”, which contains the
encrypted S’s. If the S’s are time-based, with granular-
ity of a day, and 30 years’ worth, there will be 10,000
S’s.

The file system might lose the S-table after a crash,
or certainly after a disaster such as the building burning

Figure 1. The encrypted S-Table, using 1 out of 2 
scheme, with ephemerizers P and Q

{Si}Pi, {Si}Qi, exp date i
{Si+1}Pi+1, {Si+1}Qi+1, exp date i+1
{Si+2}Pi+2, {Si+2}Qi+2, exp date i+2
{Si+3}Pi+3, {Si+3}Qi+3, exp date i+3
{Si+4}Pi+4, {Si+4}Qi+4, exp date i+4

Encrypted File

exp date = i+3

encrypted with
Si+3

The encrypted S-Table, further
encrypted with G

Ephemerizer P advertises public keys Pi, Pi+1, ... Pi+10000
Ephemerizer Q advertises public keys Qi, Qi+1, ... Qi+10000

File system’s nonvolatile storage



down. So the S-table must be backed up, but in a way
that will not interfere with assured delete. 

This is accomplished by doing the backup of the S-
table as follows. The file system encrypts each S in the
S-table with the corresponding public key of the
ephemerizer(s), encrypts once more with G, and writes
the result onto nonvolatile storage.

In a 1 out of 3 scheme, for example, with ephemeriz-
ers P, Q, and R, with public keys for that date repre-
sented as Pi, Qi, and Ri, respectively, the file system’s
nonvolatile (and backed up storage) will contain
10,000 entries, one for each expiration date, that each
look like:
• {Si}Pi, {Si}Qi, {Si}Ri

The encrypted S’s will be further encrypted with G,
the overall file system secret.

When the file system is rebooted, a system adminis-
trator obtains G. Then G is given to the file system. The
file system retrieves the doubly encrypted S-table from
stable storage, and decrypts it with G.

Now the file system has (in volatile storage) the
encrypted S-table, which is now encrypted with
decryption keys known to the ephemerizers.

The file system could, at this point, decrypt all the
S’s, and keep the entire unencrypted S-table in volatile
storage. Or it could decrypt each S the first time a file
with that expiration time is accessed. This would
require, eventually, 10,000 interactions with the
ephemerizer in order to decrypt all the S’s after a crash.

Preferably, the S-table would be kept in a tamper-
resistant cryptographic accelerator coprocessor. Such
devices are available that operate at disk speeds, so that
the extra level of encryption will not impact perfor-
mance, and the tamper-resistance will keep the S-table
safe. The coprocessor might retain the S-table across
file system crashes, but should erase its state if it is
tampered with, or moved. If the coprocessor dies, or
has destroyed its state, it is easy to recover the S-table
from nonvolatile storage, and with the help of the
ephemerizers.
Optimization 2: Single interaction upon boot

We can further optimize the performance by making
each Si be a one-way cryptographic hash of Si-1. An
alternative to one-way hashes that would enable the
file system to recover all subsequent S’s from the first-
to-expire S is to encrypt Sj+1 with Sj.

With this optimization, when the file system is
rebooted after a crash, it only needs to interact with the
ephemerizer(s) once, to decrypt the earliest-to-expire
S, and then locally derive all the remaining S’s.

The file system still keeps 10,000 S’s (assuming
there are files that will not expire for 30 years, and a
granularity of one per day). The S-table looks the same
as it did for Optimization 1, i.e., that each Si is
encrypted with the corresponding public keys of the
ephemerizers.

With optimization 1, each of the 10,000 S’s will need
to be independently decrypted, with the help of the
ephemerizer(s) each time the system reboots. With
optimization 2, only the S that will expire first need be
decrypted.

Note that if the file system does not crash for some
time, it must discard S’s from volatile storage when the
expiration date occurs.

3.2.1 Changing a file’s expiration date
What if the file system wishes to change a file’s

expiration time? It is relatively easy to extend it. The
simplest way would be to re-encrypt the file with an S
with a later expiration time.

If the file is very long, however, and if expiration
time extension is a common operation, then this can be
accomplished more efficiently by having each file be
encrypted with its own secret key K, and have K
encrypted with the appropriate Si be associated with
the file, for instance, by including it in the metadata for
the file.

To extend the life of a file, K need only be re-
encrypted using a later S, so the encrypted file data
need not be modified.

