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Abstract

Model-based intrusion detection compares a process’s ex-
ecution against a program model to detect intrusion at-
tempts. Models constructed from static program analy-
sis have historically traded precision for efficiency. We
address this problem with our Dyck model, the first effi-
cient statically-constructed context-sensitive model. This
model specifies both the correct sequences of system calls
that a program can generate and the stack changes oc-
curring at function call sites. Experiments demonstrate
that the Dyck model is an order of magnitude more pre-
cise than a context-insensitive finite state machine model.
With null call squelching, a dynamic technique to bound
cost, the Dyck model operates in time similar to the context-
insensitive model.

We also present two static analysis techniques designed
to counter mimicry and evasion attacks. Our branch anal-
ysis identifies between 32% and 64% of our test programs’
system call sites as affecting control flow via their return
values. Interprocedural argument capture of general val-
ues recovers 32% to 69% more arguments than previously
reported techniques.

1. Introduction
Host-based intrusion detection seeks to identify attempts
to maliciously access the machine on which the detection
system executes. Remote intrusion detection identifies hos-
tile manipulation of processes executing in a distributed
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computational grid [10]. These intrusion detection systems
monitor processes running on the local machine and flag
unusual or unexpected behavior as malicious. In model-
based detection [8], the system has a model of acceptable
behavior for each monitored process. The model describes
actions that a process is allowed to execute. A monitor
compares the running process’s execution with the model
and flags deviations as intrusion attempts.

Model-based intrusion detection can detect unknown at-
tacks with few false alarms. Such a system detects new and
novel attacks because the model defines acceptable process
behavior rather than the behavior of known attacks. Yet,
false alarms are low to non-existent for a properly con-
structed model because the model captures all correct exe-
cution behaviors.

Constructing a valid and precise program model is a chal-
lenging task. Previous research has focused on four ba-
sic techniques for model construction: human specification
[14], training [5, 7, 17, 23, 34], static source code analysis
[31, 32], and static binary code analysis [10]. Of these, we
use static binary code analysis since it requires no human
interaction, no determination of representative data sets,
and no access to a program’s source code, although it is
unsuitable for interpreted-language analysis. It constructs
models that contain all possible execution paths a process
may follow, so false alarms never occur. However, an im-
precise model may incorrectly accept attack sequences as
valid. We use static binary analysis to construct a finite
state machine that accepts all system call sequences gener-
ated by a correctly executing program.

Models constructed from static program analysis have
historically traded precision for efficiency. The most pre-
cise program representations, generally context-sensitive
push-down automata (PDA), are prohibitively expensive to
operate [10, 31, 32]. For example, Wagner and Dean sug-
gested the use of their less precise digraph model simply
because more precise models proved too expensive. Our
earlier work used regular language overapproximations to
a context-free language model, again due to cost. This
paper presents a new model structure that does not suffer



from such drawbacks. Our Dyck model is a highly precise
context-sensitive program representation with runtime be-
havior only slightly worse than a cheap, imprecise regular
language model.

The Dyck model is as powerful and expressive as the full
PDA model. An early result by Chomsky proved that every
context-free language is a homomorphism of the intersec-
tion of a Dyck language with a regular language [2]. Chom-
sky’s result implies that our Dyck model is as powerful as
the PDA model, so the efficiency gains we observe come at
no loss in correctness.

The Dyck model can detect a broad class of attacks. Gen-
erally, the model detects attacks that execute arbitrary code,
as this code will not match the expected behavior of the
process. For host-based intrusion detection, this includes:

• Attempts to exercise a race condition that uses invalid
control flow to repeatedly execute a code sequence.

• Attempts to bypass security checks via impossible
paths (see Appendix A).

• Attempts to execute programs via command insertion
in unsanitized arguments to subshells.

• Changing a symbolic link target before an exec call.

• Buffer overruns, heap overflows, or format string at-
tacks that force a jump to injected code.

The Dyck model is further suited for remote intrusion
detection. This detection technique identifies hostile ma-
nipulation of remotely executing programs that send cer-
tain system calls to a different, local machine for execu-
tion. Successful remote manipulation means the local sys-
tem executes malicious system calls. This is a stronger
threat model than the host-based intrusion detection set-
ting. Attackers do not exploit vulnerabilities at specific
points of execution but can replace the entire image of the
remote process with their attack tool at any arbitrary execu-
tion point. By modeling the remote job with a Dyck model
and monitoring the stream of remote system calls arriving
at the local machine, we can detect remote manipulation
that produces invalid call sequences.

This paper makes three primary contributions:

The Dyck model, enabling efficient context-sensitive
program modeling. The Dyck model represents a substan-
tial improvement in statically constructed program models.
Our Dyck model exposes call stack changes to the monitor.
Model operation is highly efficient because the monitor ex-
plores only the exact call path followed by the application.

Experiments bear out these claims. All our test pro-
grams show an order of magnitude improvement in pre-
cision when using the Dyck model rather than a context-
insensitive model. For example, the model precision for

procmail improved from 14.2 with a context-insensitive
model to 0.8 with the Dyck model as measured by the aver-
age branching factor metric. Excluding recursive call sites,
impossible paths [31, 32] do not exist in the Dyck model.
The only sequences of system calls it accepts are those that
the program could actually produce.

Null call squelching, a dynamic method to limit null
call generation. We have developed null call squelching to
prevent excessive null call generation without reducing se-
curity. Squelching combines both static and dynamic tech-
niques to generate only those null calls that provide context
for a system call. With squelching enabled, the worst-case
number of null calls generated per system call is bounded
by 2h, where h is the diameter of the program’s call graph.
We present the Dyck model and null call squelching in Sec-
tion 4.

