
Cryptographic Methods for Storing Ballots on a Voting Machine

John Bethencourt
Carnegie Mellon University

Dan Boneh
Stanford University

Brent Waters
SRI International

Abstract

A direct recording electronic (DRE) voting machine must
satisfy several requirements to ensure voter privacy and the
integrity of the election. A recent proposal for a vote stor-
age system due to Molnar et al. provides tamper-evidence
properties while maintaining voter privacy by storing bal-
lots on a programmable, read-only memory (PROM). We
achieve the same properties and protect against additional
threats of memory replacement through cryptographic tech-
niques, without the use of special hardware. Our approach
is based on a new cryptographic primitive called History-
Hiding Append-Only Signatures.

1 Introduction

The deployment of electronic voting terminals intro-
duces the problem of adequately storing votes in digital
form. A vote storage system must store votes on the voting
terminal during the election and possibly in archive form
long after the end of the election. While there is some de-
bate as to the precise requirements of a vote storage system,
some deployed systems [12] have been shown to be clearly
inadequate.

Molnar et al. [15] recently identified seven requirements
that a vote storage system must satisfy. The four primary
requirements are: (1)durable — the storage system must
not lose stored votes if the terminal crashes, (2)tamper-
evident— an audit will detect if stored votes were modified
or deleted, (3)history-hiding — the layout of ballots on
the storage medium should reveal no information about the
order in which ballots were cast, and (4)subliminal-free
— a malicious implementation or user should not be able to
embed covert information in the voting record.

The history-hiding property is necessary for voter pri-
vacy. The concern is that during the election a coercer
might keep track of the order in which voters visited a par-
ticular voting terminal. If the history-hiding property does
not hold, the coercer could inspect the voting record post-
election and learn how each voter voted. Thus, history-
hiding is necessary to prevent coercion and vote buying.

The subliminal-free property ensures that malicious soft-
ware loaded on the terminal cannot leak covert information
exposing how voters voted. Note that we must assume the
user of the voting machine is actively trying to leak infor-
mation about their vote, since they may be under coercion
or trying to sell their vote.

Molnar et al. [15] propose a vote storage system based
on PROM storage, a form of write-once memory. The
data structures used to store the ballots ensure that any il-
licit writes to the memory will be detected, thus providing
tamper-evidence. Properties (3) and (4) are also maintained
by the data structures used. However, the PROM approach
does not address the additional threat of one PROM being
replaced with another. Since the PROM’s must be trans-
ported from the voting machines to the canvassing facility
at the end of the polling period, this threat must not be un-
derestimated.

Our contributions. In this paper, we propose a new vote
storage system which builds on the Molnar et al. proposal
by providing additional tamper-evidence properties. Specif-
ically, it protects against the threat of physical replacement
of the memory storing the ballots while maintaining the
tamper-evidence, voter privacy, and durability provided by
the previous system. The new proposal incurs no additional
cost in the hardware requirements of the voting machines
and furthermore removes the need for disposable PROM
memories (which must be purchased for each election) by
employing cryptographic techniques implemented in soft-
ware.

The proposed vote storage system is based on a new
cryptographic primitive we callHistory-Hiding Append-
Only Signatures(HHAOS), which is of independent inter-
est. We provide two HHAOS schemes and prove them se-
cure. The first is based on any existing digital signature sys-
tem in a straightforward manner, but requires the voting ter-
minal to store large state and does not satisfy the subliminal-
free property. The second system is space efficient and can
be made subliminal-free at election close time. This second
system makes use of aggregate signatures in groups with a
bilinear map.

The HHAOS primitive builds on an earlier primi-

tive called append-only signatures, introduced by Kiltz et
al. [11]. The basic idea is as follows (we give precise defi-
nitions in Section 2).

• An HHAOS is initialized by generating a public key
PK and an “empty” signatureΦ1. The voting terminal
performs this initialization prior to election start.PK
is printed on paper and stored in a trusted facility. It
can be replicated for higher assurance.Φ1 is stored in
non-volatile memory in the voting machine.

• Let Φi be the value in non-volatile memory when voter
numberi walks up to the terminal. After the voter
casts his votevi, the terminal runs an append algo-
rithm Append(Φi, vi). This algorithm outputs a new
Φi+1 which contains the ballotvi. This newΦi+1 is
written to non-volatile memory and replacesΦi.

• At election close the terminal runs algorithmFinalize

to update the lastΦ and prevent any further appends.
This finalizedΦ is published or stored in an archive.
At any time post-election, anyone can validate authen-
ticity of the set of ballotsX = {v1, . . . , vn} usingPK
and the finalΦ.

To satisfy the tamper-evidence and history-hiding require-
ments, an HHAOS must satisfy two security properties:

• Append-only: given a signatureΦ on a set of messages
X it is difficult to remove messages fromX. That is,
it is difficult to create a validΦ′ for a setX ′ satisfying
X 6⊆ X ′.

• History-hiding: given a signatureΦ on a set of mes-
sagesX, an adversary cannot determine the order in
which messages were added toX.

Note that when a newΦ is computed and stored within
the voting machine, the previous value is deleted. While
securely deleting data on a commodity system takes some
care, it is certainly possible [7, 5].

Relation to append-only signatures (AOS). Kiltz et
al. [11] recently introduced the concept of an append-only
signature (AOS) for the purpose of securing routing pro-
tocols. They give several elegant constructions and prove
that AOS is equivalent to hierarchical identity-based signa-
tures. An AOS is closely related to HHAOS — it satisfies
the same append-only property, but need not be history-
hiding or subliminal-free. Not surprisingly, the construc-
tions in [11] are not history-hiding.

Relation to forward secure signatures. Forward secure
signatures [1] enable one to periodically update the sign-
ing key so that a key compromise at dayn does not in-
validate signatures issued prior to dayn. One may be
tempted to use forward-secure signatures for vote storage:
after signing a votev the terminal discards the signing key

and moves on to the signing key for the next time period.
Unfortunately, most forward secure signatures are inher-
ently history-preserving. One exception is a forward-secure
system due to Itkis and Reyzin [9] which could be made
history-independent. The resulting HHAOS, however, is
less efficient than our second construction.

2 History-Hiding, Append Only Signatures

We start by precisely defining a history hiding append
only signature system. We then explain how this definition
implies the properties discussed in the introduction. For-
mally, an HHAOS scheme consists of three algorithms:

KeyGen(1κ)→ PK,Φ
Given a security parameterκ, produce a public keyPK
and an initial signatureΦ, which corresponds to the
empty set.

Append(Φ, x)→ Φ′

Given a signatureΦ for some setX and a new string
x ∈ {0, 1}∗, produce a new signatureΦ′ for the set
X ′ = X ∪ {x}.

Verify(PK,X,Φ)→ {True,False}
Given a the public keyPK and a setX, determine
whetherΦ is a correct signature forX.