It is not possible, with our time-based scheme, to
preserve the assured deletion guarantees if the file’s
expiration time is made earlier than its original expira-
tion time, because the ephemerizer cannot delete a key
prematurely, since others might be depending on that

Figure 2. Delaying a file’s expiration: encrypting 
data with file key K, encrypting K with Si

Encrypted File

{K}Si+3

encrypted with
K

exp date = i+3 decrypt K, re-encrypt with
later S, and modify exp
date. Encrypted data is
not modified.



key. So even if the file, and its metadata, is deleted
from the file system, it would still be recoverable from
backup store, as long as the associated S was still
recoverable, which it will be, as long as the associated
ephemerizer public keys are still available, and a copy
of the file encrypted with the later S is still available on
some copy of the backup.

3.2.2 Reclaiming space
Garbage collection to reclaim space is easy. In the

background, a garbage collector can look for files that
have expired, as indicated by the expiration date in the
metadata, and free the space.

3.2.3 Adding an ephemerizer
Suppose one or more of the ephemerizers a file sys-

tem was using was known to permanently fail, for
instance, by losing all its ephemeral keys. As long as n-
k+1 of the ephemerizers don’t fail simultaneously, or as
long as the file system has retrieved the S’s (the master
class secrets), it is always possible for the file system to
add ephemerizers.

It accomplishes this by re-encrypting the table of
master class keys, breaking each Si into the desired
number of shares, and encrypting each share with a
corresponding ephemerizer key for that class, encrypt-
ing the result with G, and storing on backup media.

3.2.4 Security and performance properties of the 
time-based scheme

Upon reboot of the file system, there is a tiny amount
of overhead to interact with ephemerizers and decrypt
the S-table. Once the S-table is decrypted, it is accessi-
ble locally to the file system, and there is no further
performance overhead due to the ephemerization,
above what would be needed for any encrypted file
system.

The interaction with a ephemerizer divulges no
information to the ephemerizer, so there is no need for
the file system to authenticate the ephemerizer. Even if
the ephemerizer colludes with the storage service, and
therefore obtains all information that the file system
stores in non-volatile storage, together with the
ephemerizer keys, it will be impossible to recover the
data without also knowing G, which requires stealing a
quorum of system administrator secrets.

There is also no reason for the ephemerizer to
authenticate the file system. In fact, the interaction
could be done anonymously [10]. There could be a set
of ephemerizers available on the Internet, and any file
system could choose to use any of them, encrypt with
their public keys, and then request decryption blindly
and anonymously when needed.

One very convenient aspect of the time-based
scheme is that no action need be taken by the file sys-
tem when a file expires. If the rule is that, say, results
of some medical test be maintained for a month, and
then destroyed after that, the file will have its expira-
tion time chosen at creation time, and then when it
expires, the file will become unreadable, with no fur-
ther effort by the file system.

What happens if the file system has an incorrect
time? If the file system thinks the time is far in the past,
say a year old, the file system may, during the time its
clock is set incorrectly, create encrypted files that will
prematurely expire, possibly even become immediately
unrecoverable once the file system loses volatile stor-
age. However, this error is likely to be caught as soon
as the file system boots, since the ephemerizers will not
be advertising ephemeral keys with past expiration
times, and the file system will not be able to decrypt
any of the S’s that are encrypted with keys that the
ephemerizers have discarded. This would make it
immediately apparent to the rebooting file system that
its clock is very different from the ephemerizer’s clock.

Setting the time to be too old at the file system will
not cause files that have expired to become readable.

If the file system thinks the time is far in the future,
then if the user interface specifies expiration times as
offsets from “current” (as in “two weeks from
present”) it will create files that will expire later than
wanted, and it will think that files that should be acces-
sible, because they have not expired, are not recover-
able. The file system will not attempt to decrypt S’s
from times in the past.

It would be easy to have the file system specify its
notion of the date in the message to the ephemerizer,
and/or have the ephemerizer specify the date in the
reply. This would be a hint that someone has the time
wrong so an alert could be raised.

In practice, setting correct time (approximately) is
not that difficult.

What happens if the ephemerizers have the time
wrong? Again, time need only be approximate (say
within a day). If an ephemerizer thinks the time is in
the future, it may prematurely discard keys that should
not have expired. If an ephemerizer thinks the current
time is in the past, then it may not discard keys on time.
With a quorum scheme of k out of n, it would require
more than k of the ephemerizers to have clocks set
backwards in order for an expired file to be recover-
able, and n-k+1 of them to have clocks set forwards in
order for an unexpired file to be unreadable.



