
Corrupted DNS Resolution Paths: The Rise of a Malicious Resolution Authority

David Dagon1 Niels Provos2 Christopher P. Lee3 Wenke Lee1

1College of Computing, Georgia Institute of Technology,

{dagon,wenke}@cc.gatech.edu
2Google Inc.

niels@google.com
3College of Engineering, Georgia Institute of Technology,

chrislee@gatech.edu

Abstract

We study and document an important development in how

attackers are using Internet resources: the creation of mali-

cious DNS resolution paths. In this growing form of attack,

victims are forced to use rogue DNS servers for all resolu-

tion. To document the rise of this “second secret authority”

on the Internet, we studied instances of aberrant DNS resolu-

tion on a university campus. We found dozens of viruses that

corrupt resolution paths, and noted that hundreds of URLs dis-

covered per week performed drive-by alterations of host DNS

settings. We used the rogue servers discovered in this analy-

sis to document numerous live incidents on the university net-

work. To measure this problem on the larger Internet, we gen-

erated DNS requests to most of IPv4, using a unique label

query for each request. We found 17 million hosts responding,

and further tracked the resolution path they used to reach our

NS. Unable to find plausible harmless explanations for such a

large number of open recursive hosts, we queried 600,000 of

these open resolvers for “phishable” domains, such as banks

and anti-virus companies. We found that 2.4% of this subsam-

ple would reply with incorrect answers, which extrapolates to

291,528 hosts on the Internet performing either incorrect or

malicious DNS service. With DNS resolution behavior so triv-

ially changed, numerous malware instances in the wild, and so

many other hosts providing incorrect and misleading answers,

we urge the security community to consider the corruption of

the resolution path as an important problem.

1 Introduction

The Domain Name System, or DNS, plays an essential

and often unquestioned role in the operation of networks.

We study and measure a growing threat against this service

whereby individual infected computers are directed to use

“rogue” DNS services instead of those provided by their net-

work. This trend differs from traditional DNS attacks, such as

poisoning, since it targets individual users instead of servers.

Further, since it involves only the victim and a complicit re-

mote server, the attack is difficult to witness outside of the

local network.

We document what appears to be the start of a growing

form of attack: the subversion of a host’s correct resolution

path. In this attack, the client is directed to use a rogue DNS

server, which provides incorrect answers to queries or selec-

tive manipulation of answers for the purposes of commercial

gain, phishing or other abuse. In most cases, the users have

no indication that the DNS answers are not what the correct

authoritative DNS servers would provide.

The attack is by design difficult to detect outside of the lo-

cal network. Unlike a phishing site, which security researchers

can crawl to find, or a botnet, which researchers can measure

through flow logs and honeypots, corrupted path resolution

leaves little external evidence. In many networks, users are

free to select a DNS recursive server of their choice, and net-

work administrators usually lack means to monitor or validate

the answers. This openness, and general difficultly in moni-

toring stub resolver behavior, make resolution path corruption

difficult to detect.

Our study of local network traffic confirms the presence of

a class of infections that force victims to use remote, rogue

DNS services. Our study of IPv4 first revealed approximately

17 million “open recursive” DNS servers. Given their demon-

strated use in DNS amplification attacks, this alone has re-

markable security implications.

In order to identify hosts actively involved in malicious

DNS resolutions, as opposed to those merely misconfigured,

we sent repeated queries to 600,000 selected hosts, asking

them to resolve various bank, anti-virus, search engine, and

other “phishable” domains. Overall we found 2.0% provided

incorrect answers 1 (e.g., NXDOMAIN answers where SRV-

1We use the term “incorrect” as a descriptive term, and not to describe

FAIL was the only viable answer, or answers to domains that

did not exist). This group was dominated by those commer-

cially altering of DNS traffic, e.g., to display ads or correct

typing errors. Further, we found 0.4% provided “misleading”

answers, and pointed to proxies. This extrapolates to a popu-

lation of approximately 291,528 hosts on the Internet that po-

tentially provide either incorrect or malicious answers. While

the exact extent is not known, the order of magnitude of such

a population supports our central finding: that both commer-

cial and malicious alteration of DNS answers warrants closer

study.

These two observations must be read together in context:

there are numerous examples of host resolution paths being

subverted by malware, and evidence of hundreds of thousands

of DNS servers that routinely provide incorrect answers. This

pattern, if left unchecked, will lead to the rise of a second, ma-

licious secret resolution authority within the DNS hierarchy.

Malware can then trivially change how users experience the

Internet: via legitimate recursive servers that correctly surf the

DNS zone hierarchy, or via the rogue DNS servers that selec-

tively provide right and wrong answers.

Numerous commercial ventures, mostly focused on cor-

recting user input errors, have conclusively shown the finan-

cial value of altering DNS traffic. Our study suggests that

malware authors are also aware of the financial value realized

in altering normal DNS resolution. There are therefore three

classes of DNS answer rewritings: an opt-in model, where

users are informed of the benefits of DNS answer rewrit-

ing, and self-select for the service; an opt-out model, where

ISPs adopt such technology usually without notifying cus-

tomers, and let those adversely affected select alternative DNS

services; and a no option approach, where user settings are

forcibly changed, without notice, for malicious purposes.