Efficiency gains demonstrate the value of squelching.
Previous experiments using a context-sensitive PDA could
not even be completed because the model update failed
to terminate in reasonable time [31, 32]. With the Dyck
model, operational cost nears that of a context-insensitive
nondeterministic finite automaton (NFA) model.

Data flow analyses to counter mimicry attacks. We
use interprocedural data flow analysis to model arguments
passed to and return values received from system calls. In
combination, these analyses hinder mimicry and evasion at-
tacks [26, 27, 28, 33] by restricting the paths in the program
model that accept an attack sequence. We discuss data flow
analysis in Section 5.

2. Related Work
In human-specified model-based intrusion detection, a se-
curity analyst manually specifies correct behavior for each
program of interest [14, 24] or annotates the source code
to describe security properties [1]. A runtime monitor en-
forces the manually described model. Alternative systems
check behavior against a specification of malicious activity
[18]. Such systems are reasonable for very small programs;
however, as programs grow, human specification becomes
overly tedious.

Static and dynamic program analysis scale better by au-
tomatically constructing models. Wagner and Dean stat-
ically analyzed C source code to extract both context-
insensitive and context-sensitive models [31, 32]. Unfor-
tunately, the cost to operate their precise context-sensitive
abstract stack model was prohibitively high and unsuit-
able for practical use. We observed similar expense when
using context-sensitive push-down automata constructed
via static analysis of SPARC binary code [10]. These
papers recommended using imprecise context-insensitive
models to achieve reasonable performance. The Dyck
model presented in this paper significantly improves upon



these works, providing a precise context-sensitive model
with excellent performance characteristics.

Wagner and Dean also introduced the impossible path
exploit. A context-insensitive model includes paths orig-
inating from one function call site but returning to a dif-
ferent call site. A correctly executing program could never
follow such a path due to its call stack; however, an at-
tacker could force impossible control flow via an exploit.
Our Dyck model is context-sensitive and detects impossi-
ble path exploits.

Dynamic analysis, based upon the seminal work of For-
rest et al. [7], constructs program models from observed
behavior during repeated training runs [8, 9, 12, 13, 16, 17,
19, 29, 35]. Feng et al. [5] extended the work of Sekar et al.
[23] to learn sequences of system calls and their calling
contexts. Their VtPath program model is a database of all
pairs of sequential system calls and the stack changes oc-
curring between each pair, collected over numerous train-
ing runs. The VtPath language is the regular language
expansion of a context-free language with bounded stack.
This is equivalent to our Dyck model, where the stack
bound is the maximum depth of the program’s call graph
when ignoring recursion. However, our work differs from
that of Feng et al. in four important aspects:

• The Dyck model is fundamentally more expressive
than VtPath. For efficiency, the Dyck model treats re-
cursion as regular. However, this is not a limitation
of the model. The Dyck model can correctly express
context-sensitive recursive calls and accept a strictly
context-free language. VtPath cannot model recursion
because all possible recursive depths would need to be
learned during training. It must accept a regular lan-
guage.

• The Dyck model, via its null call instrumentation, de-
tects attacks that VtPath cannot. Null calls reduce
non-determinism, better enabling the monitor to track
process execution. Appendix A presents an example.

• The static analyzer constructing our Dyck model ana-
lyzes system call arguments and return values to pre-
vent mimicry attacks [26, 27, 28, 33]. The Dyck
model includes restrictions on valid arguments and ac-
ceptable execution directions based upon system call
return values. The VtPath model, and, indeed, all but
one learned model [25], ignore these arguments and
return values.

• Our context-free Dyck model is a compact program
representation. In the worst case, a regular language
expansion of a bounded context-free language, such
as VtPath, may grow exponentially large.

We view static and dynamic analysis techniques as com-
plementary. Static analysis overapproximates acceptable

program behaviors and generates a model that may miss
attacks. Conversely, dynamic analysis underapproximates
acceptable behaviors, leading to a high false alarm rate.
Ultimately, a hybrid model based upon both approaches
could be advantageous by minimizing the drawbacks of
each technique. Although we chose to present the Dyck
model in the context of static analysis, it appears equally
well suited for use in dynamic analysis or a hybrid ap-
proach.

3. Model Construction Infrastructure
For completeness of presentation, we have included a sum-
mary of infrastructure work in this area. Readers familiar
with such work can skip to this paper’s major new contri-
butions: the Dyck model in Section 4 and mimicry attack
defenses in Section 5.

Our tool features two components: the binary analyzer
and the runtime monitor. The analyzer reads a SPARC bi-
nary program and uses static program analysis to construct
a model of the program. Additionally, it rewrites the binary
program code to enable more precise and efficient model-
ing. The user then executes the rewritten binary in their
security-critical environment. The runtime monitor tracks
the execution of the rewritten binary to ensure that it fol-
lows the analyzer’s constructed model. Deviation from the
model indicates that a security violation has occurred.

Our program model is a finite state machine whose lan-
guage defines all possible sequences of system calls that an
application may generate during correct execution. Model
construction progresses through three stages.

1. We read the binary program and construct a control
flow graph (CFG) for each procedure in the applica-
tion. Each CFG represents the possible control flows
in a procedure.

2. We convert each control flow graph into a non-
deterministic finite automaton (NFA) that models all
correct call sequences that the function could produce.

3. We compose the collection of local automata at points
of internal user function calls to form a single interpro-
cedural automaton modeling the entire application.

The runtime monitor enforces the program model by oper-
ating the interprocedural automaton at runtime.

Figure 1 contains the SPARC assembly code for three
example functions, with system calls in boldface. Figure 2
presents the NFA constructed for each function.