The system must satisfy the following correctness property:

Definition 1 (Correctness). Let X = {x1, . . . xn} ⊆
{0, 1}∗. ComputePK,Φ0 ← KeyGen(1κ) and Φi ←
Append(Φi−1, xi) for i = 1, . . . , n. We require that
Verify(PK,X,Φn) = True. If this holds for all finite
X ⊆ {0, 1}∗, then the scheme(KeyGen,Append,Verify)
is correct.

We define security for an HHAOS system using two
games. The first game captures the append-only property.

Game 1:

Setup The challenger computesPK,Φ0 ←
KeyGen(1κ) and givesPK to the adversary.

Corrupt The adversary sends the chal-
lenger an ordered set of strings
X = {x1, x2, . . . xn}. The challenger
computesΦi ← Append(Φi−1, xi) for
eachi ∈ {1, . . . n}, then returnsΦn to the
adversary.

Forge The adversary returns a setY and a signa-
tureΦY .

If Verify(PK, Y,ΦY) = True andX 6⊆ Y , then the adver-
sary has won Game 1.

Definition 2 (Append Only Unforgeability). An HHAOS
scheme(KeyGen,Append,Verify) is (t, ǫ)-append only un-
forgeable if every probabilistic algorithm with running time
at mostt wins Game 1 with probability at mostǫ. We
say the scheme is append only unforgeable if the scheme
is (t, ǫ)-append only unforgeable wheret is a polynomial in
the security parameterκ andǫ is negligible inκ.

Note that in Game 1 we only give the adversary the
power to issue a single queryX. This captures the vot-
ing terminal settings where every append-only chain is used
only once, namely for one machine in one election. One can
extend Game 1 to allow the adversary to adaptively issue
queries for multiple setsX, as in [11]. Since here we focus
on the application to voting, the definition using Game 1
is sufficient. The second game captures the history-hiding
property.

Game 2:
Setup The challenger computesPK,Φ0 ←

KeyGen(1κ) and givesPK to the adversary.

Challenge The adversary returns an ordered set
X = {x1, x2, . . . xn} and two permutations
λ0 and λ1 on X. The challenger flips a
coin b ∈ {0, 1} and then computesΦi ←
Append(Φi−1, λb(xi)) for i ∈ {1, . . . n}.
The challenger returnsΦn to the adversary.

Guess The adversary outputs a guessb′.

We define the advantage of the adversary in Game 2 to be
|Pr [b′ = b]− 1

2 |.

Definition 3 (History-Hiding). An HHAOS scheme
(KeyGen,Append,Verify) is (t, ǫ)-history-hiding if every
probabilistic algorithm with running time at mostt has ad-
vantage at mostǫ in Game 2. We say that the scheme is
history-hiding if it is(t, ǫ)-history-hiding wheret is a poly-
nomial in the security parameterκ andǫ is negligible inκ.

Much related work refers to data structures which are
history-independent, i.e., independent of the sequence of
operations used to construct them in an information the-
oretic sense [15, 14, 16, 4, 8]. Our definition of history-
hiding is based on a weaker notion of computational
indistinguishability. While history-hiding is all that is
needed in practice, both our constructions satisfy history-
independence in the information theoretic sense.

2.1 Extensions

We describe two simple methods of adapting an HHAOS
scheme. We first show how one can disallow further ap-
pends to a signature. Second, we describe a method for
handling multisets, that is, producing signatures that verify
that certain messages were added multiple times.

Set finalization. For the voting application we need to “fi-
nalize” the ballots and prevent any further appends. We
implement thisFinalize operation as follows. LetΦ be a
signature for a setX. Define

Finalize(Φ)
def
= Append(Φ, “ finalize ” ‖ |X|)

where |X| is the number of elements in the setX.1 We
modify theVerify(PK,X,Φ) algorithm to returnFalse if a
string “ finalize ” ‖ ℓ is included inX andℓ 6= |X| − 1.
Note that without embedding the size ofX in the final-
ize message there is nothing to prevent additional messages
from being appended.

Now if Φ is a signature for some setX and Φ′ =
Finalize(Φ), thenΦ′ may be given toVerify but may not be
used withAppend to produce further signatures. This final-
ization operation may optionally be performed after every
append, thus producing two signatures — one signatureΦA

which may be used for further appends and one signature
ΦV which may only be used to verify the current set.

Multiset semantics. Multisets may be supported by sim-
ply appending a nonce to each string added, thus maintain-
ing the uniqueness of each element in the set. Alterna-
tively, a serial numberℓ may be appended to each element,
whereℓ is the number of instances of that element that are
already present. Using such a serial number has the ad-
vantage of avoiding the additional subliminal channel that
nonces would provide, but requires the append algorithm to
be aware of which messages the signature validates.

3 A Simple Construction

We now turn to constructing history-hiding append-only
signatures. We start with a simple construction that builds
an HHAOS from any digital signature system. This con-
struction stores large state on the voting terminal and also
assumes that an upper bound on the total number of ballots
cast is known ahead of time.

The system works as follows. LetL be an upper bound
on the number of messages to be signed. At setup time we
prepareL signature key pairs. Then to sign theith message
xi, we pick at random an available key pair, signxi with
it, and delete the private signing key. The signature con-
tains the list of message-signature pairs plus all the unused
signing keys.

More precisely, let(G,S, V) be a digital signature sys-
tem. HereG generates signature key pairs,S signs mes-
sages, andV verifies signatures. We also need a collision
resistant hash functionH (such as SHA-256). The generic

1We assume “finalize ” ‖ n is a special message that cannot appear in
X for anyn ∈ Z. We also assume the number of elements inX is stored
in Φ.

HHAOS, denotedHHAOSS , for signing up toL messages
works as follows:

KeyGen(κ)→ PK,Φ
Run G(κ) L times to generateL signature key pairs
(PK1,SK1), . . . , (PKL,SKL). Output:

PK← H(PK1, . . . ,PKL) and

Φ←
{

(PK1,SK1, null), . . . , (PKL,SKL, null)
}

Append(Φ, x)→ Φ′

Let Φ = {(PK1, Y1, Z1), . . . , (PKL, YL, ZL) } and
let x ∈ {0, 1}∗ be a string. To generate the new signa-
tureΦ′ do:

• Pick a randomr ∈ {1, . . . , L} for which Yr 6=
null. This Yr is a signing key for the public key
PKr.

• Generate a signatureσ ← S(Yr, x) and output:

Φ′ ←
{

(PK1, Y1, Z1), . . .
(

PKr, null, (x, σ)
)

, . . .

(PKL, YL, ZL)
}

The net effect onΦ is that the secret keySKr is deleted
from tupler and replaced by a message-signature pair
(x, σ).

Verify(PK,X,Φ)→ {True,False}
Given a public key PK, a set of strings
X = {x̂1, x̂2, . . . x̂n}, and a signatureΦ =
{ (PK1, Y1, Z1), . . . , (PKL, YL, ZL) } do the fol-
lowing:

• If PK 6= H(PK1, . . . ,PKL), outputFalse and
stop.

