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Abstract

We introduce distillation codes, a method for streaming
and storing data. Like erasure codes, distillation codes
allow information to be decoded from a sufficiently large
quorum of symbols. In contrast to erasure codes, distilla-
tion codes are robust against pollution attacks, a powerful
class of denial of service (DoS) attacks in which adver-
saries inject invalid symbols during the decoding process.

We examine applications of distillation codes to mul-
ticast authentication. Previous applications of erasure
codes to multicast authentication are vulnerable to low
bandwidth pollution attacks. We demonstrate pollution
attacks against previous approaches which prevent re-
ceivers from verifying any authentic packets. To resist pol-
lution attacks, we introduce Pollution Resistant Authenti-
cated Block Streams, which have low overhead and can
tolerate arbitrary patterns of packet loss within a block
up to a predetermined number of packets. In the face of
40Mb/s of attack traffic, PRABS receivers successfully au-
thenticate the stream and consume only 10% of their CPU.

1. Introduction

Single-source multicast enables a sender to efficiently
disseminate digital media to a large audience, but to de-
fend against adversaries who inject bogus packets, re-
ceivers must verify the authenticity of packets. One ap-
proach to multicast authentication is signature amortiza-
tion. Signature amortization schemes divide the multicast
stream into blocks of sequential packets and authenticate
all the packets in a block with a single signature. Sig-
nature amortization is a compelling approach to multi-
cast authentication because it distributes the communica-
tion and computation overhead of a digital signature over
many packets.

One challenge in signature amortization schemes is ro-
bustness to packet loss. Receivers need the digital signa-
ture to verify the authenticity of the packets in the block,
but the best way to reliably transmit the signature requires

consideration. Including the signature in every packet is
robust to packet loss, but incurs high overhead. Includ-
ing a few bytes of the signature in each packet is space
efficient, but is not robust to loss. Signature amortization
schemes differ mainly in their solution to this problem.

Three previous approaches are hash graphs [11, 18,
26, 33], the Wong-Lam scheme [35], and erasure codes
[21, 22]. All are vulnerable to denial of service attacks.
Hash graph protocols construct a directed graph over the
packets where each node in the graph contains the hash
values of the neighbors on its incoming edges. The hash
graph terminates with a signature packet, which authenti-
cates a handful of the nodes in the graph. If the signature
packet is not lost and there exists a path from a particu-
lar packet to the signature, the receiver authenticates the
packet by traversing the hash path to the digital signature
and verifying the signature.

The Wong-Lam [35] scheme constructs a Merkle hash
tree over the packets in the block and signs the root of the
tree. Each packet contains the signature and the nodes in
tree necessary to reconstruct the root. By including the
signature in every packet, each packet is individually veri-
fiable. Receivers authenticate each packet by reconstruct-
ing the root value of the tree and verifying the signature.

Hash graph protocols and the Wong-Lam scheme are
vulnerable to signature flooding attacks. An adversary
flooding the stream with invalid signatures will over-
whelm the computational resources of receivers attempt-
ing to verify the signatures. Additionally, in hash graph
protocols, adversarial loss patterns can cause denial of ser-
vice. For example, if an adversary causes the loss of all
signature packets, nothing is verifiable.

Several researchers advocate the use of erasure codes
[15, 16, 28, 29] for signature amortization [21, 22]. Era-
sure codes are a mechanism that allow receivers to decode
messages from a sufficiently large quorum of encoding
symbols. Erasure codes are robust to arbitrary patterns
of loss among the encoding symbols as long as the de-
coder receives a sufficiently large subset of them. Multi-
cast authentication protocols using erasure codes are ro-
bust to packet loss and have low overhead. However, era-
sure codes are designed to handle only a specific threat



model: packet loss. Erasure codes assume that symbols
are sometimes lost but not corrupted in transit; this is the
erasure channel model.

Unfortunately, the assumptions that underlie erasure
codes are unrealistic in hostile environments. Adversaries
can pollute the message stream by injecting invalid sym-
bols. We call this a pollution attack. If an erasure code
uses an invalid symbol as input to its decoding algorithm,
it will reconstruct invalid data. The communication model
that incorporates this more realistic threat is the polluted
erasure channel, in which valid symbols can be lost, and
an adversary can inject additional invalid symbols claim-
ing to be valid. Polluted erasure channels more accurately
model multicast environments: malicious end hosts and
routers can observe, inject, modify, delay, and drop mes-
sages in an erasure encoded multicast stream.

This paper introduces and gives efficient constructions
of distillation codes, which are robust against pollution
attacks, signature flooding, and adversarial loss patterns.
We make the following contributions:

• We introduce the notion of pollution to erasure chan-
nels, which allows us to more accurately model the
threats of multicast data dissemination. We also in-
troduce pollution attacks and demonstrate how low
bandwidth pollution attacks can cause denial of ser-
vice for erasure codes.

• We introduce distillation codes; we show that dis-
tillation codes function well in the polluted erasure
channel model, and prove that they are resistant to
pollution attacks.

• We use distillation codes to construct a new multicast
authentication protocol: Pollution Resistant Authen-
ticated Block Streams (PRABS). PRABS can toler-
ate arbitrary patterns of packet loss within a block
up to a predetermined number of packets and are re-
sistant to pollution attacks on receivers. Figure 1
compares PRABS to existing multicast authentica-
tion protocols.

• We present measurements of an implementation of
distillation codes and PRABS. These measurements
demonstrate the effectiveness of distillation codes
against pollution attacks.

2 Preliminaries

2.1. Broadcast and multicast authentication

Disseminating information from a server in a broadcast
setting to multiple receivers demands a mechanism for
guaranteeing the authenticity of the data stream. We need

Scheme Overhead Denial of service
(bytes) vulnerabilities

Hash graphs ≈ 40–50 Signature flooding
[11, 18, 26, 33] & adversarial loss

Wong-Lam [35] 188 Signature flooding
SAIDA[23] 22 Pollution attacks
Pannetrat- 12 Pollution attacks

Molva[21]

PRABS 65 —

Table 1. Comparison of PRABS to existing
multicast authentication protocols.

The overhead was computed assuming 80 bit cryptographic
hashes, 128 byte RSA signatures, and 128 packet blocks. For
SAIDA and PRABS, we assume up to 64 packet losses per block.
For PRABS, we use the optimization described in Section 4.6.
Our scheme, PRABS, is resistant to pollution attacks, signature
flooding, and adversarial loss patterns.

a space efficient and computationally lightweight authen-
tication mechanism, especially if the receivers are embed-
ded devices. In unicast settings, symmetric key cryptog-
raphy can provide an efficient solution to the authentica-
tion problem [5]. Naively extending such schemes to a
multicast setting by distributing the secret key to all the
receivers is not secure: any receiver can forge messages
using the secret key.

The goals and requirements of broadcast/multicast au-
thentication are as follows:

• Packet authenticity. Each receiver can verify that
packets originated from the sender and were unmod-
ified in transit. Receivers must be able to distinguish
traffic injected by other parties, including any of the
receivers.

• Packet loss robustness. Receivers can authenticate
each packet despite the loss of a fixed fraction of the
total packets.

• Loss model independent. In addition to packet loss
robustness, receivers can verify packets even when
the loss is bursty, correlated, or in any other pattern.

• Denial of service (DoS) resistant. Receivers can re-
sist denial of service attacks against their resources.

2.2. Erasure codes

An erasure code [15, 16, 28, 29] is an encoder and de-
coder that use forward error correction to tolerate loss.
The encoder redundantly encodes information into a set
of symbols. If the decoder receives sufficiently many
symbols, it can reconstruct the original information. An



(n, t) erasure encoder generates a set S of n symbols
{s1, s2, . . . , sn} from the input. The decoder can toler-
ate a loss of up to t packets, i.e., it can reconstruct the
original data given any n− t symbols from S.

Reed-Solomon, Tornado, and LT codes are examples
of erasure codes. Reed-Solomon [29] codes typically re-
quire O(n2) time to encode and decode; Tornado and
LT codes [15, 16] require O(n) time. Although Reed-
Solomon codes are slower, they have the advantage that
reconstructing the original data is guaranteed to be suc-
cessful if the decoder has at least n− t encoding symbols.
With Tornado and LT codes, reconstructing with at least
(n− t) · (1 + ε) encoding symbols is successful with high
probability for ε ≈ 0.05.

2.3. Terminology and assumptions

We assume there is a single party authorized to encode
and send messages. We refer to this party as the legitimate
encoder. If the legitimate encoder encodes and sends a
message D over the channel to the decoder, D is said to
be valid. If a message D was never encoded and sent by
the legitimate encoder over the channel, D is said to be
invalid.

Let S be a set of n symbols generated by an erasure en-
coder with input D. We assume n and the loss parameter t
are fixed and known to the encoder and the decoder. Each
symbol is an ordered pair (si, i), 1 ≤ i ≤ n, so each sym-
bol contains its index value. The symbols in S are valid
symbols of D if this encoding process is executed by the
legitimate encoder; other ordered pairs are invalid sym-
bols. We are concerned about invalid symbols injected by
an adversary. Given a set of symbols which includes valid
symbols and possibly invalid symbols, the decoder pro-
duces a candidate reconstruction R. The reconstruction
R is valid when R = D for some valid D and invalid oth-
erwise. We assume erasure decoding with at least n − t
valid symbols of D and no other symbols will result in a
valid reconstruction of D.