Note that system call transitions include arguments. We
analyze the data flow of the program to reconstruct an ex-
pression graph for each argument. By simulating execu-
tion of the machine instructions in the expression graph, the
analyzer recovers statically known argument values. This
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func:
save %sp, -96, %sp
sethi %hi(file), %o0
or %o0, %lo(file), %o0
call open
mov 2, %o1
mov %o0, %l6
mov 0, %l7

L1: cmp %l7, 10
bge L2
mov %l6, %o0
call action
mov 128, %o1
b L1
add %l7, 1, %l7

L2: call writewrap
nop
mov %l6, %o0
call action
mov 16, %o1
ret
restore

static char file[] = "filename";
void func () {
int fd = open(file, O_RDWR);
for (int i=0; i<10; ++i)

action(fd, 128);
writewrap(fd);
action(fd, 16);

}
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action:
cmp %o0, 0
ble L3
mov %o1, %o2
sethi %hi(buf), %o1
jmp read
or %o1, %lo(buf), %o1

L3: retl
nop

static char buf[128];
void action (int filedes, int size) {
if (filedes > 0)

read(filedes, buf, size);
}

31
32
33
34
35

writewrap:
sethi %hi(root), %o1
or %o1, %lo(root), %o1
jmp write
mov 5, %o2

static char root[] = "root";
void writewrap (int filedes) {

write(filedes, root, 5);
}

Figure 1. SPARC assembly code and C source code for three example functions, func, action, and
writewrap. We analyze binary code and include this source code only to aid comprehension of the
code behavior.

recovery prevents an attacker from passing arbitrary argu-
ments to system calls. Observe that the first argument to
read in Figure 1, the file descriptor returned by open,
is a dynamic value and cannot be statically recovered with
this technique. Section 5.1 presents a new technique for
recovery of such values.

These automata have a desirable property for system call
modeling: in the absence of indirect function calls, the
model is safe; i.e., if there exists an input to an underlying
function f such that f produces a sequence of calls a1...an,
then the language of the automaton accepts this sequence.
Hence, the monitor will not raise false alarms. To maintain
the safety property at indirect call sites, we first attempt
argument recovery on the jump register to find all possi-
ble targets. For the six test programs used in Section 6, our
analysis recovers between 70% and 80% of indirect targets.
In the remaining cases, we mark the call-site as targeting
any function whose address is taken.

Call-site replacement constructs a model of the entire
application by splicing local automata together at function
call edges. This models the program’s execution at points
of function calls, i.e. control flow shifts into the called pro-
cedure. Previous work constructed either an NFA or PDA

global model [10, 31, 32]; unfortunately, neither model is
entirely satisfactory.

The NFA model (Figure 3) is an imprecise but efficient
context-insensitive model. An NFA offers excellent run-
time performance, but suffers from impossible path ex-
ploits. Impossible paths exist when multiple different call
sites to the same target procedure exist. The language ac-
cepted by the model is then a superset of the program’s
actual language and includes paths not possible in actual
program execution. These paths are important: an attacker
may use the existence of such edges to attack a process
without detection. The bold path in Figure 3 is an impossi-
ble path accepting repeated read and write calls.

A PDA model adds context-sensitivity for greater preci-
sion, but suffers from extremely high runtime overheads.
Figure 4 shows how the PDA includes a model of the pro-
gram’s call stack. The monitor will only traverse matching
call and return transitions, so impossible paths do not exist
in the model. This stack model adds complexity to the op-
eration of the PDA. Straightforward execution fails in the
presence of left recursion. The post* algorithm [4], de-
signed to terminate even in a left recursive grammar, has
worst-case complexity that is cubic in the number of au-
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tomaton states [22] and leads to unreasonably high runtime
overheads [31, 32].

Binary rewriting can somewhat mitigate the cost of PDA
operation via null call insertion. Null calls, or dummy sys-
tem calls, observed by the monitor indicate the path of ex-
ecution followed by the process. This limits runtime ex-
ploration of the PDA to the states dominated by the null
call transition. Unfortunately, this naive null call insertion
has two shortcomings. First, we cannot statically compute
the cost of a particular null call insertion point [20], pos-
sibly leading to high cost. Second, the execution context
information is accurate only until an attacker takes control
of the application. Our Dyck model addresses these short-
comings by providing an attack-resilient context-sensitive
model that dynamically controls null call cost.
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4. Dyck Model
We have developed the Dyck model, the first efficient
statically-constructed context-sensitive model. The Dyck
model achieves much greater efficiency than a PDA by lim-
iting state exploration. Like a PDA, the Dyck model in-
cludes a stack to record function call return locations. In a
Dyck model, however, all stack update transitions are also
symbols in the automaton alphabet. The monitor then up-
dates the Dyck stack precisely when that update reflects ac-
tual program behavior. To produce these stack update sym-
bols, we insert two null calls at selected function call sites
in the program. A precall, immediately before the func-
tion call, notifies the monitor of the calling location. When
the call returns, the program generates a postcall. The null
calls inserted at each call site are different, so each call and
return path to the same target function is distinguishable.
Any postcall not matching the corresponding precall in-



1 void func () {
2 int fd = open(file, O_RDWR);
3 for (int i=0; i<10; ++i) {

null_call(B);
4 action(fd, 128);

null_call(B);
}
null_call(C);

5 writewrap(fd);
null_call(C);
null_call(D);

6 action(fd, 16);
null_call(D);

}

Figure 6. Code example with Dyck instrumen-
tation. Inserted null calls appear in bold-
face. Each user call has a null call indicating
call and return. Line numbers correspond to
those in Figure 1. Although this figure shows
C code for readability, we instrument SPARC
binary code.

dicates that the program is attempting to force execution
through an impossible path.