• For all i = 1, 2 . . . , L do:
• If Yi 6= null andYi is not a valid signing key

for PKi, outputFalse and stop.(∗)
• If Yi = null thenZi is a message-signature

pairZi = (x, σ).
• If V (PKi, x, σ) = False, outputFalse

and stop.
• If X = { x | ∃i, σ : Zi = (x, σ) } outputTrue,

otherwise outputFalse.

The test on line(∗) is crucial for security — with-
out it there is a trivial attack on the system. To test
thatYi is a valid signing key forPKi one can test that
V (PKi,m, S(Yi,m)) outputsTrue for some arbitrary
messagem.

The system clearly satisfies the correctness property for
HHAOS as long asAppend is activated no more thanL
times. Security follows from the security of the underlying
signature system(G,S, V) and the collision resistance of
H.

Theorem 1. If (G,S, V) is existentially unforgeable under
a chosen message attack andH is collision resistant then
HHAOSS is append only unforgeableandhistory-hiding.

The proof is only outlined as the next construction is
our focus. First, the history-hiding property is trivial since
the final content ofΦ is independent of the order in which
messages were inserted. The append only property follows
from the security of(G,S, V) by a straightforward argu-
ment. We note that during the append-only unforgeability
game the simulator issues a single chosen-message query
for PK. Hence, it suffices that(G,S, V) is existentially un-
forgeable against a single-query chosen message attack. In
particular,(G,S, V) can be a one-time signature.

Performance. The size ofΦ is alwaysO(L). The time to
verify a signature isO(L) no matter how many messages
were appended toΦ.

Subliminal-freeness. We point out that this system is
not subliminal-free. In particular, the machine running
theAppend algorithm could choose the randomr pseudo-
randomly so as to leak the order in which messages were
added. For example, letk be a secret key embedded in the
voting terminal. When appending theith message, the vot-
ing terminal can choose the randomnessr asr ← F (k, i)
whereF is a pseudo-random permutation such as AES. The
final signatureΦ will appear to be properly generated. How-
ever, anyone who knowsk can recover the exact order in
which messages were appended.

Bounding the number of messages. The system needs
an a-priori upper bound on the number of messages to be
signed. For voting machines this is easily provided; a gen-
erous estimate suggests that less than 3,000 votes across all
individual races may be cast in one day at a particular vot-
ing machine based on the time necessary to cast each [15].
Tripling this for safety, we may assume that well under
9,000 messages will need to be signed at each machine, a
relatively small number.

4 An Efficient Construction

Our second construction,HHAOSE , reduces the size of
Φ so that its size at any moment depends only upon the
number of messages signed so far. Also, the amount of data
per message is far less than in the previous system. More
importantly, a further benefit of this construction is that it
can evade the subliminal attack on the first system.

Recall that the system of Section 3 stores inΦ a list of
public-keys plus a list of signatures. At a high level, our sec-
ond system improves upon the previous scheme using two
ideas. First, we plan to use an aggregate signature system

to aggregate all the signatures inΦ into a single short sig-
nature. Recall that an aggregate signature system can com-
press a set of signatures from different public keys and on
different messages into a single signature. We will use the
BGLS aggregate signature system [2, 3] for this purpose.

Second, and more importantly, we use the fact that a
BGLS aggregate signature cannot be de-aggregated. That
is, given an aggregate signature it is not possible to remove
any signature from the aggregate. This in turn means that
we do not need to pre-generate all the public keys as we
did in the previous section. Instead, theAppend algorithm
can generate public / private key pairs on the fly and simply
append the resulting public-key toΦ. As a result,Φ now
grows by one public-key per message signed.

4.1 Background

The second construction uses bilinear maps, which we
now briefly review. For further background see [2]. LetG

andGT be multiplicative groups of prime orderp. Let g be
a generator ofG. Then a computable mape : G×G→ GT

is a bilinear map if

∀x, y ∈ G, ∀a, b ∈ Z, e(xa, yb) = e(x, y)ab (bilinearity)

and e(g, g) 6= 1 (non-degeneracy). Several efficient im-
plementations of bilinear maps (e.g., the Weil pairing) are
currently available [13]. We also assume a hash function
H : {0, 1}∗ → G that we model as a random oracle.

4.2 Algorithms

KeyGen(1κ)→ PK,Φ
Fix groupsG and GT of order p, where the size of
p is a determined by the security parameterκ. Pick
a generatorg of the groupG and a random exponent

α
R
←− Zp. Output

PK← (g, e(g, g)α) and Φ← (gα, {})

HereΦ is a signature on the empty set. The exponent
α is discarded.

Append(Φ, x)→ Φ′

Given a signatureΦ = (S1, S2) and a new string

x ∈ {0, 1}∗, randomly selectr
R
←− Zp and output the

following as the new signature.

Φ′ ←
(

S1 ·H(x)r, S2 ∪ {(x, gr)}
)

Verify(PK,X,Φ)→ {True,False}
Let PK = (g, u = e(g, g)α) be a public key,
X = {x̂1, x̂2, . . . , x̂n} a set of strings, andΦ =

(S1, S2) a signature. Then givenS1 ∈ G andS2 =
{(x1, z1), (x2, z2), . . . , (xℓ, zℓ)}, compute

v ← e(g, S1) ·
(

ℓ
∏

i=1

e(H(xi), zi)
)−1

.

If u = v andX = {x1, . . . , xℓ} output true, otherwise
output false.

We note that if the setS2 contained inΦ is represented as
an ordered list thenAppend must randomly permute the or-
dering of the elements before outputtingΦ′. This is crucial
for history-hiding.

4.3 Properties

The following three theorems correspond to the correct-
ness and security properties given in Section 2. Correctness
is a matter of simple algebra, append only unforgeability
follows from the computational Diffie-Hellman assumption,
and history-hiding may be proven with no assumptions. The
proofs are given in Appendix A. The history-hiding proof
also demonstrates thatHHAOSE (like HHAOSS) is actu-
ally fully history-independent in addition to being history-
hiding.

Theorem 2. HHAOSE is correct.

Theorem 3. If the computational Diffie-Hellman assump-
tion holds inG, thenHHAOSE is append only unforgeable
in the random oracle model.

Theorem 4. HHAOSE is history-hiding.

The proof of Theorem 3 uses the fact that a BGLS ag-
gregate signature cannot be de-aggregated. That is, given
an aggregate signature on a set of messagesX it is difficult
to recover an aggregate for a subset ofX. This property
was already discussed in [2]. Coron and Naccache [6] later
showed that de-aggregation is as hard as the Computational
Diffie-Hellman problem.

The append-only requirement (Game 1), however, is
more strict than de-aggregation — we require that the ad-
versary not be able to produce an aggregate signature on
any setY whereX 6⊆ Y . Hence, append-only security
is not directly implied by the difficulty of de-aggregation in
BGLS. Our proof of Theorem 4.3 shows that the system has
the append-only property. The proof is a little simpler than
the proof in [6] since our settings are more flexible.