We assume the encoder and decoder have access to
TAG(·) and VALIDATE(·) algorithms, respectively. The
TAG(·) algorithm augments its input with some addi-
tional information that enables the VALIDATE(·) algorithm
to verify its authenticity. For correctness, we require
VALIDATE(TAG(R)) = true for all R. To guarantee au-
thenticity, we assume it is difficult for an adversary to
forge R such that VALIDATE(R) = true. We also assume
the existence of an algorithm STRIP(·) that strips off the
authentication information added by TAG(·). One possi-
ble instantiation of (TAG(·),VALIDATE(·)) is public key
signature generation and verification. See Appendix A
for a formal treatment of our authenticity requirements for
(TAG(·),VALIDATE(·)).

To enable decoders to determine whether a candidate

reconstruction is valid, we will erasure encode TAG(D)
rather than D. Then given a candidate reconstruction R,
a decoder determines its authenticity by checking whether
VALIDATE(R) = true. We refer to the process of applying
VALIDATE(·) to a candidate reconstruction as reconstruc-
tion validation.

2.4. Pollution attacks: DoS against erasure codes

Adversaries can disrupt the decoding process by intro-
ducing invalid symbols. If the decoder uses an invalid
symbol, it will generate an invalid reconstruction, causing
denial of service. We call this a pollution attack, and refer
to an erasure channel with pollution attacks as a polluted
erasure channel.

Decoders can easily recover from pollution attacks with
only a small number of invalid symbols and no lost valid
symbols. Since both valid and invalid symbols contain an
index, the decoder simply looks for duplicate indices and
drops both symbols. If at least n − t symbols remain af-
ter dropping duplicates, the decoder will recover the valid
reconstruction.

Recovery becomes more difficult as the number of in-
valid symbols increases. For example, suppose the de-
coder receives only the first n − t valid symbols and an
adversary injects one invalid symbol in each of those po-
sitions. The decoder cannot simply drop the duplicates
since no symbols will remain. Alternatively, the decoder
could select one symbol from each position, execute the
decoding algorithm, and apply VALIDATE(·) to verify the
authenticity of the candidate reconstruction. This ap-
proach is ill-fated: the decoder is successful only if it is
lucky enough to select the valid symbol in every position.
This event has probability 1

2n−t , and in the worst case, the
decoder will produce 2n−t candidate reconstructions be-
fore the valid one is found.

2.5. Threat model

We assume that an adversary can observe, inject, mod-
ify, delay, and drop traffic in the channel between the
sender and receiver. An adversary could be a compro-
mised router on the path between the sender and receiver,
for example.

Denial of service attacks DoS attacks take many forms,
depending on the resource they are trying to exhaust. An
adversary can attack the sender, the network infrastruc-
ture between sender and receiver, and the receiver. In the
broadcast setting, the sender does not accept any data from
the network, so we will assume that the sender is not sus-
ceptible to DoS attacks. We also do not consider band-
width exhaustion attacks, as they are outside of the scope
of this paper. A receiver has little recourse if its last hop



router drops all its traffic or thousands of zombie machines
flood and overload its last hop link. To recover from these
attacks, receivers must rely on help from the infrastructure
to detect the problem and take appropriate action. Recent
research results address these challenges [2, 3, 10]. How-
ever, we must consider DoS attacks against the receiver’s
computation and storage resources. An attacker should
not be able to exhaust these resources to cause DoS.

The attack factor is the ratio of the bandwidth of in-
jected invalid traffic to the bandwidth of valid traffic. For
example, an attack factor of five implies that for every
1000 bytes of legitimate transmitted data, an adversary
injects 5000 bytes of invalid data. We are primarily in-
terested in medium bandwidth pollution attacks, e.g., up
to an attack factor of ten. We assume that beyond these
values, the adversary will saturate the channel and cause
large packet loss within the network.

2.6. Cryptographic primitives

Universal one-way hash functions We assume the ex-
istence of families of universal one-way hash functions
(UOWHFs) [19]. UOWHFs satisfy a property known as
target collision-resistance (TCR) [7]. U is called a fam-
ily of UOWHFs if for all polynomial-time adversaries A,
A has low probability in winning the following game: A
first chooses a message M , and then A is given a ran-
dom h(·) ∈ U . To win, A must output M ′ �= M such
that h(M ′) = h(M). This differs from any collision-
resistance (ACR), in which the adversary has the freedom
to choose both M and M ′ after she is given h(·). TCR
has two advantages over ACR: (1) Since TCR is a weaker
notion, it is believed to be easier to achieve in concrete
instantiations. (2) Since M is specified before the hash
function h(·), birthday paradox attacks to find collisions
do not directly apply, and the hash output can be half the
size of an ACR hash function.

In the multicast setting, adopting TCR allows adver-
saries to have complete control over the underlying data
in a stream, but only before transmission starts. If this
assumption does not hold, we must replace most applica-
tions of TCR hash functions with ACR hash functions, and
that would increase our overhead by a factor less than two.
For the remainder of this paper, we assume all collision-
resistant hash functions are TCR.

Merkle hash trees Merkle hash trees [17] are a mecha-
nism for computing a single cryptographically secure hash
digest over a set of data items. Merkle hash trees are con-
structed in the following manner. Let h(·) be a collision-
resistant hash function and let S = {s1, s2, . . . , sn} be
a set of data items. For the sake of simplicity, suppose
that n = 2�−1 for � > 1. Then, we construct an �-level
complete binary tree using the hashes of the data items,

s1 s2 s3 s4 s5 s6 s7 s8

h1,8

h1,4 h5,8

h1,2 h3,4 h5,6 h7,8

h1 h2 h3 h4 h5 h6 h7
h8

Figure 1. Merkle Hash Trees.
Each leaf node hi is calculated by taking the hash of
the corresponding data item si, and each internal node
is computed by taking the hash of the concatenation
of its two children. The shaded nodes h4, h1,2, and
h5,8 form a verification sequence of s3. Given the leaf
element s3 and its verification sequence, one can re-
construct and verify the root value h1,8 by computing
h(h(h1,2, h(h(s3), h4)), h5,8).

hi = h(si), as leaves. Each internal node of the tree is the
hash of the concatenation of its two children, as in Fig-
ure 1.

Merkle hash trees have several nice properties. Each
internal node hi,j can be viewed as a hash digest of the
data items si, si+1, . . . , sj , and the root of the tree can be
viewed as the hash of the whole set S. If the verifier can
verify the authenticity of the root value, for example with
a signature, and has all of the data items over which the
tree was constructed (and the corresponding positions),
she can verify the authenticity of every data item by re-
constructing the hash tree and comparing the computed
root value with the authenticated root value.

However, the data items are not individually verifiable;
to recalculate the root value, the entire set S is needed. To
make each si individually verifiable, it must be augmented
with additional verification information. Given an item s,
a verifier can recalculate the root of the tree if it also has
the “sibling” nodes on the path from h(s) to the root of
the tree. We refer to this sequence of nodes as the ver-
ification sequence of s. For example, in Figure 1, given
element s3 and its verification sequence (h4, h1,2, h5,8)
(the shaded nodes), one can reconstruct and verify the root
value h1,8 by computing h(h(h1,2, h(h(s3), h4)), h5,8).
In general, each verification sequence requires θ(log(n))
space, and the associated root value can be reconstructed
with θ(log(n)) hash operations.



3. Distillation Codes

We need a new coding scheme to address polluted era-
sure channels. We define

DISTILLATION CODING:

An (n, t) distillation code encodes a message D into a
set of n symbols S = {s1, s2, . . . , sn} and transmits
them over a polluted erasure channel. The code should
satisfy the following properties:

Authenticity The distillation decoder should never
output an invalid reconstruction.

Correctness Suppose for some valid D, T contains at
least n − t valid symbols of D. Then execution
of the distillation decoder on T will output a valid
reconstruction.

We first present and analyze three naive distillation codes.

3.1. Three strawman schemes

Decode all possibilities One simple distillation coding
scheme is to modify an erasure decoder to try all possible
combinations of n− t symbols and apply VALIDATE(·) to
each reconstruction to identify a valid one. If the decoder
receives at least n − t valid symbols of some valid D,
then eventually it will use a combination containing only
valid symbols of D and output a valid reconstruction. This
approach has a serious problem: an exponential number of
executions of the decoding algorithm are required in the
worst case before a valid reconstruction is found.

Digitally sign every symbol A second approach is to
use a conventional erasure code and digitally sign each
symbol. The decoder authenticates each received sym-
bol and uses only valid symbols in the decoding process.
However, all known signature schemes have at least one
of following problems: (1) In most signature schemes,
generating signatures is expensive. Digitally signing ev-
ery symbol will overwhelm the computational resources
of the encoder for even modest values of n. (2) Signature
verification can also be expensive. Since, every injected
invalid symbol requires an additional signature verifica-
tion by the decoder, this creates a potential DoS attack.
(3) Some digital signatures are large (e.g., 128 bytes for
RSA-1024). When the symbol size is relatively small,
including a large signature with every symbol is undesir-
able. (4) Some one-time signature schemes have relatively
small signatures and feature fast signature generation and
verification. However, to enable multiple signatures, the
fastest variants require large public keys which are im-
practical to distribute [24, 30]. Some signature schemes

may adequately address one or two of these problems, but
until there is a signature scheme with short signatures that
are fast to generate and verify with a short public key, dig-
itally signing every symbol is not an option.

Error correcting codes A third approach is to use error
correcting codes (ECC). An (n, t) ECC encodes D into n
symbols such that the decoder can recover D in the pres-
ence of a altered and e erased symbols if 2a+e ≤ t. ECC
views invalid symbols simply as errors. This approach has
several problems: ECC encoding produces longer sym-
bols and ECC decoding is slower than in pure erasure
codes. More seriously, ECC is vulnerable to pollution at-
tacks. Consider an attack similar to the one presented in
Section 2.4, where the decoder has multiple choices for
the symbol to use at a particular position of the input to
the decoding algorithm. If the number of positions with
multiple choices is ≥ t

2 , then ECC decoding will require
exponential time as well.