The language accepted by the Dyck model is a brack-
eted context-free language originally developed by Gins-
berg and Harrison [11]. The precall and postcall inserted
at each call site correspond to parenthesis symbols in the
language and form a Dyck language [3, 30]. The moni-
tor accepts only sequences that correctly match paired pre-
and postcalls. Note that this forced pairing is a stricter use
of null calls than in previous work and prevents the intro-
duction of impossible paths even when under attack. An
attacker is free to insert or change the null calls as he or
she wishes; however, the manipulations must match some
correct program execution path.

Figure 5 shows the Dyck model. Null calls link the en-
try and exits of a target function’s model with the call sites
to that function. Edges labeled α are precalls that insert α

onto the Dyck stack. Edges labeled α are postcalls that pop
α. When reaching state B in the Dyck model, the moni-
tor will follow only the transition corresponding to the ob-
served symbol in the call stream. Conversely, when oper-
ating a PDA, the monitor must replicate its state and fol-
low both stack push transitions to states E and G, suffering
greater overhead. Figure 6 shows how the program rewriter
inserts the Dyck null calls into the existing program (recall
that we instrument binary code). Each precall and postcall
is inserted immediately before and after each call site.

Appendix B gives the formal definition of the Dyck
model.

4.1. Selecting Instrumentation Points

Naive instrumentation may lead to excessive run-time
overhead if program execution generates a null call with
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Figure 7. Dyck model with squelching.

high frequency. Recursion and loops exacerbate the num-
ber of null calls produced. In these cases, execution fol-
lows a backedge in a function’s control flow graph or in
the program’s call graph and leads to repeated null call site
execution. Other execution patterns do not correspond to
backedge traversal and thus do not affect the rate at which
execution encounters a particular null call.

We do not insert Dyck calls naively. Our selection al-
gorithm statically chooses function call sites to avoid in-
strumenting. First, it will not instrument recursive call
sites. Each strongly connected component (SCC) in the
program’s call graph represents a recursive cycle. This rule
flattens each SCC into a single node. We lose context sen-
sitivity at points of recursion, but limit the cost of instru-
mentation.

Second, we do not instrument call sites that never exe-
cute a system call. Note that a function f will not exe-
cute a system call if the entire subgraph of the program’s
call graph rooted at f never reaches a system call. This
prunes portions of the call graph that are uninteresting for
system call monitoring. The monitor need not follow the
program’s execution through such functions because they
cannot generate a system call.

4.2. Null Call Squelching

A strictly static technique cannot adequately address the
looping problem. We have developed null call squelch-
ing, a dynamic technique that restricts null call generation.
Squelching produces only the meaningful null calls indicat-
ing the call stack state when reaching a system call. Null
calls around a function call that returns without generating
a system call provide no security information and are dis-
carded. We show two important results: first, the number
of null calls generated is bounded by 2hn where h is the
diameter of the program’s call graph and n is the number



of system calls generated. Second, we show that the model
resists attacker manipulation. We begin by describing the
squelching algorithm.

We do not change the selection of null call instrumenta-
tion points; rather, we modify the semantics of instrumen-
tation. First, we create a squelch stack in the program’s
data space. The precall instrumentation pushes the call site
identifier onto the squelch stack, but does not send the iden-
tifier to the monitor.

We modify system call sites to send the squelch stack
along with the system call. The precall identifiers on the
squelch stack represent the calling context at the system
call. The squelch stack is then cleared.

The postcall code examines the state of the squelch stack.
If the stack is empty, then some system call site sent all
symbols to the monitor, including the precall at this call
site. Thus, the postcall is meaningful and is sent to the
monitor. If the stack is not empty, then this call site gener-
ated no system call. The application pops the top element
from the call stack. Rather than inserting irrelevant null
calls into the call stream, this algorithm discards them at
the slight expense of stack activity in the application.

Note that a postcall that pops an element should match
the popped element. A mismatch indicates program ma-
nipulation not visible to the monitor has occurred. The
program could kill itself, although an attacker could pre-
vent the termination. We instead observe that the manipu-
lation is uninteresting because it generated no system calls.
Moreover, the squelch stack has entered a bad state that
may be revealed at the next system call event.

As an example of squelching, consider Table 1. Line (a)
shows one path through the Dyck model of Figure 5 with-
out null call squelching. Every function call that does not
generate a system call produces a matched Dyck pair α, α

in the call stream. Clearly, such pairs provide no system
call context and can be removed. Line (b) shows the same
call string with such pairs removed. Every remaining Dyck
pair envelops some system call and indicates the applica-
tion’s stack context at the point of that system call. With
squelching, the runtime cost of null call insertion is notably
reduced with no loss of security.

We change model construction to incorporate null call
squelching. In particular, any precall-postcall sequence
must be converted to an ε-transition. We describe this as
a language transformation. Let L be the language accepted
by the Dyck model without null call squelching and L′ be
the language accepted with squelching. Let h : L → L re-
place all precall-postcall strings with ε. Then h∗ : L → L′,
denoting recursive calls to h terminating when no precall-
postcall strings exist in L′, generates the squelched lan-
guage L′. Figure 7 shows the Dyck model transformed to
accept a squelched language. Note that the pair D, D from

C to G to D has been replaced with an ε-transition directly
from C to D.

We finally show that null call squelching imposes a strict
upper bound on the cost of instrumentation.

THEOREM. Let C be the call graph for program P . De-
note by C̃ the graph obtained from C with each strongly
connected component collapsed to a single state. Let h be
the maximum diameter of C̃. If P generates n true system
calls during execution, then the worst-case number of null
calls generated is 2hn.

PROOF. See Appendix B.