Note that booting a ephemerizer with an old time
will not cause it to remember keys that were discarded
while it was operating before with a correct clock.

What happens if various keys are compromised or
lost? If G is stolen, along with the encrypted data, then
the thief can read all the data in the file system, just like
any system administrator armed with backup data and
G. However, like the system administrator, the thief
will not be able to read data that has been assuredly
deleted.

If an ephemerizer’s long term key is lost (but not sto-
len), then it can not certify any new keys, but the cur-
rent ephemeral keys (if they are not lost) will still be
operational. However, the ephemerizer can get a new
long-term key certified through the PKI and continue
operating.

If an ephemerizer’s long term key is stolen, then the
thief might be able to trick a file system into encrypting
with bogus keys (which is a denial of service attack but
will not disclose data), or with keys that the thief
knows the private keys for, and which the thief will not
discard. This is exactly the case of a dishonest
ephemerizer. It might cause data that should be deleted
to be recoverable, but it requires a quorum of colluding
dishonest ephemerizers.

If an ephemerizer loses its ephemeral keys, then as
long as a quorum of ephemerizers still remain opera-
tional, the data that has not expired is still readable.
Robustness can be raised at any time by adding new
ephemerizers.

If an ephemerizer’s ephemeral keys are stolen, then
this again is the same as the case of a dishonest
ephemerizer. The thief will only be able to read data if
it colludes with a quorum of other dishonest ephemer-
izers (assuming a quorum is more than 1), obtains G,
and obtains the encrypted data.

We do require that the public key cryptography used
for the blind decryption be robust against a chosen
ciphertext attack. It is believed that RSA and elliptic
curves (for both of which we present blind decryption
schemes in Appendix A) are secure against chosen
ciphertext.

3.3  Our Individual File On-Demand Delete 
Scheme

In this scheme, like in the time-based scheme, there
will only need to be a single interaction with the
ephemerizer(s) after the file system boots. Once the
ephemerizer(s), upon reboot, decrypts a single quantity
for the file system, the file system operates autono-
mously, until it crashes.

In this scheme, each file is encrypted with its own
secret key F. The file system maintains a file, which we
will call the F-table, of keys for every file in the file
system. So, for instance, if the file system has a million
files, there will be a million entries in the F-table.

In this scheme, the ephemerizers maintain (at least)
two keys for this file system. If the ephemerizer is act-
ing for multiple file systems, it will have a different
pair of keys for each file system. In this way it is up to
the file system to command the ephemerizer to gener-
ate new keys, and when to discard old keys. For sim-
plicity, let’s assume just two keys. We will call the pair
of keys the “current” key and the “previous” key.

The file system keeps the F-table in volatile storage.
However, every time the F-table is modified (due to
creating a new file or securely deleting an existing
file), the file system chooses a random secret K,
encrypts the F-table with K, and stores K encrypted
with the ephemerizer’s current key. If there are, for
instance, three ephemerizers, and we wish to use a 1
out of 3 scheme, then K would be stored 3 times, each
time encrypted with a different ephemerizer’s “cur-
rent” key. The encrypted K is further encrypted with G,
the overall file system secret.

It is possible to avoid modifying the F-table when
files are created by having the file system precompute
a batch of F’s in advance. In this way, many files can
be created without changing the F-table. It is only
when there are no unused F’s, or when an F is deleted,
when the F-table must be modified. Outside of the
encrypted F-table, the file system will need to keep
track of which F’s are available for new files.

When the encrypted F-table (together with the
encrypted K) is migrated to replicated non-volatile
storage, then the ephemerizers can be informed that
they can delete the previous public key, and they will
generate a new public key and give it to the file system.

The reason it is important to have key rollover and
key deletion under the control of the file system, rather
than having it done on a predetermined schedule, with
keys shared by many organizations, is that one organi-
zation’s file system might be down for an extended
period of time, perhaps due to a natural disaster. If the
ephemerizers delete keys on a schedule, in particular,
quickly enough to ensure that a deleted file will
become unreadable after a relatively short window,
then if a file system were down for longer than that
window, all of its data would become forever unrecov-
erable.