3.2. Our approach

In this section, we introduce an efficient construction
of distillation codes. Before presenting the details of our
construction, we review why the strawman schemes are
impractical and motivate how we address their shortcom-
ings.

Since adversaries can pollute the channel, decoders
must verify the authenticity of reconstructions. The sec-
ond straw man approach guarantees the decoder uses only
valid symbols in the decoding process, but under attack,
verifying every symbol overwhelms the receiver. To re-
duce the number of signature verifications required to ob-
tain a valid reconstruction, we authenticate the reconstruc-
tions rather than the symbols. We partition the symbols in
a way that distills the valid symbols from the invalid ones,
and then decode each of the partitions and authenticate
the resulting reconstructions. Since we only consider par-
titions with at least n− t symbols, adversaries must inject
at least n− t symbols to cause an additional decoding and
verification operation. If the decoder receives m symbols,
then it executes at most � m

n−t� decoding and verification
operations to recover the valid reconstruction.

Partitioning the symbols Suppose, given a set T con-
taining both valid and invalid symbols, the decoder can
run an algorithm PARTITION SYMBOLS that partitions
the symbols into Q = {Q1, Q2, . . . , Qk} satisfying the
following property:

Definition 1. [Distillation Property] Let T be a set con-
taining invalid and valid symbols. A set of partitions
Q = {Q1, Q2, . . . , Qk} of T satisfies the Distillation



Property if the following holds: if D = {D : D is valid
and ∃t ∈ T such that t is a valid symbol of D}, then for
all D ∈ D, one partition contains exactly all the valid
symbols of D.

The distillation decoder can then erasure decode each
Qi to obtain a set of candidate reconstructions. Assum-
ing that for some valid D, at least n − t valid symbols
of D were received by the decoder, at least one of these
candidates will be valid and can be found by running
VALIDATE(·).

The complete specification for efficient distillation de-
coding is shown in Figure 3. What remains are: (1) an en-
coding algorithm which enables the decoder to partition
the symbols, and (2) an efficient construction of PARTI-
TION SYMBOLS. We describe both in the next section.

3.3. Distillation encoding using one-way accumu-
lators

In this section, we present our implementations of distil-
lation encoding and the algorithm PARTITION SYMBOLS.
In both constructions we make use of one-way accumula-
tors.

3.3.1 One-way accumulators

Our construction of PARTITION SYMBOLS relies on a
secure set membership operation. We have a set T =
{t1, t2, . . . , tm} of received symbols and want to parti-
tion T into Q = {Q1, Q2, . . . , Qk} which satisfies the
Distillation Property. Note that to do this we do not need
to determine if a given symbol is valid. Instead, given a
valid symbol t of some D ∈ D and a set of symbols Q,
we would like to determine that t ∈ Q if Q is a set of
valid symbols of D and t /∈ Q otherwise. If t is an invalid
symbol and Q is a set of valid symbols, we would like to
determine t /∈ Q.

We build a secure set membership operation by using
one-way accumulators [4, 8, 9, 12, 20, 32]. One-way ac-
cumulators combine a set of inputs into a single value
called an accumulator. Using auxiliary witness informa-
tion, one can authenticate an element as a member of the
set. One-way accumulator schemes typically include three
functions:1

Accumulate(S) → a

Witness(s, S) → w

Verify(s, w, a) → b

Accumulate(·) takes a set S of values as input and out-
puts its accumulator a. Witness(·, ·) takes an s ∈ S and

1For a more rigorous treatment of one-way accumulators, refer to
Benaloh and Mare [8] or Baric and Pfitzmann [4].

the set S and produces a witness w for s. Verify(·, ·, ·)
takes as input a conjectured element s of S, its wit-
ness w, and an accumulator a of S, and outputs b ∈
{true, false}. If b = true, we determine s ∈ S. Other-
wise s /∈ S.

It must be hard to forge elements of S. That is,
it must be hard to find an s′ /∈ S and w′ such that
Verify(s′, w′, Accumulate(S)) = true, even if the at-
tacker has seen other valid (s, w) pairs and a.

In many accumulator schemes, one can recover the ac-
cumulator a = Accumulate(S) of a set S given an ele-
ment s ∈ S and its witness w. Let this process be repre-
sented by the function

Recover(s, w)→ a.

When Recover(·, ·) exists for an accumulator scheme,
Verify(·, ·, ·) is typically implemented by verifying that
Recover(s, w) = a. In our instantiation of PARTITION

SYMBOLS, we rely on the Recover(·, ·) function and use
it in a special way. In particular, with Recover(·, ·) a veri-
fier does not need to know the accumulator a to determine
if two elements si and sj belong to the same set. It only
needs to verify that Recover(si, wi) = Recover(sj , wj).
For the sake of brevity, we say that s and w has accumu-
lator value a if Recover(s, w) = a.

3.3.2 Implementing DISTILLATION ENCODE and
PARTITION SYMBOLS

To resist pollution attacks, the distillation encoder must
enable the decoder to distill the valid symbols of an era-
sure encoding from a larger set of invalid ones. Our en-
coding algorithm accomplishes this by accumulating the
set of valid symbols and then augmenting each symbol
with its witness. The full description of DISTILLATION

ENCODE is given in Figure 2.
We can now use the Recover(·, ·) algorithm of the

one-way accumulator to implement PARTITION SYM-
BOLS. Recover(·, ·) is evaluated for each received sym-
bol/witness pair, and symbols with the same accumulator
value are put in the same partition. The full specification
of PARTITION SYMBOLS is given in Figure 4. For an ad-
versary to cause an invalid symbol to be placed in the same
partition as the valid symbols implies that she is able to
break the one-way accumulator scheme, i.e., she is able to
forge an element of the set protected by the accumulator.

3.3.3 Merkle hash trees as a one-way accumulator

Merkle hash trees [17] are attractive one-way accumula-
tors for distillation codes.2 When Merkle hash trees serve

2There are several one-way accumulator schemes [4, 8, 9, 12, 32]
based on exponentiation modulo an RSA modulus and the (strong) RSA



DISTILLATION ENCODE:

Input: A message D.
Output: An (n, t) distillation encoding of D, represented as a set S = {s1, s2, . . . , sn}.

1. Let D′ = TAG(D).

2. Construct an (n, t) erasure encoding (ERASURE ENCODE(·)) of D ′. Let S′ = {s′1, s′2, . . . , s′n} be the
resulting symbols.

3. Construct an augmented set of symbols S = {s1, s2, . . . , sn} where si = (s′i, wi) and wi =
Witness(s′i, S

′). Output S.

Figure 2. Our algorithm for distillation encoding.

DISTILLATION DECODE:

Input: A set T = {t1, t2, . . . , tm} containing valid and invalid symbols.
Output: A valid reconstruction or ERROR.

1. Invoke PARTITION SYMBOLS on T , resulting in partitions Q1, Q2, . . . , Qk.

2. Throw away all partitions containing less than n − t symbols. Let Q1, Q2, . . . , Q� be the remaining
partitions.

3. (a) For all Qi, replace each s = (s′, w) in Qi with s′ (i.e., strip off witness information).

(b) Execute the erasure decoding algorithm (ERASURE DECODE(·)) on each Q i, resulting in candidate
reconstructions R1, R2, . . . , R�.

4. Run VALIDATE on each of R1, R2, . . . , R�. Let V = {Ri : VALIDATE(Ri) = true}. If V = ∅, output
ERROR. Otherwise, randomly select an Ri from V and output STRIP(Ri).

Figure 3. Our algorithm for distillation decoding.

PARTITION SYMBOLS:

Input: A set T = {t1, t2, . . . , tm} containing valid and invalid symbols, each augmented with witnesses.
Valid symbols are from an (n, t) distillation encoding of D.
Output: A set of partitionsQ = {Q1, Q2, . . . , Qk} of T satisfying the Distillation Property.

1. InitializeQ to the empty list. Let A be a list of accumulator values, initialized to be empty.

2. For i = 1 to m do

(a) For each ti = (si, wi), calculate a = Recover(si, wi).

(b) If a /∈ A, add a to the end of A and add {(s i, wi)} to the end of Q. Otherwise, there exists an
accumulator aj in A such that a = aj . Add (si, wi) to Qj .

3. OutputQ.

Figure 4. Implementation of PARTITION SYMBOLS, using one-way accumulators.



as one-way accumulators [12, 17, 32], the size of wit-
nesses grows logarithmically with the size of the accu-
mulated set. This is not a serious problem since Merkle
hash trees rely only on cryptographic hash functions, and
the accumulator and witness generation and recovery al-
gorithms are fast and efficient.

Given a set S = {s1, s2, . . . , sn}, we implement the
one-way accumulator operations as follows:

Accumulate(S) → h1,n

Witness(s, S) → v

Recover(s, v) → h′
1,n

The accumulator value h1,n is the root value of a Merkle
hash tree constructed over S as described in Section 2.6.
The witness of an element s is the verification sequence v
of s in the same hash tree. Recover(s, v) is implemented
by reconstructing the candidate root h ′

1,n of the hash tree
using s and its verification sequence v. Given an authen-
ticated accumulator value h1,n, Verify(s, v, h1,n) is im-
plemented by verifying h ′

1,n = h1,n. Using Merkle hash
trees, Accumulate(·) has running time θ(n), and the other
operations have running time θ(log(n)).