Specifically, our paper provides the following contribu-

tions:

• First, we define the problem of DNS resolution path cor-

ruption, and rogue DNS service, as distinct from existing

DNS abuses (e.g., cache poisoning, fast flux, etc.). We

also observe the rise of commercial interests in providing

incorrect DNS answers, for the purpose of advertising to

customers.

• Second, we describe and demonstrate a technique for

measuring the extent to which DNS servers provide ei-

ther malicious or incorrect answers on the wider Internet.

• Third, we note the implications, for users and networks,

of having the current DNS infrastructure supplanted by a

malicious authority service, and suggest measures to de-

fend the resolution path taken by users. Since we urge

further study of this problem, data from our ongoing sur-

the motives behind the incorrect answer. As discussed below, we used other,

non-DNS based measurements to further characterize “misleading” answers.

vey will be available to the DNS and academic commu-

nities, see [1].

2 Background

We give a brief overview of the Domain Name System

(DNS) [18, 19], a critically-important component of the Inter-

net infrastructure, responsible for mapping names to IP ad-

dresses. We focus on those aspects of DNS used for the

abuse we study. For a general and readable overview of DNS,

see [32].

2.1 DNS Operation

DNS is a distributed database that uses a tree structure to

organize a namespace, composed of labeled nodes (the root

is an empty label). A domain is a node, and fully qualified

domains are the bottom-up concatenation of nodes, with each

label separated by a period.

A zone is a clique of nodes, which form a contiguous tree

structure, the top of which is called the start of authority, or

SOA. The SOA delegates naming authority downward, to dele-

gation points, or else terminates with leaf nodes. The contents

of the SOA are available from DNS authority servers, which

typically transmit data to recursive DNS servers, which in turn

provide general resolution services for local users. Recursive

servers that allow anyone on the Internet to use them are in-

formally called open recursive. Such servers are actually one

of a set of open resolvers:

1. Open Recursive resolvers provide open access to a full

resolver.

2. Open Recursive/Forwarding or Open Forwarding re-

solvers proxy access to a full resolver.

3. Open Caching servers have recursion disabled, but still

provide access to cached entries.

4. Restricted Resolvers provide access to authoritative data.

Each node in a zone contains resource records (or RR sets)

that contain, typically, mappings between host names and IP

addresses. Each RR has a shelf life, or TTL (time to live),

measured in seconds, which begins to decay when it is sent

from the authority server to caching servers.

DNS clients are varied and many. Typically, operating sys-

tems and applications provide limited resolver libraries. Their

lack of caches, and typical inability to climb the zone hierar-

chy to locate records, earn these libraries the name “stub re-

solvers”. Stub code uses the recursive services specified by the

host operating system, which is typically set by an administra-

tor, or acquired during a dynamic address allocation session.

The recursive resolver used by the stub libraries, together with

the upstream zone access behavior of the full resolver, consti-

tutes a resolution path.

Significantly, most operating systems permit sufficiently

privileged users to change the default resolution behavior of

stub libraries. And some applications, such as web browsers,

have their own stub resolvers, which may allow each user to

change or proxy resolution behavior.

2.2 DNS Poisoning and Resolution Path Corruption

Since DNS (as opposed to DNSSEC) lacks robust authenti-

cation mechanisms, the resolution path taken by a computer is

critical to how it experiences the Internet. Typically, whatever

answer is provided by a recursive server is implicitly taken

as correct by the stub resolver. The lack of authentication,

and ability to spoof UDP-based DNS, gave rise to a series of

DNS poisoning exploits, e.g., [9, 10, 27], wherein malicious

answers were forged and relayed to recursive servers.

Attacks against stub resolvers are typically not called DNS

poisoning, since stubs usually lack caching. Usually attacks

on stub resolvers involve altering the recursive path used by

the host to process all resolution requests. That is, instead of

poisoning a cache line in a DNS server, an attack on a stub

resolver points the host to a malicious, rogue DNS server.

Figure 1(a) shows a conceptual view of how resolution

paths can be subverted for malicious purposes. Users nor-

mally request the address of a desired host by consulting a full

resolver, such as their network-provided recursive server. The

recursive server surfs the zone hierarchy to locate the desired

resources, here simplified in Figure 1(a) as a connection to an

authority server. A subverted resolution path will cause the

infected host to instead use a different resolver, which returns

incorrect answers (indicated as IN A’ in Figure 1(a)). The

user is then sent to a rogue site, which may optionally proxy

the connection to the original, legitimate site, or perform other

deceptions (e.g., phishing).

A few malware samples have altered the DNS resolution

path. The qhost trojan, for example, altered host DNS set-

tings and browser proxy settings in 2003 [25]. A more recent

family of trojans called the DNSChanger, did this in only a

few lines of code. The recent and wide-spread Zlob [3] attack

performed similar DNS alterations.