4.4 Performance

The algorithmsKeyGen andAppend have very modest
computation requirements;Verify is somewhat more expen-
sive. TheKeyGen algorithm requires two modular expo-
nentiations (the pairing can be precomputed). TheAppend

algorithm requires two modular exponentiations, one mod-
ular multiplication, and one evaluation of the hash function
H. TheVerify algorithm requires|X|+1 pairings,|X|mod-
ular multiplications, and|X| evaluations ofH. The space
(in bits) required to store a history-hiding append only sig-
natureΦ for a setX is ℓ1 + (|X|+ 1) · ℓ2, whereℓ1 is the
number of bits required to store the strings inX andℓ2 is
the length of a group element fromG.

4.5 Subliminal Free Rerandomization

As described, the construction of Section 4.2 contains
subliminal channels that could be used by a malicious
implementation of theAppend algorithm to violate the
history-hiding property. As in the previous section, the val-
uesri can be used to leak the order in which votes were
added.

This situation can be remedied by adding the following
Rerandomize operation.

Rerandomize(Φ)→ Φ′

Given a signatureΦ = (S1, S2), where
S2 = {(x1, y1), (x2, y2), . . . (xn, yn)},

selects1, s2, . . . sn
R
←− Zp and compute

y′
i = yi · g

si for all i ∈ {1, . . . n}

S′
1 = S1 ·H(x1)

s1 ·H(x2)
s2 · · ·H(xn)sn

S′
2 = {(x1, y

′
1), (x2, y

′
2), . . . (xn, y′

n)} .

OutputΦ′ = (S′
1, S

′
2).

The signatureΦ′ is then another correct signature for the
same set, but with rerandomized valuesr1 + s1, r2 + s2,
etc. As in theAppend algorithm, if the setS′

2 within Φ′

is produced as a list, the elements should first be randomly
permuted.

If a signatureΦ is produced by a potentially malicious
server, its subliminal channels may be cleaned by having
several parties run theRerandomize algorithm on it. If any
one of those parties is honest, then the subliminal chan-
nels will not contain any of the original information from
the malicious server. This re-randomization can take place
when the election is closed and beforeΦ is made public.

5 Secure Vote Storage

Now that we have introduced the HHAOS cryptographic
primitive and given two constructions realizing it, we fur-
ther consider its practical use in a Direct Recording Elec-
tronic (DRE) voting machine. We tailor our description to
the use of the more efficient construction,HHAOSE . First
we will lay out our general assumptions regarding the hard-
ware architecture of an electronic voting machine. Having

established a reference platform, we will then describe each
of several isolated modules and their relationships. These
may be software modules on the same hardware, or hard-
ware isolation may be employed [17]. Finally we will con-
sider the operational procedures that should be carried out
by poll workers and election officials to initialize the voting
machines, provide access to voters, and verify results.

5.1 Hardware

Although the HHAOS scheme may be used with a wide
range of potential DRE equipment, we base our discussion
on commodity PC machines such as those suggested by the
Open Voting Consortium (OVC) as a part of their architec-
ture for an open, verifiable electronic voting system [10].
Specifically, the OVC recommends the use of a commod-
ity PC with a locked case. The machine would most likely
not have a hard drive, but instead boot from a publicly re-
viewed CD distributed before the election which contains
the operating system (e.g., a stripped down Linux distribu-
tion), the voting machine software, and lists of candidates.
Each machine would include a printer and a removable flash
memory (i.e., a USB drive or a Secure Digital memory card)
on which to record the electronic ballots. Input may be ob-
tained through a touch screen or key pad.

In addition, we require that each machine have a small
amount of internal non-volatile memory (e.g. flash) in
which to store the initial history-hiding append only sig-
nature when the machine is initialized. We also assume
the availability of a reasonably secure random number gen-
erator, such as the/dev/urandom device provided by
the Linux kernel. The hardware assumptions of this PC-
based architecture are consistent with recent work on high-
assurance voting machines [15, 18] in addition to the OVC
proposals, although the previously proposed PROM-based
vote storage method only requires a random number gener-
ator if the “random placement table” technique is used. The
HHAOS scheme for vote storage could also be employed
within a system far less capable than a PC, such as the gum
stick sized motherboards produced by Gumstix, Inc. and
used in the prototype system of Sastry, et al. [17].

5.2 Modules

User interface module. Figure 1 depicts the relationship
between several isolated modules, the first of which is the
user interface module. The user interface module is the
component of the electronic voting machine that interacts
with a voter to present them with the election choices and
produce their completed ballot. Ideally, its source code
should be small and easy to publicly verify [18]. After inter-
acting with the voter, it invokes the InsertBallot procedure
of the cryptographic vote storage module (CVSM). In de-

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

Totals Flash
Memory

Φi

Evolving
Sig.

Public Key
Fingerprint

User
Interface

Cryptographic
Vote Storage

Module

Verification and
Aggregation

DRE Voting Machine

Open

Close WriteBlock

communication
or transport

untrusted

InsertBallot

CF20 6A5C D8E6

trusted communication
or transport

Figure 1. Relationships between modules in
a DRE voting machine architecture.

scribing the CVSM, we consider the ballots received from
the user interface module to be simple bitstrings which are
accumulated in a multiset. Each string which corresponds
to a vote in a single electoral race.2 Additionally, the user
interface module provides poll workers with a means to set
up the machine before polling begins and close the polls
at the end of the polling period. These features invoke the
Open and Close procedures of the CVSM.

Cryptographic vote storage module. The CVSM em-
ploys the HHAOS scheme of Section 4 to store the multi-
set of ballots on the removable flash memory while provid-
ing tamper evidence and maintaining history-independence.
Here we give a high level description of the values stored in
the CVSM and how they are updated. For concreteness, we
give a more detailed description in Appendix B.

When the Open procedure is invoked by the user inter-
face module, the CVSM uses theKeyGen algorithm of the
HHAOS scheme to create a public key and initial signature.
The public key is saved on the removable memory and a
fingerprint (i.e., collision resistant hash) is printed using the
printer attached to the machine. The handling of this sheet
is described in Section 5.3. The initial signature is stored
on non-volatile memory within the machine. When the In-
sertBallot procedure is invoked with a ballotb, theAppend

algorithm is used to update the internal signature withb
(overwriting the previous value). The ballot is saved to the
removable memory (taking care to ensure that every order-
ing of the ballots currently stored is equally likely). When

2Grouping all the choices made by a voter into a single ballot string
would provide subliminal channels which could be used by a voter under
coercion [10].

the Close procedure is invoked, the CVSM usesFinalize to
prevent any further additions to the signature and copies it
to the removable memory.

Verification and aggregation module. To verify the sig-
nature on a set of ballots stored on a removable flash mem-
ory, we simply check that the public key fingerprint pro-
vided matches the public key stored on the memory and use
theVerify algorithm to check that the signature matches the
key and the stored ballots.