Even without an authenticated root, given the corre-
sponding verification sequences vi and vj , we can ver-
ify that two elements si and sj are elements of the same
set by checking that Recover(si, vi) = Recover(sj , vj).
This is exactly the property needed to implement Step 2
in PARTITION SYMBOLS. Although the decoder cannot
determine if an accumulator value is authentic until DIS-
TILLATION DECODE has completed, Recover(·, ·) allows
PARTITION SYMBOLS to create a partitions of valid sym-
bols which contain no invalid ones.

3.4. Security analysis: Pollution resistance of dis-
tillation codes

We prove three security properties of distillation codes:

Authenticity If (TAG(·),VALIDATE(·)) guarantee authen-
ticity, then distillation codes also guarantee authen-
ticity. This means that DISTILLATION DECODE will
never output invalid reconstructions.

Correctness Suppose VALIDATE(D) = true for all valid
D, and (TAG(·),VALIDATE(·)) guarantee authentic-
ity. If for some valid D, T contains at least n−t valid

assumption. However, the size of the accumulator and witness are on
the order of the RSA modulus, and the computation required to generate
witnesses and verify elements is roughly equivalent to signature genera-
tion and verification. We have already argued that this level of overhead
is infeasible.

Nyberg [20] proposed a one-way accumulator scheme using only
hashing and pseudorandom number generation based on Bloom filters.
The main drawback of Nyberg’s scheme is that the accumulator value
must be on the order of several thousand bytes.

symbols of D, then the execution of DISTILLATION

DECODE on T will output a valid reconstruction.

DoS-resistance Distillation codes efficiently satisfy the
above properties in the presence of medium band-
width pollution attacks (up to an attack factor of ten).

3.4.1 Authenticity

The authenticity property is that if (TAG(·),VALIDATE(·))
guarantee message authenticity, then DISTILLATION DE-
CODE will never output invalid reconstructions. This im-
plies that if DISTILLATION DECODE outputs R, then R
was encoded and sent by the legitimate encoder. We prove
this property in Appendix A.

3.4.2 Correctness

To prove the correctness property, we must show that if
for some valid D, T contains at least n− t valid symbols
of D, then the execution of DISTILLATION DECODE on
T will output a valid reconstruction.

Theorem 1. Assume (TAG(·),VALIDATE(·)) guarantees
authenticity of reconstructions, VALIDATE(D) = true for
all valid D, and the underlying one-way accumulator in
DISTILLATION DECODE resists element forgery. Suppose
T contains at least n−t valid symbols of D for some valid
D. Then the execution of DISTILLATION DECODE on T
will output a valid reconstruction.

Proof. Let Q = {Q1, . . . , Qk} be the set of partitioned
symbols resulting from Step 1 of DISTILLATION DE-
CODE. Recall that the decoder partitions the symbols
such that all the symbols in Qi share the same accumu-
lator value (i.e., there exists a such that for all (s ′, w)
in Qi, Recover(s′, w) = a). In particular, if S ′ is
a set of valid erasure code symbols created in Step 2
of DISTILLATION ENCODE applied to D, then for ev-
ery valid distillation code symbol (s′, w) resulting from
Step 3 of DISTILLATION ENCODE, Recover(s′, w) =
Accumulate(S′). Thus one partition, say Qv, contains
all the valid distillation code symbols of D.

Now we show Qv contains no invalid symbols. Sup-
pose, by contradiction, that Qv contains an invalid symbol
(s̄′, w̄). If a = Accumulate(S′), then Recover(s̄′, w̄) =
a, implying Verify(s̄′, w̄, a) = true. However, since
s̄′ /∈ S′, this violates the security condition for element
forgery in one-way accumulators (Section 3.3.1). Thus,
Qv contains no invalid symbols and all the received valid
symbols of D.

Since, by assumption |Qv| ≥ n − t, then
D′ = ERASURE DECODE(Qv) is successful. Since
VALIDATE(D′) = true, then V �= ∅ (from Step 4 of
DISTILLATION DECODE), and the authenticity property



of distillation codes implies V contains no invalid recon-
struction. Therefore, DISTILLATION DECODE outputs a
valid reconstruction.

3.4.3 DoS-resistance

In this section, we show distillation codes can efficiently
satisfy the authenticity and correctness properties in the
presence of medium bandwidth pollution attacks. This
means an adversary cannot cause resource exhaustion de-
nial of service attacks against the receivers.

Computational DoS-resistance We first prove an
upper bound on the extra computation an adversary
can cause with a pollution attack with attack factor f .
Consider the three expensive operations in distillation
decoding: hash function applications, erasure decodings,
and VALIDATE(·) executions.

Theorem 2. In DISTILLATION DECODE, the most com-
putation an adversary can cause with a pollution attack
with attack factor f is (f +1) ·n · (log(n)+1) hash func-
tion applications and � f ·n

n−t� + 1 erasure decodings and
VALIDATE(·) executions.

Proof. To prove this upper bound, we calculate separate
upper bounds on the number of hash applications and
the number of erasure decodings and VALIDATE(·) exe-
cutions.

(1) Hash function applications: Every received sym-
bol triggers the execution of the accumulator operation
Recover(·, ·). With our Merkle hash tree implementation
of one-way accumulators, this requires log(n) + 1 hash
function applications per symbol. Under attack factor f ,
this results in (f + 1) ·n · (log(n)+ 1) total hash function
applications.

(2) Erasure decodings and VALIDATE(·) executions:
In the DISTILLATION DECODE algorithm, an erasure
decoding is executed if and only if VALIDATE(·) is
executed. To trigger an additional erasure decoding
and VALIDATE(·) execution, the adversary must cause
DISTILLATION DECODE to create an additional partition
containing at least n − t symbols. Since symbols are
only put into a single partition, creating an additional
partition with at least n−t symbols requires the adversary
to inject at least n − t symbols. This holds regardless
of the adversary’s attack method. Thus, with attack
factor f , an adversary can create at most � f ·n

n−t� addi-
tional partitions, and DISTILLATION DECODE executes at

most � f ·n
n−t�+1 erasure decodings and VALIDATE(·) calls.

Thus, the most computation an adversary can cause
with a pollution attack with attack factor f is (f + 1) ·
n · (log(n)+ 1) hash function applications and � f ·n

n−t�+ 1
erasure decodings and VALIDATE(·) executions.

This analysis demonstrates a nice property of distilla-
tion codes: the computational workload of DISTILLATION

DECODE scales linearly with the bandwidth of the attack
and is independent of the attack traffic pattern. In Sec-
tion 4, we show why this property of distillation codes is
useful for constructing DoS-resistant multicast authenti-
cation protocols.

To demonstrate what this upper bound means in con-
crete terms, consider the case of a medium bandwidth
attack (f ≤ 10) where n = 128 and t = 64. Sup-
pose (TAG(·),VALIDATE(·)) are RSA-1024 signature gen-
eration and verification, symbols are roughly the size of
a network packet (1024 bytes), and one message is sent
per second. This corresponds to 128 encoding symbols
per second of valid traffic, or 1Mb per second. For each
valid message sent by the encoder, the decoder will ex-
ecute at most 11,264 hash function applications and 21
erasure decodings and signature verifications. This is rela-
tively insignificant: with these parameters, a 2.4GHz Pen-
tium 4 machine running Linux can compute on average
70,000 1024-byte SHA1 hashes per second, 1700 RSA-
1024 signature verifications per second, and 300 (128,64)
Reed-Solomon decoding operations per second. We con-
firm this analysis experientially in Section 5 with an im-
plementation of distillation codes.

Strong pollution attacks We now demonstrate a pollu-
tion attack which achieves this upper bound. To cause
PARTITION SYMBOLS to create a partition with n − t
symbols, the adversary must generate at least n − t sym-
bol/witness pairs that recover to the same accumulator
value. To do this, an adversary generates a set of random
symbols and runs Step 2 of DISTILLATION ENCODE to
augment the symbols with witness values. The adversary
then injects the invalid symbol/witness pairs and repeats
this process a total of � f ·n

n−t� times.

State-holding DoS-resistance We defer analysis of
state holding attacks until Section 4.5.3, where we analyze
an application of distillation codes to multicast authenti-
cation.

3.4.4 Message reordering and replay

The authenticity and correctness properties of distillation
codes by themselves do not prevent replay and reordering



attacks. The correctness property guarantees that if the le-
gitimate encoder encodes and sends D over the channel
and the decoder receives at least n − t valid symbols of
D, then DISTILLATION DECODE will output some valid
reconstruction. D is not guaranteed to be the output be-
cause an adversary can replay valid symbols from previ-
ous messages into the decoding process. In the Step 4 of
DISTILLATION DECODE, V might contain multiple valid
reconstructions, and one will be selected randomly as the
output.

A more desirable correctness property is the following:
if T contains at least n − t valid symbols of D, then
DISTILLATION DECODE will output D. To achieve this,
we must add replay protection to (TAG(·),VALIDATE(·)).
Most any replay protection mechanism is applicable. For
example, the TAG(·) algorithm can append a monoton-
ically increasing counter to D before authenticating it.
VALIDATE(D) first verifies the authenticity of D and then
verifies the counter value is fresh. To handle adversaries
that delay messages (i.e., deliver symbols from multiple
fresh valid messages in a single execution of DISTILLA-
TION DECODE), we can extend DISTILLATION DECODE

to output multiple valid reconstructions.

4. Pollution Resistant Authenticated Block
Streams

Pollution Resistant Authenticated Block Streams
(PRABS) use distillation codes to construct authenticated
multicast streams. PRABS builds on SAIDA (Signature
Amortization using the Information Dispersal Algorithm)
[22], a multicast authentication protocol proposed by
Park, Chong and Siegel which uses erasure codes.
Pannetrat and Molva [21] present a protocol similar to
SAIDA which has less overhead, but is slightly more
complex. Applying distillation codes to the Pannetrat-
Molva construction results in a protocol with about 10
bytes less of overhead per packet, but for the sake of
simplicity we focus on SAIDA.