4.3. Resilience to Attacker Manipulation
The Dyck model relies upon state kept with the applica-

tion: the squelch stack and the rewritten call sites that pro-
duce null calls. Since this state is in the memory image of
the process and not of the monitor, an attacker may arbitrar-
ily modify the state. We claim that the Dyck model is re-
silient to any such modification. That is, modifications are
successful only if they represent possibly legitimate pro-
gram behavior.

First, the attacker could modify the stack. The monitor
will detect added elements before a system call if the call
path represented by the stack is not legitimate. By the same
argument, element deletion will be detected if it attempts
to introduce an impossible path. We note that although a
denial-of-service attack is possible by releasing the mem-
ory used by the stack to produce a memory fault at the next
stack reference, the process could be killed by a myriad of
simpler means.

Second, the attacker could modify the code. The attacker
could prevent null call generation, generate a large number
of null calls, or send erroneous null calls. These are equiv-
alent to the stack manipulations previously discussed and
will be detected if they attempt to introduce an impossible
path. Again, generating a large number of null calls may
terminate the process if the squelch stack space becomes
exhausted.

The monitor stores the program model in a separate pro-
cess space, so an attacker cannot modify the model. Simply
put, any modifications to the state kept in the application
still must produce valid call sequences to be accepted by
the monitor. Thus, the attacker gains nothing by modifying
this state.

5. Data Flow Analysis
We have designed two advanced data flow analyses to
counter the mimicry and evasion attacks described in re-
cent literature [26, 27, 28, 33]. These papers stress the
need to monitor system call arguments and return values
to prevent an attacker from using system calls as nops in a
mimicry attack. We have added a new object to the anal-
ysis infrastructure that enables such analyses. The data



Number of
Monitored Call String: Null Calls:

(a) open,B,B,B,B,B,read,B,B,B,B,read,B,B,B,B,B,C,write,C,D,D 18
(b) open,B,read,B,B,read,B,C,write,C 6

Table 1. System call strings accepted by the Dyck model. These strings correspond to possible
paths in Figure 5 and Figure 7. (a) A possible path accepted by the context-free Dyck model. (b)
The string in (a) with null call squelching. Note the large drop in observed null calls.

dependence graph (DDG) represents complex interproce-
dural data flows and is described in Appendix C. Sec-
tion 5.1 presents argument capture, a method to recover
statically-known arguments. Branch analysis, explained in
Section 5.2, uses the DDG to identify branch conditions
dynamically set by system call return values. With both
argument and branch analysis, we reduce the opportunities
for a successful mimicry attack.

5.1. Argument Capture

To prevent an attacker from manipulating arguments
passed to a system call, we use the DDG to re-
cover statically-known arguments. Our analysis recov-
ers statically-known data values using a two step process.
First, it follows paths in the data dependence graph to col-
lect the expression graph for the value. Second, it simulates
the execution of the instructions in the expression graph to
determine the value. If analysis cannot reliably construct
the expression graph or if a value is not statically known,
the analyzer marks it as unknown. Multiple execution paths
may set arguments differently, so we recover sets of inte-
gers, set of regular expressions for string arguments, and
dependencies upon a return value from a previous system
call. This interprocedural approach is more general than the
constant-valued intraprocedural capture described in previ-
ous work, further restricting the possibilities for successful
attacker manipulation.

Importantly, these argument recoveries help prevent
mimicry and evasion attacks [26, 27, 28, 33]. Consider the
read system call transition in Figure 2. With argument re-
covery, we can replace the transition read(?,buf,?)
with read(=open,buf,{16,128}). The first argu-
ment is the return value from open, and the third argument
is the set of values {16,128}. An attacker could not trans-
form this read call into a nop because argument recovery
prevents the necessary manipulation.

5.2. Branch Analysis

A mimicry attack works well because the attacker can
easily generate nop system calls to steer model operation
as needed. These nop calls use invalid arguments to force
the call to fail and not change system state. Failed system
calls return an error indicator so that legitimate programs

may take any necessary corrective action. If the monitor
does not track these return values and some system call ar-
guments are unknown, the attacker can undetectably cause
the system calls to fail. Branch analysis detects such ma-
nipulation.

Our analysis determines the expected subsequent process
execution based upon the return value of a system call. We
insert predicate transitions into the automaton that indicate
control dependencies upon return values. At runtime, the
monitor records return values and traverses any edge with
a predicate that evaluates to true as if it were an ε-transition.
It ignores any edge evaluating to false. If an attacker uses
a nop call to steer execution, that call must be followed by
system calls that match the error case behavior in the actual
application.

For example, the DDG reveals that the branch instruction
in line 24 of Figure 1(a) is based upon the return value of
open. We insert predicate transitions into action’s model
corresponding to the branch behavior (Figure 8). Should
an attacker use the open call as a nop by specifying an
invalid argument, the monitor would detect an intrusion if
read were the next symbol. The failed open call blocks
the path to the read call via its return value. Thus, branch
analysis helps prevent development of successful attacks.

6. Evaluation
We evaluate our program models with two criteria: pre-
cision and efficiency. Precise models present an attacker
with little opportunity to insert malicious system calls. An
efficient model adds only a small runtime overhead to the
existing process execution. Only efficient models will be
deployed, and only precise models add security value. Pre-
cise models generally have higher runtime overhead. We
demonstrate that the Dyck model with squelching presents
an excellent tradeoff between precision and efficiency.