5.3 Operational Procedures

Initialization and polling. We assume the electronic vot-
ing machines are stored at central municipal facilities be-
fore being taken to the individual polling places on election
day. Immediately prior to transport, the election officials
should invoke the Open procedure on each machine, thus
storing the initial history-hiding append only signature on
the internal flash and printing out a sheet with the public
key fingerprint. These sheets are collected for later veri-
fication of the electronic ballots. Ideally, the fingerprints
should be immediately sent to the county canvassing facili-
ties where they will be needed; this can be accomplished by
simply reading the hex fingerprint over the phone. To min-
imize the possibility of the persons at the canvassing facil-
ity being tricked into using the wrong key fingerprints, they
may be transmitted in additional ways such publicly posting
them on the Internet and bringing the sheets to the canvass-
ing facilities in hard copy. Note that from this point until
the close of polling the machines should not be left unat-
tended. If someone were to boot a machine with their own
software and read the initial history-hiding append only sig-
nature stored internally, they may later be capable of replac-
ing all the results reported by that machine. This and other
threat scenarios are considered in detail in Section 6. Once
the electronic voting machines are at the polling places and
the polls have opened, voters may visit the machines one
by one and have their votes recorded. After the polling pe-
riod has ended, poll workers activate the Close procedure
on each electronic voting machine and collect the remov-
able flash memories containing the ballots.

Canvassing. The removable memories are transported to
canvassing facilities where the contents are read. Using the
public key fingerprints received from the staging facility,the
contents of each memory are checked. The ballots may then
be totaled and the results publicly announced. Note that if
we assume the public key fingerprints reach the canvassing
facility securely, the integrity of the election does not de-
pend on the integrity of the contents of the flash memories.
It is therefore reasonable to transmit the signed electronic

ballots over the Internet from the polling places to the can-
vassing facility rather than physically transporting the mem-
ories. This may somewhat reduce expenses. The history-
hiding append only signatures should be rerandomized as
described in Section 4.5; this may be performed once at
the polling place before sending the electronic ballots to
the canvassing facility and again at the canvassing facility
before making the signed ballots publicly available.

6 Comparisons

The use of history-hiding append only signatures for se-
cure vote storage in a DRE voting machine serves primarily
as an alternative to the PROM system. While the PROM
system ensures any illicit writes will be detected, it does
not address the threat of one PROM being replaced with an-
other. Ensuring the integrity of the election requires phys-
ical tracking and monitored transport of the PROM mem-
ories. The same considerations apply to the use of other
write-once media such as recordable CD’s in storing elec-
tronic ballots.

Essentially, the use of an HHAOS scheme replaces the
physical tracking requirement by requiring secure commu-
nication of a public key fingerprint. A more simplistic ap-
proach to gain this effect would be to use a normal digital
signature scheme to sign ballots stored by the vote storage
module. However, it is likely necessary to save the signing
key on non-volatile memory within the machine in order to
transport it to the polling place and for fault tolerance, leav-
ing it vulnerable to compromise. The append only property
of an HHAOS scheme limits this threat by ensuring at least
the integrity of ballots cast before the point of compromise.

We now detail a threat model in which to evaluate the
cryptographic vote storage module of Section 5 and the
PROM-based vote storage module. After explaining the
model, we will highlight the improvements offered by the
new techniques. Finally, we will compare the efficiency and
robustness of the two approaches.

6.1 Threat Model

DRE voting machines face a wide variety of threats;
however, we will restrict our attention to the types of at-
tacks relevant to the new and previously proposed systems
for vote storage. We focus on illicit read and write compro-
mises to the memories involved in vote storage along with
key management issues. In particular, we do not consider
the issue of software verification. That said, the algorithms
proposed in Sections 4 and 5 are simple enough to be veri-
fied by hand, with some effort. Assuming correct software,
the three different components that will be considered in
our threat model are the removable storage on which the
electronic ballots are recorded (either a flash memory or

a PROM), the internal flash memory on which the initial
history-hiding append only signature is stored, and the pub-
lic key fingerprint (these last two components only exist in
the newly proposed system).

An adversary may gain read-only or read / write access
to the removable or internal memory within a voting ma-
chine either between machine initialization and finalization
or after finalization (a compromise prior to initialization
will have no effect). Note that we may consider replace-
ments of PROM’s and writes to removable flash memories
to be equivalent operations, since the contents of a PROM
being replaced may first be read and partly copied over to
the new PROM, gaining the effect of general purpose mem-
ory. Additionally, we consider the effect of the public key
fingerprint printed during machine initialization being in-
correctly communicated to the canvassing facility (e.g., as a
result of social engineering attacks).

6.2 Threat Evaluation

Integrity. Given this threat model, we now evaluate the
integrity properties of the new cryptographic vote storage
module and the previous PROM vote storage module. In
Table 1 we list all combinations of the previously described
compromises and the resulting effects on election integrity.3

The column for the PROM VSM depends only on the com-
promise to the removable memory, since that system does
not include the internal memory or a public key finger-
print. Dashes in the table denote the collapse of several
rows where the outcome is the same for all values of that
variable.

The key security improvements offered by the CVSM
over the PROM VSM manifest in scenarios B and E. In
these cases the removable memory is swapped or illicitly
written either before or after finalization, and the internal
memory of the CVSM and the public key fingerprint are se-
cure.4 In both cases, any ballot tampering will be detected
if the CVSM is used, but if the PROM VSM is used, the
ballots currently stored at the point of compromise may be
arbitrarily modified.

A lesser improvement is obtained if the internal memory
of the CVSM is also compromised. In scenario C, if the ad-
versary is able to write the internal memory when they write
the removable memory, they may insert ballots undetected.
They may not, however, remove or modify ballots already
present without detection. Similarly, in scenario F, if thead-
versary gains read-only or read / write access to the internal
memory after the firstk ballots have been cast, then they
may alter the set of ballots when they compromise the re-

3Reads of the removable memory are not considered here since they
affect only privacy, not integrity.

4A read of the internal memory at the time of compromise of the re-
movable memory is also acceptable in scenario B.

Removable Memory
(Electronic Ballots)

Internal Memory
(Evolving Sig.)

Public Key Crypto PROM

A secure — — ✔ ✔

B
swapped / written

during polling
secure or read
compromise

secure ✔ ✘

C
swapped / written

during polling
read / write
compromise

secure ✔/✘ ✘

D
swapped / written

during polling
— replaced ✘ ✘

E
swapped / written

after polling
secure secure ✔ ✘

F
swapped / written

after polling
read or read / write

compromise
secure ✔/✘ ✘

G
swapped / written

after polling
— replaced ✘ ✘

Key to symbols:
✔: No tampering possible without detection.

✔/✘: Possible to insert ballots undetected, but ballots already present at point of compro-
mise may not be removed without detection.

✘: Arbitrary, undetected tampering with ballots present at point of compromise possible.