SAIDA is a signature amortization scheme. Signature
amortization schemes [11, 18, 21, 22, 26, 33, 35] amortize
the packet overhead and cost of generating and verifying
a signature over many packets by dividing the multicast
stream into blocks. Each block is then authenticated with
a single digital signature.

Signature amortization schemes differ mainly in their
method for reliably transmitting the signature to the re-
ceivers and individually authenticating each packet in
the block. Previous approaches include hash graphs
[11, 18, 26, 33], the Wong-Lam scheme [35], and erasure
codes [21, 22].

As we discussed in Section 1, these approaches to sig-
nature amortization are vulnerable to pollution attacks,
signature flooding, and adversarial loss patterns. To de-

fend against adversarial loss patterns, we need a signature
amortization scheme that can tolerate arbitrary packet loss
within a block up to a predetermined number of pack-
ets. SAIDA uses erasure codes to achieve this. How-
ever, SAIDA is vulnerable to pollution attacks. PRABS
combines distillation codes with the basic approach of
SAIDA to resist pollution attacks, signature flooding, and
adversarial loss patterns. Before we present the details of
PRABS, we first review SAIDA and discuss its vulnera-
bilities to pollution attacks.

4.1. Signature Amortization using the Information
Dispersal Algorithm

In SAIDA, the sender partitions the packet stream into
blocks of n consecutive packets. Let h(·) be a crypto-
graphic hash function, (PKSign(·, ·), PKVerify(·, ·, ·))
be a public key signature scheme, and (Kpub, Kpriv)
be the public/private keypair of the sender. Then
for each block Pj = pj

1, p
j
2, . . . , p

j
n, the sender

computes the authentication string Hj ||GHj , where

Hj = h(pj
1)||h(pj

2)|| . . . ||h(pj
n) and GHj =

PKSign(Kpriv, h(Hj)). Given the hash string Hj and its
signature GHj , a receiver can authenticate any pj

i in block
j by verifying PKVerify(Kpub, Hj , GHj ) = true and
that h(pj

i ) equals the i-th entry in the hash string Hj .
This process assumes the receiver knows Hj and GHj .

We would like to authenticate every received packet, re-
gardless of the loss pattern of other packets in the block. A
naive solution is to include Hj and GHj with every packet,
but this incurs large packet overhead.

SAIDA constructs an (n, t) erasure code over Hj ||GHj

and includes one encoding symbol with each packet in
the block. Each augmented packet takes the form p j

i ||sj
i ,

where pj
i is the i-th packet in the original block and sj

i is
the i-th symbol of the erasure encoding. If no more than t
packets are lost in transmission, then the receiver can re-
construct Hj ||GHj , verify GHj , and authenticate each of
the received packets.

4.2. Pollution vulnerabilities in SAIDA

SAIDA is vulnerable to pollution attacks. If a single
invalid symbol is used in the decoding algorithm, it will
fail to reconstruct Hj ||GHj . Park, Chong, and Siegel pro-
pose using distributed fingerprints to remedy this problem.
Distributed fingerprints combine erasure codes with error-
correcting codes (ECC) to achieve robustness to sym-
bol modification [14]. In SAIDA, distributed fingerprints
augment each sj

i with a symbol from an (n, t) ECC en-
coding of Lj = h(sj

1)||h(sj
2)|| . . . ||h(sj

n), where h(·)
is a collision-resistant cryptographic hash function and
{sj

1, s
j
2, . . . , s

j
n} are the erasure encoding symbols of

Hj ||GHj . The decoder reconstructs Lj using ECC de-



coding and verifies a candidate symbol s̄j
i by comparing

h(s̄j
i ) to the i-th hash value in Lj .

Park, Chong, and Siegel claim distributed fingerprints
prevent DoS in SAIDA.3 Although distributed fingerprints
can handle symbol modification, they were not designed
to defend against pollution attacks where many invalid
symbols are injected. Since distributed fingerprints rely
on ECC, they are vulnerable to the pollution attacks (Sec-
tion 3.1).

4.3. Using distillation codes to prevent pollution
attacks

We now introduce Pollution Resistant Authenticated
Block Streams (PRABS). PRABS builds on SAIDA, but
uses distillation codes rather than erasure codes to resist
pollution attacks.

In PRABS, the sender partitions the packet stream into
blocks of n consecutive packets, For block j composed of
packets Pj = pj

1, p
j
2, . . . , p

j
n the sender computes Hj �

j||h(pj
1)||h(pj

2)|| . . . ||h(pj
n). We assume each packet in-

cludes its block number and sequence number within the
block. Now, rather than encoding Hj ||GHj with an (n, t)
erasure code, we use an (n, t) distillation code. More
specifically, the sender applies DISTILLATION ENCODE

to input D = Hj . We define TAG(·), VALIDATE(·), and
STRIP(·) as follows:

GD � PKSign(Kpriv, h(D))

TAG(D) � D||GD

VALIDATE(D||GD) � if(PKVerify(Kpub, D, GD))
parse D as

j||h(p1)|| . . . ||h(pn)
if j is fresh return true

return false

STRIP(D||GD) � D

Applying DISTILLATION ENCODE to Hj results in n dis-
tillation code symbols sj

1, s
j
2, . . . , s

j
n. The sender then

augments each packet pj
i in the block with the corre-

sponding symbol sj
i and multicasts the augmented packets

pj
i ||sj

i to the receivers. This process is repeated for each
block.

Let {rj
1, r

j
2, . . . , r

j
m} be the set of received packets from

block j. Since we assume a polluted erasure channel be-

3For SAIDA, digital fingerprints are overkill. ECC is typically
more expensive than erasure codes, but the additional cost is only no-
ticeable when the input is large. Digital fingerprints use ECC over
L = h(s1)||h(s2)|| . . . ||h(sn) where the si are the erasure encoded
symbols of some data D. |L| is relatively small for modest values of n,
and thus efficient for ECC. However, when |D| is roughly equal to |L|,
as it is in SAIDA (for n = 128, |D| = 1408 vs. |L| = 1280), it is
more efficient to simply use ECC directly on the input D.

tween the sender and the receiver, {rj
1, r

j
2, . . . , r

j
m} con-

tains some subset of the authentic packets and some num-
ber of invalid packets injected by the adversary. Since
we are considering pollution attacks on receivers, we
are most interested in the case when |invalid packets| �
|valid packets|.

The receiver parses each augmented packet r j
i as pj

i ||tji
where pj

i represents an unaugmented packet of block j

and tj
i represents a symbol of the distillation encoded

authentication information Hj . The receiver then ap-
plies DISTILLATION DECODE to the received symbols
{tj1, tj2, . . . , tjm}. In Step 4, the receiver has a set of can-
didate reconstructions of the form Hj ||GHj and executes
VALIDATE(·) on each one to obtain V , the set of valid re-
constructions. To account for non-malicious delays and
reorderings in the network, we alter DISTILLATION DE-
CODE to output the complete set of valid reconstructions

STRIP(V) � {STRIP(R) : R ∈ V}

rather than a single valid reconstruction.
The authenticity property of distillation codes guaran-

tees all Hj ∈ STRIP(V) are authentic, but the receiver still
needs to verify the authenticity of the underlying packet
stream. For each Hj ∈ STRIP(V), the receiver needs to
verify the authenticity of all the packets claiming to be in
block j. Recall pj

i is annotated with its specific position i

in block j, so the receiver can authenticate pj
i by verifying

h(pj
i ) is equal to the i-th value in the hash string Hj .

The above description implicitly assumes the adver-
sary mounts the strong pollution attack described in Sec-
tion 3.4.3 (injecting accumulated random symbol/witness
pairs). However, the adversary may also mount a cut-and-
paste attack where she injects invalid packets augmented
with symbol/witness pairs stripped from the valid pack-
ets. In the final step of verification described in the pre-
vious paragraph, the receiver may have multiple packets,
say p′ji , p′′ji , p′′′ji for a position i that are augmented with
the same valid symbol. In this case, the receiver will com-
pute the hash of each of these packets and compare with
the i-th position in the hash string Hj to find the authentic
packet.

For each block, if no more than t out of n authentic
packets are lost in transmission, PRABS can authenticate
all received packets in the block regardless of the pattern
of loss. Furthermore, in contrast to SAIDA, PRABS is
resistant to pollution attacks. The operation of a PRABS
sender and receiver is detailed in Figure 5.

4.4. Practical considerations

Earlier in Section 3, we presented DISTILLATION DE-
CODE as a batch algorithm, where we first collect symbols
and then apply the decoding algorithm to all the symbols.
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(a) PRABS sender. For block j, the PRABS sender
executes DISTILLATION ENCODE on the authentica-
tion string Hj = j||p1||p2|| . . . ||pn for the block
and augments each packet with a distillation code
symbol.
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X X

VALIDATE(·)

Q2 Qk

DISTILLATION DECODE

r1 r2 r3 r4 rm

Hj = j||h(p1)||h(p2)|| · · · ||h(pn)
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(b) PRABS receiver. The PRABS receiver extracts
the distillation code symbols from the received pack-
ets and executes DISTILLATION DECODE. The de-
coder validates the resulting reconstructions, and if
sufficiently many valid packets were received, outputs
the valid authentication string Hj for the block. Fi-
nally, the receiver uses Hj to authenticate each of the
received packets.