On the other hand, if the ephemerizers rolled over
keys on their own schedule (say once per week), then
the ephemerizer would not need to use custom keys for



each file system; instead, as with time-based keys, all
file systems could use the same “current” and “previ-
ous” keys, and again, could communicate with the
ephemerizer anonymously. If the scalability of key-
sharing across customers were considered an important
enough advantage of the on-demand scheme, then the
disadvantage above (the danger of losing all data if a
file system were down for longer than the ephemeriz-
ers’ key rollover window) could be lessened by allow-
ing some sort of emergency procedure in very rare
cases, for retaining keys longer than the normal roll-
over period. Customers wanting on-demand with
shared keys would need to understand that key rollover
might be extended sometimes due to emergencies of
other customers.

Note that although it is not strictly necessary, it is a
performance advantage to store K (the secret key with
which the F-table on nonvolatile storage is encrypted)
in volatile storage. That way it is not necessary to
decrypt the entire F-table and store it in volatile mem-
ory. Instead, when needed, individual F’s can be
decrypted using K. A new F can be created by encrypt-
ing the newly created F with K, and storing it on non-
volatile storage.

However, if an F is deleted from the F-table, a new
secret K’ must be generated, and the entire F-table
must be stored, encrypted with K’, on local nonvolatile
storage, and then the previous K must be forgotten.

3.3.1 A Downside of the On-Demand scheme
On the surface, the on-demand scheme is attractive.

It is very scalable. The ephemerizer only needs to store

2 keys to support a file system that might have thou-
sands of users and millions of files. It can support both
pre-determined expiration times (with the file system
needing to find and delete expired F’s from the F-
table), and on-demand delete of individual files.

However, compared with the time-based expiration
scheme we present in section 3.2, there is a potential
serious reliability issue. With the on-demand scheme,
there is a window from the time a file is securely
deleted, until the key with which the most recent F-
table containing that file’s key is discarded by the
ephemerizer. Let’s say that window is 3 days. So the
file is not really securely deleted until that window has
passed. Which means we might want that window to be
small.

However, suppose the file system were silently com-
promised, and it took weeks to notice it. Somehow the
corrupted file system was corrupting the F-table, and
keys for important files that were not recently
accessed, were corrupted. Once the ephemeral key
with which the last good copy of the F-table is dis-
carded, there is no way to recover those files.

In contrast, the time-based scheme is much safer. As
long as the file system is working properly when a file
is created, and the file (and its encrypted key) are
safely backed up, a subsequent corruption of the file
system will not harm that file. It is always possible to
restore the state of the world as of some time past, and
all files that existed then, and have not yet expired, will
be recoverable. (If the files have expired, regardless of
what time the file system thinks it is, they cannot be
recovered because the ephemerizers would have
deleted their expired keys).

Some products that do key management for storage,
which employ a key manager station (KMS) that keeps
a database of keys, are similar to our on-demand
scheme, and have the same disadvantage. In such prod-
ucts, there are often multiple KMS’s which synchro-
nize with each other. If the database of keys is backed
up outside the KMS’s on backup media so that the
KMS database can be recovered if all KMS’s fail, then
there is no assured delete. If the only copies of the key
database are in the KMS’s, then a single KMS that tells
the others to delete keys can cause unintended key
deletion, which can result in data becoming unrecover-
able, with the problem possibly not being detected for a
long time.

3.4  Custom class of file

It might be desirable to have some individual secrets
maintained at the ephemerizer. This might be useful,

Figure 3. The on-demand scheme
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for instance, to protect a set of data that might be cap-
tured by an enemy. Rather than destroying the data, by
having the ephemerizer destroy the key, if the
ephemerizer keeps a custom public key for that set of
data, the volatile storage at the file system can be
destroyed, and the ephemerizer can be informed that it
should lock the key, so that only some extraordinary
mechanism could be used to unlock the key; for
instance, by having a high-ranking person personally
visit the ephemerizer site.

Such a key must not be shared across clients,
because it must be lockable, or deletable, on demand.
As with the time-based scheme, the file system invents
a secret S when the class is first created. Then it
requests each ephemerizer it wishes to use to create a
corresponding public key for that class.

Why does this scheme not suffer from the problem
described in section 3.3.1? The reason is that in this
scheme, if the file system is not compromised when the
class key for a class of files is created, and that class
key is copied, encrypted with the ephemerizers’ keys,
onto stable replicated storage, then as long as a quorum
of ephemerizers still retain their key associated with
that file class, the secret file class key, and all data
encrypted with that key, can be recovered from back-
ups, regardless of any subsequent compromise of the
file system. Deletion of a class key at each ephemerizer
requires a very conscious and auditable action. As long
as reasonable human mechanisms are in place to
ensure that class keys are only deleted when, for
instance, a quorum of system administrators agree,
classes will not accidentally become unreadable.