Table 1. Results of various threat scenarios on election int egrity using the cryptographic and PROM
vote storage modules.

movable memory after finalization. However, the resulting
set must include the firstk ballots cast if it is to verify.

If the public key fingerprint does not correctly reach the
canvassing facility, then the new system offers no improve-
ments over the PROM-based system. It should be easier,
however, to ensure the safe arrival of a public key finger-
print than a PROM.

An additional issue affecting election integrity is that of
“vote disqualification” attacks, in which the attacker does
not insert or delete votes, but instead attempts to prevent
votes from being counted (presumably in a region support-
ing their opponent). An attacker who is able to replace the
public key fingerprint or write the internal memory would
be able cause the final signature check to fail, even if they
do not have write access to the removable memory. This
suggests the following policy. If the signature check fails, a
recount should be performed based on a set of paper receipts
or some other redundant source of information (if possible),
but in no case should the votes be outright discounted.

Privacy. Having considered the improvements to elec-
tion integrity offered by the use of the HHAOS scheme in
the CVSM, we now compare the privacy properties of the
CVSM and PROM VSM. Assuming a secure random num-
ber generator and a non-malicious implementation of the
CVSM algorithms, the two systems offer the same privacy

guarantees. The data structures in both the internal mem-
ory of the CVSM and its removable storage are history-
independent. In either system, an illicit read of the remov-
able storage during the polling process will reduce voter pri-
vacy by partitioning the ballots into those cast before the
compromise and those cast after (but no further privacy will
be lost). In the case of the CVSM, an illicit read of the value
S1 stored internally will reduce voter privacy in the same
way, assuming the final contents of the removable storage
are eventually made public.

However, in the case of a malicious random number gen-
erator or a malicious implementation of the CVSM algo-
rithms, the new approach suffers from subliminal channels
that may reveal a great deal of information about the or-
dering of ballots. The PROM VSM suffers the same prob-
lem when the random placement table technique for insert-
ing ballots into the PROM is used with a malicious random
number generator. This threat is mitigated when using the
CVSM by employing theRerandomize operation described
in Section 4.5. If the contents of the removable memory
are rerandomized once at the polling place after finaliza-
tion and once at the canvassing facility before the contents
are publicly posted, then the subliminal channels will be
publicly visible only if both the machines performing reran-
domization are malicious. One point to be made regarding
the process of rerandomization when using the CVSM is
that the rerandomization operation may be performed by an

untrusted entity. In the worst case, the subliminal channels
will remain, but the machine performing rerandomization
may not change the ballots without invalidating their signa-
ture. This is not the case if one were to rerandomize the
output of the PROM VSM when using random placement
tables. The ballots would need to be copied to a new PROM
(or empty space on the original), and the machine perform-
ing rerandomization would need to be trusted to protect
election integrity. When using the PROM VSM, however,
subliminal channels may be avoided entirely by using a dif-
ferent (and less efficient) storage method, such as copyover
lists or lexicographic chain tables [15].

6.3 Robustness and Efficiency

The cryptographic vote storage module described in Sec-
tion 5 shares fault tolerance properties similar to those of
the PROM-based vote storage module. All the information
necessary for the CVSM to continue operation after a power
failure or system crash is stored on non-volatile memory.
When overwriting values on either the internal memory or
the removable memory, simple two-phase commits may be
used to allow recovery in the case of a crash in the midst of
writing. In this case, a crash in the middle of an operation
may reveal the last ballot stored, but there will be no further
compromise of voter privacy. The unavailability of the pub-
lic key fingerprint at verification time will prevent verifying
the integrity of the electronic ballots, but will not prevent
them from being counted.

The computational requirements placed on the voting
machine by the CVSM algorithms are very modest. The
voting machines need only compute modular exponentia-
tions twice at initialization (the pairing may be precom-
puted) and twice for each ballot recorded (also evaluating
a hash function for each ballot). This is well within the ca-
pabilities of low end commodity PC’s or even much more
limited embedded systems. If a commodity PC has already
been chosen as the basic architecture for a DRE voting ma-
chine, the computational requirements of CVSM will not
affect hardware selection. The necessary storage is also
minimal. If we assume at most 9,000 votes across all races
as in Section 3, 50-byte identifiers for each vote, and 160-bit
group elements inG (typical of an elliptic curve), then less
than 650KB are necessary on the removable storage (and
only a single group element on the internal storage). The
PROM-based VSM requires the purchase of new PROM’s
for each use of the machines. In contrast, a USB flash drive
may be purchased (at consumer rates) for less than $9.00,
a one time cost. If no internal non-volatile storage is other-
wise available on the machines, 1Mbit flash memory chips
may be purchased for less than $1.00 each.

7 Conclusions

We presented a new cryptographic tool for storing cast
ballots on a voting terminal. The tool, called history-hiding
append-only signatures (HHAOS), preserves all the benefits
of a hardware-based solution, while preventing hardware re-
placement attacks. We presented an efficient realization of
HHAOS using groups with a bilinear map. We also dis-
cussed a less efficient system that uses any standard signa-
ture scheme.

References

[1] M. Bellare and S. Miner. A forward-secure digital signature
scheme. InProceedings of Crypto, 1999.

[2] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate
and verifiably encrypted signatures from bilinear maps. In
Proceedings of Eurocrypt, 2003.

[3] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. A survey
of two signature aggregation techniques.CryptoBytes, 6(2),
2003.

[4] N. Buchbinder and E. Petrank. Lower and upper bounds on
obtaining history independence. InProceedings of Crypto,
2003.

[5] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and
M. Rosenblum. Understanding data lifetime via whole sys-
tem simulation. InProceedings of the USENIX Security
Symposium, 2004.

[6] J.-S. Coron and D. Naccache. Boneh et al.’sk-element ag-
gregate extraction assumption is equivalent to the Diffie-
Hellman assumption. InProceedings of Asiacrypt, 2003.

[7] P. Gutmann. Secure deletion of data from magnetic and
solid-state memory. InProceedings of the USENIX Secu-
rity Symposium, 1996.

[8] J. D. Hartline, E. S. Hong, A. E. Mohr, W. R. Pentney, and
E. Rocke. Characterizing history independent data struc-
tures.Algorithmica, 42(1):57–74, 2005.

[9] G. Itkis and L. Reyzin. Forward-secure signatures with opti-
mal signing and verifying. InProceedings of Crypto, 2001.

[10] A. M. Keller, D. Mertz, J. L. Hall, and A. Urken. Pri-
vacy issues in an electronic voting machine. InProceedings
of the ACM Workshop on Privacy in the Electronic Society
(WPES), 2004.

[11] E. Kiltz, A. Mityagin, S. Panjwani, and B. Raghavan.
Append-only signatures. InProceedings of ICALP, 2005.

[12] T. Kohno, A. Stubblefield, A. Rubin, and D. Wallach. Anal-
ysis of an electronic voting system. InProceedings of IEEE
Symposium on Security and Privacy, pages 27–40, 2004.