Figure 5. Pollution Resistant Authenticated Block Streams (PRABS)

In practice, and in particular for PRABS, it is more effi-
cient to implement DISTILLATION DECODE as an on-line
algorithm, where the partitions are created dynamically as
symbols arrive over the network. When the size of a par-
tition reaches n− t, it is erasure decoded and validated.

The chief motivation for the on-line algorithm is to
avoid the tough decision of when to apply the batch de-
coding algorithm. Ideally in the batch algorithm, the re-
ceiver should not execute DISTILLATION DECODE until
it is confident it has finished receiving all the packets in a
particular block. The on-line decoding algorithm avoids
this problem by treating each partition independently and
decoding it only when it becomes sufficiently large. The
only remaining problem is when to release the memory al-
located for partitions that never reach n − t symbols. We
address this problem in Section 4.5.3.

4.5. Security analysis

We analyze the security of PRABS in terms of packet
authenticity, replay protection, and resistance to pollution
attacks using our threat model introduced in Section 2.5.

4.5.1 Authenticity

Claim 1. If a receiver in PRABS receives any n− t valid
packets from block j, it can verify the authenticity of all
packets in block j.

Proof. We assume RSA signature generation and verifica-
tion guarantees authenticity of signed messages, and every
receiver has obtained an authentic copy of the legitimate
sender’s public key. We also assume h(·) is collision-
resistant hash function. Then by the authenticity prop-
erty of distillation codes (Section 3.4.1 and Theorem 3 in
Appendix A), every output of DISTILLATION DECODE is
guaranteed to be authentic.

Therefore, if a receiver receives any n − t valid pack-
ets from block j, then the modified version of DISTILLA-
TION DECODE in Section 4.3 will output the authenticate
hash string Hj = j||h(pj

1)||h(pj
2)|| . . . ||h(pj

n) of block j.
Given any candidate packet p̄j

i from block j, a receiver can
verify its authenticity by checking whether h(p̄ j

i ) is equal
to the i-th hash entry in the hash string Hj . An adversary
able to cause a receiver to accept a forged packet p̄ j

i �= pj
i

implies she is able to find a collision on h(·) at pj
i .

4.5.2 Message reordering and replay

Claim 2. No valid packet in PRABS will be accepted by
a receiver more than once, and for all authenticated re-
ceived packets, a receiver can reconstruct the order in
which they were sent.

Proof. Let j designate a packet’s block and i designate its
position in that block. Since there is a one-to-one mapping



from (j, i) to the valid packets, after Hj is reconstructed
and pj

i is authenticated and accepted, all future copies of
pj

i can be rejected.
(j, i) also determines a packet’s order in the stream.

Although an adversary can reorder the delivery of pack-
ets, after a receiver authenticates pj

i , it can determine the
proper position of pj

i in the stream.

4.5.3 DoS-resistance

Computational DoS-resistance For computational
DoS-resistance, we consider the three expensive oper-
ations in PRABS: hash function applications, erasure
decodings, and signature verifications.

Claim 3. Let b be the bandwidth of PRABS in blocks per
second. Then the most computation an adversary can
cause for receivers with a pollution attack with attack fac-
tor f is b · (f + 1) · (n · (log(n) + 1) + n) hash function
applications and b · (� f ·n

n−t� + 1) erasure decodings and
signature verifications.

Proof. The denial-of-service resistance of PRABS relies
on the DoS-resistance properties of distillation codes. For
each packet a PRABS receiver receives, it extracts one
distillation code symbol and uses it as input to DISTIL-
LATION DECODE. Then by Theorem 2, the adversary can
cause the receiver to execute b · (f + 1) · n · (log(n) + 1)
hash function applications and b · (� f ·n

n−t�+ 1) erasure de-
codings and signature verifications.

In addition, a receiver must check the authenticity of
each received packet pj

i . This requires checking whether
h(pj

i ) is equal to the i-th hash entry in Hj , resulting in at
most b · (f + 1) · n hash function applications.

Thus, with a legitimate traffic rate of b blocks per sec-
ond and attack factor f , the most computation an ad-
versary can cause for receivers with a pollution attack is
b · (f + 1) · (n · (log(n) + 1) + n) hash function applica-
tions and b · (� f ·n

n−t�+ 1) erasure decodings and signature
verifications.

For example, consider the scenario of a 1Mb per second
stream with b = 1, n = 128, and 1024 byte packets. With
t = 64, hash outputs of 80 bits, and 1024 bit RSA signa-
tures, |(Hj ||GHj )| ≈ 1408 bytes, and the resulting era-
sure code symbols are approximately 22 bytes. For f =
10, this requires receivers to execute to at most 11,264
22-byte SHA1 hashes per second, 1408 1024-byte SHA1
hashes per second, and 21 erasure decodings and signa-
ture verifications per second. This is relatively insignifi-
cant: with these parameters, a 2.4GHz Pentium 4 machine
running Linux can compute on average 540,000 22-byte
SHA1 hashes per second, 70,000 1024-byte SHA1 hashes
per second, 1700 RSA-1024 signature verifications per

second, and 3700 (128,64) Reed-Solomon decoding oper-
ations per second. We verify this analysis experimentally
in Section 5 with an implementation of PRABS.

PRABS is resistant to signature flooding attacks be-
cause a signature is distributed among the all packets in
the block. To cause a single additional verification oper-
ation, an adversary must inject at least n − t packets. In
contrast to hash graphs and the Wong-Lam scheme, ad-
versaries can cause an additional verification operation by
injecting a single packet.

State-holding DoS-resistance In addition to computa-
tional DoS attacks, adversaries can launch state-holding
DoS attacks against receivers, attempting to exhaust mem-
ory resources. For example, an adversary could accu-
mulate and inject sets of less than n − t invalid pack-
ets (symbols) for block sequence numbers far into the
future. A naive PRABS receiver will allocate space for
these packets and symbols and wait to receive sufficiently
many symbols to reconstruct the authentication informa-
tion. For invalid block sequence numbers much greater
than the current valid block sequence number, this attack
causes receivers to allocate large amounts of memory held
until the valid sequence numbers catch up to the invalid
sequence numbers.

One solution to this attack is to limit the amount of
memory allocated to PRABS receivers and enforce some
reclamation policy on packet (symbol) buffers. However,
choosing a reclamation policy can be tricky. We need to
be careful legitimate packets awaiting authentication are
not freed prematurely by some clever injection of attack
traffic.

To prove PRABS is resistant to these state-holding
attacks on memory resources, we show an upper bound
on the memory requirements for PRABS receivers to
achieve the same authentication rate of valid packets
under attack as when there is no attack. In our proof, we
assume an upper bound d on the maximum end-to-end
latency delay imposable by an adversary, and the same
upper bound on non-malicious delays normally occurring
within the network. We assume the sending rate of the
stream is r, and the attacker can inject traffic at a rate up
to f · r.

Claim 4. For a rate r stream sending n packets each of
size m, attack factor f , and maximum packet delay of d
seconds, if a PRABS receiver allocates at least r · (n ·
m/r+d) · (f +1) bytes of memory, it will not discard any
packet that would have been authenticated had there been
an infinite amount of memory available.

Proof. Suppose the PRABS receiver manages its r · (n ·
m/r + d) · (f + 1) byte packet cache with a FIFO re-



placement policy. We will show that no packet that would
have been accepted had there been an infinite sized cache
will be discarded. This property will allow us to conclude
that a bounded cache does not affect whether a packet is
accepted or not.

Suppose that there is a legitimate packet p that is about
to be evicted from the cache that would have been ac-
cepted with an infinitely sized cache. Since the receiver
has not authenticated p, p’s partition contains fewer than
n − t symbols. For it to be accepted at some later time,
the PRABS decoder must receive at least one more packet
from its block, since all packets from the same block share
accumulator values. But, we know that p has resided in the
cache for at least (n ·m/r + d) seconds. This is because
the cache uses a FIFO replacement policy, its total cache
size is r ·(n ·m/r) ·(f +1), and traffic arrives at a rate less
than (f+1)·r. But, the longest transit delay for a packet is
d, and the encoder sends all packets from the same block
within n ·m/r seconds. Thus, the encoder will not receive
any other packet from p’s group after n ·m/r+d seconds.
Since p will never be accepted after n ·m/r + d seconds,
our assumption that p would have been accepted at some
later time is false, and it is safe to discard p.

4.6. Securely using smaller hash digests with
UOWHFs

Using a hash function with an 80 bit output to con-
struct the Merkle hash tree in our distillation code results
in 10·log(n) bytes of overhead per symbol. In this section,
we describe an application of UOWHFs that leverages the
real-time nature of multicast to reduce this overhead by
close to a factor of two without affecting authentication
security. This optimization has no significant effect on
PRABS’s resistance to pollution attacks.

Recall that with the target collision-resistance (TCR)
model for UOWHFs (Section 2.6), the sender chooses
a particular hash function from a family of TCR hash
functions and informs the receivers of the choice before
transmission begins. If we assume h(·) is a random or-
acle, we can construct a TCR hash function by choosing
a random salt r and using the first k bits of output from
hr(x) � h(r||x||r). This is called the envelope method
[13]. Assuming h(·) and k are agreed in advance, the
sender only needs to inform the receivers of the random
value r.

To reduce the overhead of distillation code symbols, we
would like to to use a hash function with a shorter out-
put, say 40 bits, for constructing the Merkle trees. Un-
fortunately, shortening the hash output reduces collision-
resistance. A 40 bit output provides only about O(240)
security, and an adversary is likely to find a collision on
hr(·) during the lifetime of a long lived stream. However,
there is no reason to necessarily use the same hash func-

tion for every block in PRABS. By revealing a new salt
value r at the start of each block’s transmission, there is
a small bounded amount of time where finding a collision
on hr(·) is useful. After the receivers have successfully
received and decoded the valid authentication information
for a block, pollution attacks against that particular block
become impossible.