6.1. Metrics

We use standard techniques to measure these criteria.
The average branching factor metric, originally developed
by Wagner and Dean [31, 32], measures model precision.
Average branching factor is a dynamic measure of an ad-
versary’s opportunity to insert dangerous system calls into
a running process’s call stream. As the monitor operates



Call Sites
Program Workload Functions Instructions System User
procmail Filter one 1 MB message to a local mailbox. 1,619 112,951 203 8,166
gzip Compress a 13 MB text file. 884 56,710 96 2,746
eject Open the CD-ROM drive tray. 1,039 70,177 159 3,903
fdformat Format a high-density floppy disk. 957 67,874 197 3,767
ps Report process status of all processes. 963 59,814 96 3,301
cat Concatenate 38 files totaling 500 MB to a file. 838 52,028 108 2,615

Table 2. Test programs, workloads, and statistics.

open<=0 open>0

action

read

Figure 8. The model for action with branch
analysis.

the automaton model, it records all potentially dangerous
system calls that it would accept as the next call. The aver-
age branching factor is then the total number of these calls
divided by the number of automaton updates performed by
the monitor. A low average branching factor indicates that
an attacker has little opportunity to undetectably insert ma-
licious system calls into the call stream.

Efficiency measurements are straightforward and take
two forms. First, we time the length of process execution
with and without model operation. Second, we measure
each process’s runtime memory usage increase due to bi-
nary code instrumentation and the model state kept in the
monitor.

6.2. Experimental Design

We include precision and efficiency results for six test
programs. Table 2 shows the workloads used for each pro-
gram. Note that experiments using ps are not reproducible
because its execution depends upon constantly changing
system state. Table 2 also gives statistics for the binary
code of each program. The number of user function call
sites indicates the level of interprocedural control flow
transfers and the worst-case number of Dyck instrumenta-
tion points. We currently analyze statically-linked binaries,
so these statistics include linked library code.

These test programs and our runtime monitor run on So-
laris 8 on a Sun Ultra 10 440 Mhz workstation with 640 MB
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Figure 9. NFA and Dyck precision. Lower
bars indicate greater precision.

of RAM. The monitor and test processes run simultane-
ously on the same machine. We have not yet implemented
support for kernel trap monitoring, so the application com-
municates with the monitor with a shared message queue
for the purposes of our experimentation. The collection of
Solaris libc kernel trap wrapper functions defines our set of
system call events.

We measured precision and efficiency for all six pro-
grams. The monitor calculates the average branching factor
for every test program using the method described above.
To determine runtime overheads, we use the UNIX time
program to measure the wall time elapsed during execution
of the test program. The test program and the monitor exe-
cute on the same machine, so this time includes test process
execution, monitor execution as it operates the automaton,
and context switches between the processes. The time does
not include setup time in the monitor, in which it parses
the program model from a file. We measure memory usage
by recording the maximum process image size, observed at
every return from the brk kernel trap. We ran experiments
on a lightly loaded multi-user machine with no other active
users.

6.3. Effects of the Dyck Model

We analyzed how the Dyck model influenced precision
and efficiency. We compared the Dyck model with and



Program Base NFA % Dyck % Squelched Dyck %
procmail 0.42 0.37 0 0.58 38 0.40 0
gzip 7.02 6.61 0 610.64 8600 7.16 2
eject 5.14 5.17 1 5.19 1 5.22 2
fdformat 112.41 112.36 0 112.22 0 112.38 0
ps 0.05 0.05 0 0.14 180 0.09 80
cat 54.65 56.32 3 895.67 1539 80.78 48

Table 3. Program execution times in seconds. The base execution time has no automaton operation.
Percentages compare against base execution. Models had no argument recovery or branch analysis.

Program Unmonitored (a) Infrastructure (b) Instrumentation (c) State Machine (d) % Increase
procmail 3272 600 104 840 29 %
gzip 600 288 56 296 59 %
eject 576 400 64 248 54 %
fdformat 600 368 80 408 81 %
ps 520 360 56 264 62 %
cat 496 328 32 72 21 %

Table 4. Memory use (KB) due to instrumentation and monitoring. Unmonitored is base-case ex-
ecution of the unmodified programs. Columns (a)–(c) show additional use due to the rewriting
infrastructure, our instrumentation, and the state machine structure in the monitor. Column (d)
shows percentage increase compared to the base case.

without squelching against the NFA model used in our pre-
vious work [10]. Figure 9 shows the precision of the three
models for all six test programs. Note that the Dyck models
improve precision by an order of magnitude. For example,
procmail improves from an average branching factor of
14.2 using the NFA model to 0.79 with the squelched Dyck
model.

The squelched model appears to be slightly less precise
than the unsquelched Dyck model. However, this is a side
effect of the average branching factor calculation. Recall
that the monitor divides the number of potentially dan-
gerous system calls that could be accepted during execu-
tion by the number of automaton operations. The average
branching factor is then inversely proportional to the num-
ber of events passed to the monitor. A squelched program
will generate fewer null calls than an unsquelched program,
leading to a slight increase in the average branching factor.

Table 3 presents execution times for the various models.
Measurement noise accounts for slight timing variations.
Note the marked improvement when the Dyck model in-
cludes squelching. The squelched Dyck model produced
2–5 times more system calls than the NFA model, depend-
ing upon the program. With the exception of cat, the per-
formance impact of the additional calls is not significant.
For a system-call-bound program such as cat, the addi-
tional time consumed by null calls becomes noticeable. We
expect that performance could be markedly improved by
batching Dyck calls and sending them with actual system
calls to minimize the number of user-to-kernel transitions.
Squelching is critical: the unsquelched gzip model gen-

erated 12,800 times more system calls than base execution
due to loop iteration.