With the on-demand scheme, the file system is
trusted to maintain and modify the F-table, and if it
writes out a corrupted F-table, this may be undetectable
until it is too late (once the ephemerizers delete the key
with which old backups of the F-table have been
encrypted, there is no going back).

3.5  Combined File Types

It is straightforward for the file system to maintain
files with the different forms of assured delete, together
with files that cannot be assuredly deleted. 
• Files of assured delete classes (time-based or cus-

tom) each are encrypted with a class master key, and
the class master key is encrypted on backup media
with a corresponding ephemerizer public key, and
then with G.

• Files without assured delete are also encrypted with
a class master key S, but this S is only stored
encrypted on backup with G (not with an extra wrap-

ping with an ephemerizer public key).
• Files that are capable of being on-demand deleted

are encrypted with keys F, stored in an F-table, and
the F-table is backed up by encrypting it with a ran-
domly chosen key K, then encrypting K with the
“current” public key of the ephemerizer(s), and
encrypting the encrypted K with G.
It is also possible to have a file fit into more than one

category by encrypting the file key multiple times,
once for each of the categories. For instance, if a file
has an expiration time, but also should be on-demand
deletable, the file should be encrypted with K, and then
K should be encrypted with both an F from the F-table
and the appropriate class key S. The metadata would
indicate which F and which S would need to be used to
decrypt K. If any of the keys upon which the file
depends become unavailable (i.e., if it expires, or if it is
assuredly deleted before the expiration date), the file
becomes unrecoverable.

Similarly straightforward to implement is the OR of
one of more categories. For instance, if a file should be
recoverable if either of two classes is still recoverable,
then the file’s key K is stored twice in the metadata;
once encrypted with the first class’s S key, and once
encrypted with the second class’s S key.

4. Layering with an end-to-end encryption 
scheme

Our scheme is transparent to storage (which is
unaware of the encryption). Our scheme does protect
data on backup media, since all the file system data
will be encrypted. It is also transparent to clients, other
than the ability for clients to specify, when creating a
file, that the file should be assuredly deletable. One
reasonable interface is to allow a directory (and
descendents) to be associated with an ephemeral cus-
tom key, and/or to allow a particular file to be created
with an expiration date, and/or to specify that a particu-
lar file should be on-demand deletable.

Our scheme alone does not provide end-to-end
encryption. In other words, if Alice creates a file that
she wants only Bob and Carol to read, unless there is a
layer of encryption above what our system provides,
the file system will be able to read the file, and Alice
will have to trust the file system to enforce the ACL
(that specifies only Bob and Carol should be able to
read the file).

If instead Alice would like to do end-to-end encryp-
tion, she would do it exactly as she would in a normal
file system, by encrypting the file with her own chosen
key J, and storing J encrypted with each authorized
recipient’s public key along with the encrypted file, in



a way transparent to our layer of the file system. Our
layer would see everything Alice stores (including the
encrypted J) as data. If Alice wants to store a file for
Bob and Carol that will expire, Alice stores the file as
she would ordinarily, for Bob and Carol, and specifies
to our level the file system, the expiration date. Our
level of the file system chooses its own file key K,
encrypts everything Alice would store with K, and
stores K encrypted with the corresponding class key, as
what our level of the file system interprets as metadata
for the file.

When Bob asks to retrieve the file, the file system
enforces the ACL, notes Bob is authorized, decrypts K
with the class key, decrypts the “data”, and sends it all
to Bob. Bob interprets what he receives as metadata (J
encrypted with his public key), followed by the file
encrypted with J.

The data will be doubly encrypted, but secret key
encryption can be done without loss of performance
today, especially with hardware accelerators.

5. Building an Ephemerizer
Ideally an ephemerizer would contain a tamper-resis-

tant component that generates the ephemeral keys and
does decryptions, and never divulges the private keys.
The remainder of the ephemerizer functions, e.g.,
responding to decryption commands, or commands for
creating custom keys, can be implemented on a general
purpose machine. For time-based keys, once a day the
ephemerizer can overwrite (in the tamper-resistant por-
tion) yesterday’s key with a new key.