To take advantage of this optimization, the encoder and
decoder need relatively few changes. The encoder selects
a random salt rj for block j and uses hrj (·) in the con-
struction of the Merkle hash tree in Step 3 of DISTIL-
LATION ENCODE. To inform receivers of the salt value
rj , the encoder augments each distillation code symbol in
block j with the salt value rj .

To decode, in Step 2a of PARTITION SYMBOLS, the de-
coder parses each distillation code symbol as (rj , s

′, w),
and recovers the accumulator value a = Recover(s ′, w)
using hrj (·) as the underlying hash function. To prevent
adversaries from breaking the accumulator by finding col-
lisions using different salt values, Step 2b of PARTITION

SYMBOLS(·) can partition based on both the accumulator
value and the advertised salt value.

Security Analysis Since we are shortening only the out-
put of the hash function used in the Merkle tree, and not
the output of the hash function used in the authentication
string Hj , this change only affects DoS-resistance and not
packet authenticity.

For an adversary to launch a successful pollution attack,
she must find a collision on hrj (·) in the Merkle tree over
the symbols in block j. If the length of salt values is suf-
ficiently long to prevent long running attacks that iterate
over all possible values of rj , then the adversary must wait
until the sender discloses rj before she tries to find a col-
lision in the Merkle tree.

Since collisions are useless after the receivers have re-
ceived all the legitimate packets in a block, if we assume
adversaries can delay packets by at most d seconds and
each block requires c seconds to send, then we must se-
lect k such that given r, adversaries have low probability
in finding a collision on hr(·) in d + c seconds. After this
time, receivers have presumably received and accepted all
the valid packets from the block, and further packets from
that block are rejected.

For block size n, the adversary wins if she finds a col-
lision on any of the n symbols in a block. If an adver-
sary hashes 2k−log(n) random values, then she will find a
collision on one of the symbols with non-negligible prob-
ability. For block size n, we must choose k such that
2k−log(n) is an intractable amount of work for massively
parallelized adversaries to complete in d + c seconds.
Suppose n = 128, one block is transmitted per second,
and the maximum adversarial delay is 10 seconds. Given



that a 2.4GHz Pentium IV machine can compute roughly
540,000 instances of 22-byte hash function operations per
second, choosing k = 40 bits requires roughly 1450 ma-
chines to complete the necessary work before the receivers
have finished receiving the block.

The remaining question is the value of |r|. If |r| is small,
adversaries can launch long running attacks which iter-
ate over all values of r and hash 2k random values for
each hr(·). We can bound the effectiveness of long run-
ning attacks by using a long per stream salt disseminated
to receivers immediately before transmission, but we still
must be concerned with long running attacks over the life-
time of the stream. Iterating over all possible values of r
requires about O(2|r|+k−log(n)) work to achieve a non-
negligible success probability, but a birthday attack can
reduce this slightly. By the birthday paradox, if the ad-

versary hashes 2k−log(n) random values for 2
|r|
2 values of

r, then the adversary will see a collision after 2
|r|
2 blocks

with non-negligible probability. For n = 128 and k = 40,
choosing the |r| = 64 bits requires roughly 265 opera-
tions for an adversary to be successful after 232 legitimate
blocks have been sent.

We stress again this optimization has no effect on packet
authenticity. The authentication mechanism is unchanged;
hash outputs in the authentication string are 80 bits and
signed by a full strength digital signature. If an adversary
can delay packets more than d seconds or apply massive
computing power to find a collision in the Merkle tree in
less than d seconds, she can only cause denial of service
and cannot violate authenticity.

Overhead reduction The overhead savings of using a
salted hash function construction in the Merkle tree is sub-
stantial. Using an unsalted hash function with an 80 bit
output results in Merkle hash tree verification sequence
lengths of 10·log(n) bytes. Using the salted hash function
with a 40 bit output and a 64 bit salt value yields verifica-
tion sequences of length 5 · log(n) bytes and an additional
8 bytes for the salt. This provides comparable security for
precomputation attacks and saves (5 · log(n) − 8) bytes
per symbol. We show the overhead savings of salting with
UOWHFs in Figure 6.

5. Implementation and Measurements

We implemented PRABS and measured its perfor-
mance. Our goal was to build a multicast authentication
protocol that could efficiently operate even when an adver-
sary sends 10 times as much traffic as the original stream.

The protocol and test harness were implemented in
2,300 lines of C++ code. The sending and receiving ma-
chines each had a 2.4 GHz Pentium 4 processor and 1GB
of RAM. Both machines were running Linux 2.4 kernels
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Figure 6. PRABS packet overhead.
This graph shows the effect of block size on packet overhead
in PRABS using an (n, n

2
) distillation code. The total packet

overhead is (10 · n + |G|) · 2
n

+ log(n) · k
8

+ |r| bytes, with a
k bit hash output in the Merkle tree, |r| byte salt, and |G| byte
signature. The plot is log scale with |r| = 8 and |G| = 128. We
show the savings of salting and 40 bit hash outputs in the Merkle
tree vs. no salting and 80 bit outputs. For smaller block sizes, the
erasure encoding dominates the overhead, but becomes small as
n grows. For larger n, the witness information for each symbol
dominates.

and gcc 2.95. They are connected by a 100 Mb/s low-
latency switched network. We relied on the OpenSSL
library[1] for cryptographic functions and a Rizzo’s era-
sure code library[31]. We used RSA-1024 for the TAG(·)
and VALIDATE(·) algorithms. We used the SHA1 crypto-
graphic hash function with 40 bit outputs (Section 4.6) for
the Merkle tree and 80 bit outputs for the authentication
string.

The server sent a stream of data packets at a variety of
rates and attack factors. We measured the receiver load
when receiving two streams: 1Mb per second and 4Mb
per second. Our PRABS stream used 128 packet blocks,
where each packet had a 1024 byte data payload. For
each stream, we looked at attack factors between 0 and
10. With attack factor 10 against the 4Mb/s stream, the at-
tacker injects 40Mb/s of attack traffic. Recall that the ad-
versary only needs to inject 64 packets to induce a decode
operation; by injecting 72 packets, the adversary ensures
that 64 packets will arrive at the receiver and can cause the
receiver to process 18 times as many malicious blocks as
legitimate blocks.

Our tests measure the performance of the client under
the worst case. For example, reconstruction data with a
systemic erasure code is much slower when using the par-
ity packets (packets 64-127). Our adversary induces a loss
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(b) This graph illustrates the relationship between processor uti-
lization and the attack factor. Recall that the attack factor is
the bandwidth multiplier of malicious packets that the adversary
injects. The processor utilization exhibits a linear relationship
with respect to the attack factor. Each data point is an average
from 3 separate runs.

Figure 7. Processor utilization while running PRABS.

of 48 legitimate non-parity packets to force the receiver
reconstruct its data using mostly the parity packets. Like-
wise, the adversary chooses to inject parity packets as well
to increase the receiver’s load using the strong pollution
attack detailed in Section 3.4.3.

Our first test measured the processor load on the client
as it received a music file. The attacker then began an
injection attack on an existing stream with an attack fac-
tor of 10. We measured the receiver’s process utilization
once per second to the nearest percent. The results for the
4Mb/s stream are presented in Figure 7(a). With no at-
tack, the receiver uses only a small fraction of the CPU.
Usually it was measured at 0%, and at all times it was
under 2%. Under heavy attack, the receiver’s CPU load
increases to 10%, but always remains below 15%. For a
1Mb/s stream, the receiver’s CPU averaged 3.6% during
a factor 10 attack. For both streams, the receiver success-
fully authenticated all received packets.

The second test measured the processor utilization as a
function of the attack factor. We display the results for the
4Mb/s stream in Figure 7(b). The graph highlights the lin-
ear relationship between the processor utilization and the
attack factor, confirming our analysis from Section 3.4.3.

6 Related Work

TESLA is a broadcast authentication scheme with many
attractive guarantees: authenticity, low overhead, robust-
ness to loss, and DoS resistance [25, 27]. However,
TESLA requires time synchronization between the sender
and the receiver. For each block, the sender picks the next
key in a one-way key chain and appends a message au-
thentication code [5] to each packet in that block. The
sender later publishes the key. Receivers validate the key
using the one-way chain and only accept packets authen-
ticated with that key that arrive before it was disclosed.

Previous work has addressed erasure symbol corrup-
tion in the context of distributed storage. Krawczyk pro-
posed distributed fingerprints, an application of error cor-
rection codes (ECC) in conjunction with erasure codes to
detect altered symbols [14]. However, as discussed in
Section 3.1, ECC is also vulnerable to pollution attacks.
Distributed fingerprints work well when invalid symbols
are guaranteed to replace the valid symbols, but not when
there is pollution.

Weatherspoon et al. proposed a scheme similar to ours
for detecting corrupted symbols in the distributed archival
system of Oceanstore [34]. However, similar to dis-
tributed fingerprints, they do not consider pollution at-
tacks where additional invalid symbols are injected into
the decoding process.



7. Conclusion

Distillation codes enable systems to store or transmit
information that is robust against packet loss, pollution
attacks, and modification of transmitted packets. We
demonstrated the potential of distillation codes by intro-
ducing PRABS, an new DoS-resistant multicast authenti-
cation protocol. PRABS is secure against a wide variety of
pollution attacks without requiring significant overhead,
either in the space required to represent symbols or in the
computational effort required to encode and decode mes-
sages. Distillation codes are fast, general, and secure, but
more important, they are designed to face realistic, hostile
threat models.