We also measured the memory overhead of monitoring
with the squelched Dyck model (Table 4). This overhead
has two parts: the memory needs of the monitor process
and the increased size of the instrumented executable. The
monitor is the same across all processes, differing only in
the state machine read from file. Thus, the monitor’s code
and static data, 1736 KB, is a one-time cost shared across
multiple executions. Approximately 1 MB of this code re-
sides in shared libraries likely already used by other pro-
cesses on the system. State machines are not shared, and
their memory sizes are shown in column (c).

Instrumented binaries use additional memory for two
reasons. First, program size increases as an artifact of our
current rewriting infrastructure (column (a)). This over-
head will disappear as we transition to our new rewriting
environment (already in use of other areas of our project).
Second, null call insertion adds code to the program, as
shown in column (b). Column (d) shows the percentage
increase due to our instrumentation and to the state ma-
chine structure in the monitor. Memory demands become
more critical when we wish to monitor large numbers of
processes on a system. We have identified several areas in
which we can make substantial optimizations in our mem-
ory usage. For example, column (c) might be reduced
by more efficient encodings of our state machines. Al-
though we are unaware of published memory needs in re-
lated projects, we believe our results would compare favor-
ably.
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Figure 10. Effects of argument capture.
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from Figure 9.

6.4. Effects of Argument Capture

We believe the squelched Dyck model represents the best
tradeoff between precision and efficiency. We used this
model to investigate the effects of improved argument cap-
ture. We tested argument capture in three forms. First, all
argument capture was turned off. Second, we recovered
only arguments set intraprocedurally with a single constant
value, corresponding to our previous work [10]. Finally,
we enabled the complete recovery technique that uses in-
terprocedural analysis to recover general representations of
call arguments. Figure 10 shows the model precision at
each level of capture for all test programs.

6.5. Data Flow Analysis in Support of Mimicry At-
tack Detection

Mimicry and evasion attacks exploit some deficiency of
a program’s model so that the monitor accepts an attack
system call sequence as valid [26, 27, 28, 33]. Tan et al.
and Wagner and Soto stress the need to monitor system
call arguments and return values for mimicry attack pre-
vention. As our first hardening against mimicry attacks,
we have implemented branch analysis and have extended
argument capture to general values passed interprocedu-
rally. Figure 10 shows the argument capture improvement,
and Table 5 shows the results for branch analysis. Average
branching factor is poorly suited to measurement of branch
analysis, so the number of call sites affecting branching is
advisory only.

The results appear promising. System call sites that set
branches are those whose return value affects program con-
trol flow. Our branch analysis identifies between 32% and

System Call Sites
Program Affecting Branches
procmail 97
gzip 54
eject 101
fdformat 103
ps 44
cat 45

Table 5. Branch analysis results. Table 2 lists
the total number of system call sites per pro-
gram. Here, the data indicates the size of
the subset of system call sites whose return
value affects program branching.

64% such system calls in the test programs. Constant-
valued intraprocedural argument capture corresponds to
previous work. Our capture recovers general arguments
passed interprocedurally. This stronger analysis recovers
between 32% and 69% more arguments, depending upon
the test program.

These are clearly partial results providing only an early
indication of effectiveness against mimicry attacks. Our
current work in mimicry attack detection and prevention
is based upon analyzing the attacks as a language contain-
ment problem [33]. Formally, given the language L of sys-
tem call sequences accepted by the monitor, we must de-
termine if L contains one or more attack sequences. This
study requires further investigation and is one component
of our continuing research.

7. Conclusions
The Dyck model is an efficient context-sensitive program
representation. Our experiments show that such context-
sensitive models significantly improve the strength of an
intrusion detection system. With null call squelching, the
Dyck model operates with efficiency only slightly worse
than an imprecise context-insensitive NFA. This makes
context-sensitive models usable. Lastly, interprocedural ar-
gument capture and branch analysis based upon system call
return values limit attacker manipulation, reducing oppor-
tunities for successful attacks.
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A. VtPath Attack
The VtPath model fails to detect impossible path attacks
based upon non-determinism that the Dyck model can de-
tect due to null call insertion. Consider the code in Fig-
ure 11. The function security check verifies the cur-
rent process id and allows the root user to access a file but
denies access to all others. The function log writes activ-
ity to a log file and has a buffer overrun at line 13.

The attack works as follows: an attacker without root
privilege enters log via the call at 7. They overflow the
buffer in log to set the return address to the return of line
4. log will then return to line 5 and execute the privileged
actions.

VtPath will not detect this attack. VtPath observes return
addresses at each system call point, here, after the return
address has been modified. The if at line 3 is a point of
non-determinism, leading VtPath to incorrectly believe that
the call to log originated at line 4. A push-down automa-
ton model would similarly miss the attack.

The Dyck model detects the attack. Both calls to log
would be instrumented with different pre- and postcalls. In
particular, at the point of the buffer overrun, the correct re-
turn address has already been stored. The null calls before
each call site thus aid attack detection by reducing non-
determinism when such coding patterns arise. We note that
the VtPath model would detect this attack if it learned a
behavioral database from a program with Dyck instrumen-
tation previously inserted.

B. Formal Definitions and Proofs
DEFINITION 1. Denote local NFA models by Ai =

(Qi, Σi, δi, q0,i, Fi) where i ranges over all functions in the
program. Let τ be the entry point function. For each i, let
Si be the set of system calls and Ui the set of user functions
called by i. Then Σi = Si ∪ Ui. Define the Dyck model as
D = (∪iQi, Σ, Γ, δ, q0,τ , ∅, Fτ ) for ∪iQi the set of states,
Σ the input alphabet, Γ the stack alphabet, δ the transition
relation, q0,τ the unique entry state, ∅ the initial stack con-
figuration, and Fτ the set of accepting states, with:

• Γ =
{
q

∣∣∣p β
→ q ∈ δi and β ∈ Ui

}

• Σ =

(
⋃

i

Si

)
∪ Γ ∪ Γ where Γ = {q |q ∈ Γ}.