6. Protecting the master class keys
If the file system is built on a general purpose com-

puter, there is the danger that it could become compro-
mised, and divulge the master class secrets. Therefore,
it might be desirable to structure the file system so that
the keys are kept in a tamper-resistant coprocessor. To
recover from a disaster, G and the backup of the keys is
input into the secure coprocessor, which recovers the
class keys (with the help of ephemerizers). Let’s call
this trusted portion the KM (key manager).

The KM needs no permanent state, so if the KM
fails, a new one can be substituted, and its database of
keys can be recovered from G, backup tapes, and inter-
action with ephemerizers.

The file system communicates securely with the
KM, either because of physical proximity, or through
an established security association, and requests
decryption, either of the file key when the file is
opened, or even the data (assuming a high bandwidth
path between the KM and the file system.)

The KM could be a cryptographic accelerator card
attached to the file system, or it could be a free-stand-
ing machine in a data center, and it could act on behalf
of multiple file systems. It could also contain a hard-
ware random number generator, with which it might be
able to generate better file encryption keys than the file
system built on a general purpose machine.

7. Blind Decryption Functions
In this section we present three blind decryption

functions. The first two use public keys for encryption,
so only decryption needs to be blinded. The third one
uses secret functions for both encryption and decryp-
tion, so encryption (as well as decryption) requires
blinded interaction with the ephemerizer.

7.1  RSA Keys

This form is almost identical to blind signatures with
an RSA key [6]. The ephemerizer’s public RSA key is
(e,n). We assume all arithmetic is done mod n, so for
readability, we leave out “mod n”.

The file system encrypts M using the ephemerizer’s
public key by computing Me.

The file system, FS, gets the ephemerizer, KM, to
blindly decrypt Me, (i.e., retrieve M) by doing the fol-
lowing:
1. FS chooses random R
2. FS computes Re.
3. FS computes Me * Re and sends that to KM
4. KM raises Me * R to d to obtain Med * Red = M *

R.
5. FS divides by R to obtain M.

The file system never writes R onto nonvolatile stor-
age.

7.2  Blind encryption/decryption with a Diffie-
Hellman public key

This form of blind decryption does not have a similar
blind signature scheme, and it works with any Diffie-
Hellman group, including ECC. Assume that the
ephemerizer has a public Diffie-Hellman key, gx,
where the group G, including g and the order of G, is
known. The private key is x. 

To encrypt message M with the ephemerizer’s public
key, the file system performs the following:

1. FS chooses random y, and computes gy and gxy.
This is done by raising the publicly known base g



to y, and the ephemerizer’s public Diffie-Hellman
key gx to y.

2. FS uses gxy as a secret key to encrypt M, obtaining
{M}gxy. FS saves {M}gxy and gy, and discards y
and gxy.

To retrieve M, the FS asks the ephemerizer to blindly
decrypt {M}gxy by doing the following:

1. FS knows {M}gxy and gy.
2. FS chooses random z, and compute’s z’s exponen-

tiative inverse z-1. (What we refer to as exponenti-
ative inverse is more conventionally known as z’s
multiplicative inverse modulo the order of G.)

3. FS computes (gy)z , sends gyz to ephemerizer.
4. Ephemerizer applies its private key (x) and sends

to FS: gxyz 
5. FS raises gxyz to z-1 to obtain gxy, with which it

can decrypt {M}gxy.

7.3  Blind encryption/decryption with a secret 
encryption function

This form of blind decryption does not have a similar
blind signature scheme (and couldn’t, because there is
no public key with which to validate a signature). We
use exponentiation mod p, a blinded version of Hell-
man-Pohlig [15]. Instead of a public key, the ephemer-
izer has two secret numbers, x and x-1, which are
exponentiative inverses mod p. “Encrypt” will be done
by exponentiating with x, “decrypt” with x-1. Blind
encryption in this scheme, as with blind decryption,
requires the involvement of the ephemerizer. 

Blind encryption requires authentication of the
ephemerizer. Unlike the other schemes, where the pub-
lic encryption key is certified by the ephemerizer’s
long-term key (so there is implicit authentication of the
ephemerizer), in this scheme there is no certified public
key, so authentication must be done explicitly during
the encryption request. The risks of asking for encryp-
tion from the wrong party are:
• denial of service; there is no way of knowing

whether the encryption worked
• using something that does not throw away keys

Authentication of the ephemerizer can be done
through any number of conventional ways, for
instance, using SSL.