We hypothesize that distillation codes are applicable
in a variety of contexts. Consider the example of a dis-
tributed Internet-wide file service. A user wishes to store
a file across multiple untrusted repositories and hopes to
recover his file at a later date. Assume that the user can
not trust any single machine to permanently store the en-
tire file or metadata about the file. One approach is to
divide the original file into shares, and then sign each of
the shares as they are distributed to different machines. By
producing shares that store redundant information (along
the lines of secret sharing, the information dispersal algo-
rithm, or erasure codes), we can check to ensure that none
of the shares have been tampered with. However, if share
reconstruction takes place on a heavily loaded file server
that is simultaneously reconstructing many different files,
this may yield an unreasonable load. In contrast, we can
imagine a system that signs the original file, and then uses
distillation codes to rapidly reconstruct the file. While fur-
ther investigation is required, we hypothesize that distilla-
tion codes may yield good performance in this situation.
Similarly, other cases where data must be segregated and
then reconstructed may also be fertile ground for explor-
ing the potential of distillation codes.
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A. Security Analysis of Distillation Codes:
Authenticity

We will show that if the TAG(·) and VALIDATE(·) algo-
rithms satisfy integrity of plaintext, then a distillation code
using these algorithms also satisfies integrity of plaintext.
We will adapt Bellare and Namprempre’s notion of in-
tegrity of plaintext (INT-PTXT) [6] to the public key set-
ting. Note that their definition was in the context of en-
cryption and decryption algorithms, while we frame ours
in terms of encoding and decoding algorithms.

Definitions & Notation We define a public key encod-
ing scheme PKE = (K, E ,D) to consist of three al-
gorithms. The randomized key generation algorithm K
takes a natural number k ∈ � as its security parame-
ter and outputs a public key Kpub and private key Kpriv:

(Kpub, Kpriv)
R←− K(k). The encoding algorithm E uses

the private key Kpriv to encode a message M into a code-

text C, possibly using a randomization source: C
R←−

EKpriv(M). The decoding algorithm D uses the public
key Kpub to authenticate the codetext C. It returns a
plaintext if it can authenticate the codetext, or ⊥ if it
cannot validate the codetext: P ⊥ ← DKpub(C) where
P⊥ ∈ {⊥} ∪ {0, 1}∗. For all encoding schemes, we re-
quire M = DKpub(EKpriv(M))

We now provide an authenticity definition for a public
key encoding schemePKE(K, E ,D). A verification algo-
rithm D∗

Kpub
takes a codetext and returns a boolean value

indicating whether the decoding was successful:
ALGORITHM D∗

Kpub
: C ∈ {0, 1}∗ �→ {0, 1}

if DKpub(C) �=⊥ return 1
return 0



We allow an adversary access to Kpub, an encoding ora-
cle, as well as a verification oracle in order to try to break
the encoding scheme. The adversary is able to violate
the integrity of the encoding scheme if it can produce a
codetext whose plaintext was never passed to the encod-
ing algorithm EKpub(·). If it is computationally difficult
for an adversary to produce such a plaintext, the encoding
scheme is said to offer integrity of plaintext, abbreviated
INT-PTXT.
Definition 2. Integrity of a public key encoding scheme

Let PKE(K, E ,D) be a public key encoding scheme.
Let k ∈ � andA be an adversary that has access to an en-
coding oracle E(·) and a verification oracle D∗(·). Then,
consider the following experiment:

EXPERIMENT ExpPKE,A : k ∈ � �→ {0, 1}
(Kpub, Kpriv)

R←− K(k)
if AEKpriv (·),D∗

Kpub
(·)(k, Kpub) makes a query

to D∗
Kpub

(·) such that:
D∗

Kpub
(C) = 1 and DKpub(C) was

never a query to EKpriv(·)
then return 1
else return 0

The advantage of the adversary is the probability that the
adversary can produce a query to the decoder that returns
success for which the corresponding plaincode was never
passed to the encoder. Specifically:

AdvPKE,A(k) � Pr
[
ExpPKE,A(k) = 1

]

We define the advantage function of the scheme in terms
of τ , the running time of the adversary, qe, the number of
queries the adversary makes to the encoding algorithm E
with total length µe, and qd, the number of queries the ad-
versary makes to the verification algorithm D∗ with total
length µd as:

AdvPKE(k, τ, qe, qd, µe, µd) � max
A
{AdvPKE,A(k)}

The scheme PKE satisfies INT-PTXT if AdvPKE,A(k)
is negligible for any adversary A with time-complexity
polynomial in k.

Distillation Codes We now briefly present distillation
codes in the public key encoding framework. Distilla-
tion codes use an underlying public key encoding scheme
PKEV = (KV , EV ,DV ) that provides integrity protec-
tion. To refer to an instantiation of a particular distillation
code, we write PKEDC = (KDC , EDC ,DDC). This dis-
tillation code uses the underlying code PKE V to provide
integrity protection. The key generation algorithm KDC

returns a public-private keypair (K DC
pub , KDC

priv ). Since the
distillation code can decode despite symbol loss, the de-
coding algorithm takes a string composed of either sym-

bols or⊥ to represent a missing symbol: s⊥
1 ||s⊥2 || . . . ||s⊥n

where s⊥i ∈ {⊥, si}.
We set r to be the input message size; (n, t) represent

the erasure coding parameters: n the number of encoded
symbols per message, and t the maximum number of sym-
bols that can be lost for successful reconstruction; m to be
the size of the encoded erasure symbols; and f the maxi-
mum attack factor, as defined in Section 2.5. We consider
all of these as fixed parameters for a particular instantia-
tion of PKEV .

We abstract distillation code key generation, encoding,
and decoding algorithms from Figures 2 and 3. We define
the algorithm DE(·) to be steps 2-3 of DISTILLATION

ENCODE that erasure encodes the authenticated data and
augments them with the accumulator values. We define
the algorithm DC(·) to be steps 1-3 of DISTILLATION

DECODE from Figure 3 that returns a set of candidate re-
constructions.

ALGORITHM KDC : k ∈ � �→ (KDC
pub , KDC

priv )
K ← KV (k)
return K

ALGORITHM EDC
KDC

priv
: M ∈ {0, 1}r �→ {s}n

C ← DE(EV
KV

priv
(M))

return C
ALGORITHM DDC

KDC
pub

: C ∈ {⊥} ∪ {0, 1}m �→
{0, 1}r ∪ {⊥}

R ← DC(C)
for each R ∈ R

if DV
KV

priv
(R) �=⊥ return DV

KV
priv

(R)

return ⊥
Theorem 3. If PKEV = (KV , EV ,DV ) is INT-
PTXT secure, then the distillation code PKEDC =
(KDC , EDC ,DDC) is also INT-PTXT secure.

Proof. Assume that there exists an adversary
AEDC(·),D∗DC(·) that can violate the INT-PTXT property
of a distillation code PKEDC . Then, we will provide a
construction for an adversary BEV (·),D∗V (·) that can break
any INT-PTXT secure encoding scheme PKE V . In other
words, we will create an adversary B that makes a query
CV to D∗V (·) such that DV (CV ) �=⊥ and DV (CV ) was
never a query to EV (·). We will prove that the advantage
for adversary B will be at least as large as that held by
adversaryA.

AdvPKEDC ,A(k) ≤ AdvPKEV ,B(k) (1)

Furthermore, if A runs in time t using qe encoding
queries of total length µe and qd verification queries
of total length µd, then B will run in the same query
size parameters µe and µd making qe encoding and ≤(
� fn

n−t�+ 1
)

qd verification queries.



The adversary B will use the adversary A to break
PKEV . It will emulate the distillation code encoding
and verification process fully so that A will believe that
it is interacting with a true distillation encoder and veri-
fier. Thus, B will take in the security parameter k and a
public key and will output a codetext C. Specifically:

ADVERSARY BEV (·),D∗V : Kpub × k ∈ � �→ {0, 1}
for i = 1 . . . (qd + qe) do

when A makes a query M to its encoding
oracle EDC(·),

do A ⇐ DE(EV (M))
when A makes a query T to its verification

oracleD∗DC(·),
do {R1, . . . , Rl} ← DC(T )

for j = 1, . . . , l
if D∗V

KV
pub

(Rj) = 1

A ⇐ 1; return
A ⇐ 0

Suppose, in the course of its run, adversary A has ad-
vantage α = AdvPKEDC ,A. In other words, it succeeds
in breaking the distillation code in an α fraction of its
executions. Consider such an execution. In this execu-
tion, let C denote the first query that A makes to the ver-
ification oracle D∗DC(C) for which it has never made
the query EDC(DDC(C)) with DDC(C) �=⊥. By con-
struction of DDC , this means that there exists some Ri

and for which DV (Ri) �=⊥. Now, to show this violates
the INT-PTXT property of PKE V , we need to verify that
DV (Ri) was never a query to to EV (·). We know that
DV (Ri) = DDC(C) and DDC(C) was never a query
to EDC(·). This means that DV (Ri) was never a query
to EV (·). Thus, the advantage that adversary B has in
breaking PKEV is at least as large as A has in breaking
PKE . Thus we have a contradiction since we assumed
that PKEV is INT-PTXT, implying that there can be no
adversary that breaks PKE with non-negligible probabil-
ity.

We note that B will make more queries to the decoding
oracle than A. Since a given codetext can produce many
candidate reconstructions, each of which needs to be val-
idated, B will make more queries to its validation oracle.
In fact, as argued in Section 3.4.3, there will be at most
� fn

n−t� + 1 candidate reconstructions. Thus, if A makes

qd validation oracle calls, B will make≤
(
� fn

n−t�+ 1
)

qd

validation oracle calls.