[13] B. Lynn. The pairing-based cryptography (PBC) library.
http://crypto.stanford.edu/pbc.

[14] D. Micciancio. Oblivious data structures: Applications to
cryptography. InProceedings of the ACM Symposium on
Theory of Computing (STOC), 1997.

[15] D. Molnar, T. Kohno, N. Sastry, and D. Wagner. Tamper-
evident, history-independent, subliminal-free data structures
on PROM storage -or- how to store ballots on a voting ma-
chine. InProceedings of the IEEE Symposium on Security
and Privacy, 2006.

[16] M. Naor and V. Teague. Anti-presistence: history indepen-
dent data structures. InProceedings of the ACM Symposium
on Theory of Computing (STOC), 2001.

[17] N. Sastry, T. Kohno, and D. Wagner. Designing voting ma-
chines for verification. InProceedings of the USENIX Secu-
rity Symposium, 2006.

[18] K.-P. Yee, D. Wagner, M. Hearst, and S. M. Bellovin. Pre-
rendered user interfaces for higher-assurance electronic vot-
ing. In Proceedings of the USENIX/ACCURATE Electronic
Voting Technology Workshop (EVT), 2006.

A Security and Correctness Proofs

Here we provide security and correctness proofs for the
HHAOS scheme presented in Section 4.2.

A.1 Correctness

With a little algebra it is easy to verify that this scheme
is correct according to Definition 1.

Theorem 2. HHAOSE is correct.

Proof. Let X = {x1, . . . xn} ⊆ {0, 1}∗ and assumePK =
(g, e(g, g)α) andΦn = (S1, S2) are generated as in Defini-
tion 1. Letr1, r2, . . . rn ∈ Zp be the random values chosen
in the successive invocations ofAppend. Let si denote the
discrete log (baseg) of H(xi) for eachi ∈ {1, . . . n}. Then
within Verify we compute

v = e(g, S1) ·
(

∏

(x,y)∈S2

e(H(x), y)
)−1

= e
(

g, gα

n
∏

i=1

H(xi)
ri

)

·
(

n
∏

i=1

e(H(xi), g
ri)

)−1

= e
(

g, gα

n
∏

i=1

grisi

)

·
(

n
∏

i=1

e(gsi , gri)
)−1

= e(g, g)α+r1s1+r2s2+···rnsn · e(g, g)−r1s1−r2s2−···rnsn

= e(g, g)α .

Since we also have thatX = { x | ∃y (x, y) ∈ S2 }, Verify

will return True and the scheme is correct.

A.2 Append Only Unforgeability

We now proveHHAOSE append only unforgeable in the
random oracle model based on the computational Diffie-
Hellman assumption.

Theorem 3. If the computational Diffie-Hellman assump-
tion holds inG, thenHHAOSE is append only unforgeable
in the random oracle model.

Proof. Suppose the(t′, ǫ′)-CDH assumption holds inG;
that is, any probabilistic algorithm running in time at most
t′ solves CDH with probability at mostǫ′. Then we will
show thatHHAOSE is (t, ǫ)-append only unforgeable with
t′ = O(t · poly(κ)) andǫ′ ≥ ǫ/(e(q + 1)), whereq ≤ t.

Assume at time algorithmA wins Game 1 with prob-
ability at leastǫ while making at mostq random oracle
queries. We construct an algorithmB which solves CDH
in timeO(t ·poly(κ)) with probability at leastǫ/(e(q +1)).

Definition of B. We receive a CDH instanceg,A = ga,
B = gb and use it in Game 1 withA. In order to answer
random oracle queries, we maintain sets S andΓ and a map
f : {0, 1}∗ → Zp, all initially empty. The setS will contain
all messages for which the random oracle has been called,
and we will assign some of these to the setΓ. For conve-
nience, we also define the functionH : {0, 1}∗ → G as

H(s) =

{

gf(s) if s ∈ Γ

B · gf(s) if s /∈ Γ

We carry out Game 1 withA as follows.

Setup Define α = ab and givePK = (g, e(A,B)) =
(g, e(g, g)α) toA.

WheneverA makes a random oracle query fors ∈
{0, 1}∗ (in this phase or later), we answer as follows.
First, check iff(s) is defined (that is ifs ∈ S). If so,
returnH(s). If f(s) is not defined, save a uniformly
random value fromZp asf(s). Then we adds toS and
add it toΓ with probability q

q+1 . Then returnH(s).

Corrupt We receiveX = {x1, . . . xn} from A. Without
loss of generality we can assume thatX ⊆ S, since
if that is not the case we can just call the oracle for all
xi /∈ S. If X ⊆ Γ, we abort the simulation. Otherwise,
we may successfully produce a signatureΦn for X.

Let xk be an element ofX that is not inΓ. We com-
pute a signatureΦn to return toA as follows. Select

r1, . . . rk−1, rk+1, . . . rn
R
←− Zp. Define rk = −a.

Compute

Φn = ({(x1, g
r1), . . . (xk, A−1), . . . (xn, grn)},

H(x1)
r1 · · ·A−f(xk) · · ·H(xn)rn)

= ({(x1, g
r1), . . . (xk, grk), . . . (xn, grn)},

gαH(x1)
r1 · · ·H(xk)rk · · ·H(xn)rn)

and returnΦn toA. By the definition ofrk andH(xk),
this is a well formed response.

Note that all our responses toA are properly dis-
tributed. The only values which have not been selected
as in the regular scheme areα = ab andrk = −a,
which are independent and distributed identically to
values selected as in the regular scheme. Also, the
values given in response to random oracle queries are
independent and distributed uniformly at random over
G.

Forge We receive a setY = {y1, . . . ym} and a signa-
tureΦY = (S1, S2) fromA. If Verify(PK, Y,ΦY) =
False or X ⊆ Y ,A has failed at Game 1 and we abort.
Also, if Y 6⊆ Γ, we abort.

Otherwise, we may use the forgery produced byA
to solve our CDH instance. Denote the contents of
S2 in ΦY asS2 = {(y1, z1), (y2, z2), . . . (ym, zm)}.
Note that { y | ∃z (y, z) ∈ S2 } = Y because
Verify(PK, Y,ΦY) = True. Compute

C = S1 · z
−f(y1)
1 · z

−f(y2)
2 · · · z−f(ym)

m

and returnC as the answer to the CDH instance.

We now demonstrate thatC = gab. Since
Verify(PK, Y,ΦY) = True, A must have queried for
all y ∈ Y at some point,5 so f(y) is defined for all
y ∈ Y . Additionally, we have that

e(g, g)α = e(g, S1)·(e(H(y1), z1) · · · e(H(ym), zm))−1

so

e(g, g)ab = e(g, S1)·e(g
f(y1), z1)

−1 · · · e(gf(ym), zm)−1

and

e(g, gab) = e(g, S1 · z
−f(y1)
1 · · · z−f(ym)

m)

⇒ gab = S1 · z
−f(y1)
1 · · · z−f(ym)

m .