To get the ephemerizer to blindly encrypt M:
1. Alice chooses random z, and its exponentiative

inverse z-1.
2. She computes Mz, sends it to the ephemerizer,

with the request to “encrypt”.
3. The ephemerizer applies x and returns Mxz

4. Alice applies z-1 to obtain Mx.

To get the ephemerizer to blindly decrypt Mx:
1. Alice chooses random y, and its exponentiative

inverse y-1.
2. She computes Mxy, sends it to the ephemerizer,

with the request to “decrypt”.
3. The ephemerizer applies x-1 and returns My

4. Alice applies y-1 to obtain M.

8. Conclusions
We presented three schemes for supporting assured

delete; time-based, custom classes, and individual file
on-demand. These schemes can be combined. In the
same file system, some files can be stored with expira-
tion times, others in a class with a custom keys, others
that can be deleted individually, on-demand, in an
assured manner, and still others that have no assured
deletion properties, so that even if deleted, they would
be recoverable as long as they still exist on backup
media.

The schemes can also be nested, e.g., by having a
directory encrypted with a custom key, and individual
files in that directory also having expiration dates. 

For data with the securely deletable property, the file
system employs the services of remote ephemerizers,
whose sole purpose is to create, certify, advertise, and
manage ephemeral keys, and to perform decryptions
with ephemeral keys upon request. A file is recover-
able if and only if someone has the encrypted file, the
overall file system secret G, and a quorum of ephemer-
izers still retain the key associated with that class of
file.

We achieve robustness without any copying of
ephemeral keys by using multiple independent
ephemerizers with independent keys. This makes an
ephemerizer sufficiently inexpensive, and easy to man-
age, that organizations might choose to run all or some
of the ephemerizers they depend on themselves.

The communication with the ephemerizer is done
through “blind decryption”, and the ephemerizer gains
no information from this exchange. Therefore the



ephemerizer can be a relatively untrusted third party, as
can the organization that manages the non-volatile stor-
age. Even if the ephemerizers and the storage organiza-
tion collude, they will not be able to read the data. The
cryptographic algorithm used for the public keys of the
ephemerizer needs to be resilient to chosen ciphertext
attack.

In all our variants, the only time it is necessary for a
file system to communicate with an ephemerizer is
after the file system reboots. The ephemerizers will
need to do one decryption to unlock all the time-based-
expiration files on the file system, one decryption to
unlock all the on-demand-deletable files on the file
system, and one decryption for each file class with a
custom key.

Thus there is minimal performance overhead of our
scheme beyond simple encrypted storage. There are
cryptographic accelerators that can be used in the file
system that will work at disk speeds. And other than an
initial network-based interaction with a ephemerizer to
recover the set of file system master keys for file sys-
tem classes, there is no further interaction with the
ephemerizers after the file system boots.

This system assumes the file system is trusted to read
the data. If this is not a desired property, then an addi-
tional level of encryption can be done at the user level,
while the assured delete is still done at the file system
level.

Even if end-to-end encryption is layered over the file
system, doing ephemerization at the file system level,
as we do in this paper, achieves great performance
advantages.
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	1. FS chooses random y, and computes gy and gxy. This is done by raising the publicly known base g to y, and the ephemerizer’s public Diffie-Hellman key gx to y.
	2. FS uses gxy as a secret key to encrypt M, obtaining {M}gxy. FS saves {M}gxy and gy, and discards y and gxy.
	1. FS knows {M}gxy and gy.
	2. FS chooses random z, and compute’s z’s exponentiative inverse z-1. (What we refer to as exponentiative inverse is more conventionally known as z’s multiplicative inverse modulo the order of G.)
	3. FS computes (gy)z , sends gyz to ephemerizer.
	4. Ephemerizer applies its private key (x) and sends to FS: gxyz
	5. FS raises gxyz to z-1 to obtain gxy, with which it can decrypt {M}gxy.

	7.3 Blind encryption/decryption with a secret encryption function
	1. Alice chooses random z, and its exponentiative inverse z-1.
	2. She computes Mz, sends it to the ephemerizer, with the request to “encrypt”.
	3. The ephemerizer applies x and returns Mxz
	4. Alice applies z-1 to obtain Mx.
	1. Alice chooses random y, and its exponentiative inverse y-1.
	2. She computes Mxy, sends it to the ephemerizer, with the request to “decrypt”.
	3. The ephemerizer applies x-1 and returns My
	4. Alice applies y-1 to obtain M.
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