• System call transition: δ (q, α, ε) = (p, ε) if q
α
→ p ∈

δi

• Precall before β; pushes p onto stack: δ (q, p, ε) =

(r, p) if q
β
→ p ∈ δi and r is the entry state of β

• Postcall after β; pops p from stack: δ (r, p, p) = (p, ε)

if q
β
→ p ∈ δi and r ∈ Fβ

Then D models the system call sequences generates by the
application with a bracketed context-free language. The
subsequences of D consisting entirely of symbols from Γ∪
Γ form a Dyck language.

LEMMA 1. In the squelched Dyck model, a postcall fol-
lows either a true system call or a postcall.

PROOF. Suppose a postcall t follows a precall r. Then r

was at the top of the application’s squelch stack. By con-
struction, squelching removes both r and t from the call
stream.

LEMMA 2. Let c0, . . . , cn be an observed sequence of
calls where c0 is a true system call, cn is a true system call,
and c1, . . . , cn−1 are null calls.

Let ci, 1 ≤ i ≤ n − 1 be the first precall. Then cj is a
precall for all i < j ≤ n − 1.

PROOF. Suppose not. Then ∃i < k ≤ n− 1 such that ck

is the first postcall in ci, . . . , cn−1. Then ck−1 is a precall,
contradicting Lemma 1.

THEOREM. Let C be the call graph for program P . De-
note by C̃ the graph obtained from C with each strongly
connected component collapsed to a single state. Let h be
the maximum diameter of C̃. If P generates n true system
calls during execution, then the worst-case number of null
calls generated is 2hn.

PROOF. From Lemmas 1 and 2, it follows that the ob-
served call pattern is a repeating sequence of a string of
precalls followed by a system call followed by a string of
postcalls. We claim the precall string and the postcall string
each have length at most h.

For a given system call, suppose the precall string has
length l > h. Then there exists a directed path in C̃ of
length l, which cannot occur.

Suppose the postcall string has length m > h. Then
there exists a directed reverse path in C̃ of length m, which
similarly cannot occur.

Therefore, the number of null calls generated is ≤ 2h per
system call.

C. Data Dependence Graph
The data dependence graph (DDG) is a common pro-
gram analysis structure representing interprocedural flows
of data through a program [15, 21]. The DDG is a subgraph



1 void security_check (char *file) {
2 uid_t uid = getuid();
3 if (uid == 0) {
4 log("Accessing %s", file);
5 restricted_access(file);
6 } else {
7 log("Invalid access %s", file);
8 exit(SECURITY_ERROR);
9 }

10 }
11 void log (char *msg, char *file) {
12 char buf[100];
13 sprintf(buf, msg, file); <-- Buffer overflow
14 write(LOG_FD, buf, strlen(buf));
15 }

Figure 11. Code for VtPath attack.
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Figure 12. Data dependence graph. Our analysis constructs this data dependence graph for the
code in Figure 1(a). The shaded numbers correspond to the line numbers in Figure 1(a). In SPARC
code, the rightmost register in an instruction is the written register. Registers %o0-%o5 contain call
arguments. %o0 contains the return value of a call.

of a program dependence graph [6] that includes only data
flow dependence edges. The graph abstracts away proce-
dure and basic block boundaries, so each instruction is a
node in the graph. Edges indicate data flowing from an in-
struction Pi that may write to a data location L to instruc-
tions Pj that may read from L. Such a flow exists only
when there is a def-clear path from Pi to Pj with respect

to L. For convenience, each edge label indicates the data
location creating the dependency. Furthermore, a DDG
includes interprocedural data flow edges. Interprocedural
edges indicate data dependencies between the definition of
arguments and the entry point of a function that uses those
arguments and between the exit point of a function and a
use of the return value.



DEFINITION 2. Let I be the set of instructions in a pro-
gram P and N be the set of function entry points. Define
the data dependence graph G for P to be G = 〈I ∪ N, E〉

where Pi
L
→ Pj ∈ E if there is a def-clear path from Pi to

Pj with respect to L.
Consider an example. Figure 12 shows the DDG con-

structed for the program code in Figure 1(a). Shaded
node numbers correspond to line numbers in Figure 1(a).
SPARC delay slots are unwound, so node 5 precedes node
4 in the graph.

With this DDG, argument capture becomes straightfor-
ward. The subgraph of the DDG rooted at a system call
instruction reachable by following reverse edges for the de-
pendent data location is the expression graph setting the ar-
gument value. For example, argument 2 (register %o1) to
the read instruction in node 27 has nodes 26 and 28 in its
expression graph. By simulating the execution of these in-
structions, we can identify the buffer passed to read. Sim-
ilarly, the expression graph for the third argument (register

%o2) to read includes nodes 12, 19, 11, 18, 22, and 25.
Note that this represents an interprocedural data flow. Sim-
ulated execution recovers both values 128 and 16 for this
argument.

Branch analysis and argument capture for system call re-
turn values requires a slight change to this procedure. In
particular, discovery of the expression graph stops at the
return value of a system call. The expression graph for ar-
gument 1 (register %o0) to the read instruction in node
27 reaches back to node 4. Here, analysis recognizes that
open is a system call and marks the argument as using
open’s return value.

Analysis of the branch in node 24 proceeds simi-
larly. The expression graph reveals that the return
value from open in node 4 is compared against 0 in
node 23. Given the branch condition branch less or
equal, the predicates added to the program model are
open ≤ 0 for the branch-taken control flow path and
open > 0 for the fall-through path, as shown in Figure 8.