ThusC = gab.

Analysis of B. We now analyze the probability thatB
aborts before it can successfully solve its CDH instance. Let
E1 be the event ofA succeeding at Game 1, and letE2 be
the event ofX 6⊆ Γ andY ⊆ Γ. The probability thatB does
not abort is thenPr [E1 ∧ E2].

Since B produces well formed responses distributed
identically to those ofHHAOSE in its interactions withA,
we have thatPr [E1] ≥ ǫ. Now we computePr [E2|E1].
AssumeE1. Let θ = q

q+1 . Then

Pr [E2] = Pr [(X 6⊆ Γ) ∧ (Y ⊆ Γ)]

= Pr [(X \ Y 6⊆ Γ) ∧ (Y ⊆ Γ)]

= Pr [X \ Y 6⊆ Γ] Pr [Y ⊆ Γ]

= (1− θ|X\Y |)θ|Y |.

SinceA succeeds,X 6⊆ Y and therefore|X \Y | ≥ 1. Also,
|Y | ≤ q. So

Pr [E2] ≥ (1− θ)θ|Y |

≥ (1− θ)θq

=
1

q + 1
·

(

q

q + 1

)q

≥
1

q + 1
·
1

e
.

5We neglect the possibility ofA guessing the output of the random
oracle, which may be made arbitrarily unlikely by increasing the output
length of the random oracle.

Thus,Pr [E2|E1] ≥ 1/(e(q + 1)), Pr [E1] ≥ ǫ, and
Pr [E1 ∧ E2] ≥ ǫ/(e(q+1)). SoB does not abort and suc-
cessfully solves the CDH instance with probability at least
ǫ/(e(q + 1)). Furthermore,B takes timeO(t · poly(κ)).

So if the (t′, ǫ′)-CDH assumption holds inG, then
HHAOSE is (t, ǫ)-append only unforgeable, wheret′ =
O(t ·poly(κ)), ǫ′ ≥ ǫ/(e(q+1)), andq ≤ t. In particular, if
every PPT algorithm solves CDH inG with probability neg-
ligible in κ, thenHHAOSE is append only unforgeable.

A.3 History-Hiding

It is straightforward to establish that the HHAOS scheme
is also history-hiding.

Theorem 4. HHAOSE is history-hiding.

Proof. Specifically, we show that any adversary has advan-
tage exactly zero in Game 2. RunKeyGen(1κ) to compute
PK andΦ0 = (gα, {}). ReturnPK to an adversaryA. Af-
ter receiving a setX = {x1, . . . xn} and two permutations
λ0, λ1 fromA, select

r1, r2, . . . rn
R
←− Zp

r′1, r
′
2, . . . r

′
n

R
←− Zp

and compute

Φn =
(

gαH(λ0(x1))
r1 · · ·H(λ0(xn))rn ,

{(λ0(x1), gr1), . . . (λ0(xn), grn)}
)

Φ′
n =

(

gαH(λ1(x1))
r′

1 · · ·H(λ1(xn))r′

n ,

{(λ1(x1), gr′

1), . . . (λ1(xn), gr′

n)}
)

According to Game 2, if our coinb is 0 we must returnΦn,
otherwise we returnΦ′

n. However, sincer1, r
′
1, r2, r

′
2, . . .

are selected independently and multiplication inG is com-
mutative, Φn and Φ′

n are identically distributed random
variables. SoA’s guessb′ is independent of which of the
two we return and thus independent of our coin flipb. We
then have that|Pr [b′ = b] − 1

2 | = 0 and have shown that
the scheme is history-hiding.

Additionally, it is evident from the proof thatHHAOSE

(like HHAOSS) is not only history-hiding, but history-
independent in the information theoretic sense.

B Implementation Details

Here we provide concrete details on efficiently and se-
curely implementing the cryptographic vote storage module
(CVSM) described in Section 5.2. We first detail the values
stored by the CVSM, then the procedures for updating them.

The CVSM achieves multiset semantics by appending
to a string the number of copies already present before
inserting it into the set of stored strings, as described in
Section 2.1. Specifically, the CVSM uses a hash table
C : {0, 1}∗ → N which keeps track of the number of copies
of each string we have encountered. This may be stored in
the main (volatile) memory of the CVSM process; its us-
age is further explained below. Referring to the HHAOS
scheme described in Section 4, the history-hiding append
only signatureΦ = (S1, S2) is stored in two parts. Dur-
ing the polling process, we store the valueS1 ∈ G on the
internal flash memory within the machine. The contents of
S2 are stored on the removable flash memory along with
several other values. To refer to these locations on the re-
movable memory, we denote the content of the removable
memory with the structure given in C-like pseudocode in
Figure 2. Heren is an upper bound on the number of bal-
lots we will need to store andℓ is the length of each ballot.
These values on the removable storage along with the value
S1 on the internal storage are manipulated by the following
procedures.

Open Selectα
R
←− Zp and computePK = e(g, g)α. Print

a fingerprint of the public keyPK. SaveS1 ← gα,
M ← 0, andP ← PK.

InsertBallot Upon receiving a ballot stringb ∈ {0, 1}ℓ,
lookup b in the hash tableC, incrementing the value
C(b) if it is found. If b is not found, insert 1 atC(b). If
b collides with another stringb′ 6= b in C, use chaining
and sort the strings at that location. Sorting collisions
is necessary to maintain history independence. Next,

randomly selectr
R
←− Zp, i

R
←− {0, . . . M}, and save

S1 ← S1 · H(b||C(b))r. Then copyS2[M] ← S2[i],
storeS2[i] ← (b||C(b), gr), and saveM ← M +
1. Note that this method of selecting a location for
the new pair inS2 ensures that every ordering of the
current values inS2 is equally likely.

Close Randomly selectr
R
←− Zp and writeV1 ← S1 ·

H(“ finalize ” ||M)r andV2 ← gr on the removable
storage. SaveS1 ← 0 on the internal storage.

To verify the ballots stored on a removable memory us-
ing a public key fingerprint, carry out the following opera-
tions. First check that the fingerprint provided matches the
public keyP stored on the memory. Next, scan through the

struct {
P; // public key: element of GT

M; // number of ballots stored:
// element of {0, . . . n − 1}

V1; // final value of S1: element of G

V2; // finalization value: element of G

S2[n]; // ballots: array of n blocks,
// each of which stores a pair (x, y)

// where x ∈ {0, 1}ℓ+⌈log2 n⌉ and y ∈ G

}

Figure 2. Values stored on the removable
flash memory within the voting machine.

first M entries in the arrayS2 and compute the following.

z1 ←
∏

(x,y)∈S2

e(H(x), y)

z2 ← e(H(“ finalize ” ||M), V2)

If P = e(g, V1) · z
−1
1 · z−1

2 , report that the history-hiding
append only signature on the recorded ballots has verified
and proceed to total the ballots; otherwise, report an error.