Perhaps the most famous example of malware changing

host resolution behavior was the zcodec trojan of 2006.

ZCodec enticed users to install a “free video player” or

codec. In reality, the trojan altered the host “NameServer”

registry key, which takes precedence over all DHCP-assigned

DNS resolution paths, and directed users to rogue DNS

servers. [13]. According to web popularity ranking services,

the site used to distribute the zcodec trojan briefly rose to

within the top 15,000 pages on the entire Internet, over a 3-

year average of rankings [4]. The site is still active today.

In this paper, we investigate the degree to which the sub-

version of resolvers has occurred. Changing a user’s resolu-

tion path by redirecting her to a malicious DNS server requires

the malicious DNS server to be open recursive. As such, we

are also presenting data from an Internet-wide survey on the

prevalence of open recursive servers.

3 Study Methodology

As noted in Section 2, abuses in DNS path resolution are

difficult to measure outside of the local network. Since vic-

tims contact remote servers directly, the only opportunities to

observe the attack are (1) on the compromised host, (2) at the

complicit DNS server, or (3) at the local network. We view the

first two as difficult and unlikely sampling points, respectively.

Observing malicious DNS behavior at the local network level

has difficulties as well. Local operators may observe DNS

queries leaving their network, destined for remote machines,

but absent a policy restricting the use of DNS, they lack di-

rect means of determining whether the traffic they observe is

correct.

We therefore measured this problem from both ends: by

studying resolution patterns in a local network, and by at-

tempting to find suspicious resolution paths on the Internet

at large. For the former, we tapped DNS traffic at a campus

border. For the latter, we performed a comprehensive survey

of all of IPv4, using a technique that forced open resolvers to

contact our nameservers.

By working in both directions, we found evidence of mali-

cious DNS usage on the local network, and found convincing

but indirect evidence of this phenomena on the larger Internet.

The following sections describe these two approaches in

details.

3.1 Local Network Observation

We captured two months of DNS traffic at a busy campus

gateway and parsed the packets for the query and resource

records. The traffic tap reflected the resolution behavior of

approximately 18,000 users. We used a setup similar to Pas-

sive DNS Replication [33]. Passive DNS focuses on answer

streams directed at resolvers, as shown in Figure 1(a), How-

ever, corrupted DNS paths do not transit through local re-

solvers, and instead make direct connections to rogue DNS

servers. We therefore tapped all egress DNS traffic, both UDP

and TCP using simple port filter.2

During the two month capture period, we gathered 390 GB

of network trace files of DNS-only traffic with a total of one

billion resource records from 4.5 billion packets. (Since our

sample period also overlapped with our DNS probe study, dis-

cussed below in Section 3.2, many queries went to non-open

resolvers, and were never answered.)

2Special care was made to protect the privacy of the students and anyone

wishing to reproduce this study would be well-advised to consult their net-

work operators for guidelines

(a) DNS Resolution Paths

IP
i

crypt (IP).ns.example.com

(1)

Sensor

(2)

i

0

IPv4

32
2 !1

(b) DNS Survey Methodology

Figure 1. a) Conceptual view of normal and corrupted DNS resolution paths, indicated as IN A and IN A’

answers respectively. Passive DNS monitoring is also indicated. (b) DNS Survey methodology, revealing
host resolution behavior as either (1) open recursive or (2) recursive forwarding.

3.2 Internet-Wide Resolution Survey

We also wanted to measure what we observed in our local

network on the Internet at large. This is a difficult problem,

since the remote, complicit DNS server potentially controls

the entire resolution path. That is, we would not have an op-

portunity to witness some malicious resolutions at the root,

TLD or authority levels, since the rogue DNS server may not

even consult the zone hierarchy to find the correct answer. In-

deed, in many cases the rogue servers synthesize incorrect an-

swers.

Without the cooperation of numerous network operators, it

would be impossible to directly measure the extent to which

malicious DNS traffic transits on the Internet. We reasoned,

however, that since an attacker might not know the IP address

of his victim beforehand, the malicious DNS resolver is there-

fore very likely to act as an open recursive server. That is, they

must accept all queries from potential victims, since there is no

straightforward way to determine who will ultimately fall prey

to a virus.

This reasoning leads us to search for open resolvers, and

then identify those that are likely providing malicious DNS

services. Our general approach was to pose recursive DNS

queries to all of IPv4, for labels that we uniquely controlled.

We started by organizing IPv4 into a series of classful ad-

dresses, and excluded non-routable addresses, e.g., [16], using

the bogons list published by Team Cymru [28]. We further

excluded CIDRs allocated to the U.S. Military and U.S. gov-

ernment. We obtained these addresses by consulting routing

prefixes announced by US-government owned ASNs.3 The

3Based on previous experiences with DNS surveys, we found that sending

DNS queries to these networks invariably resulted in questions forwarded to

our campus network abuse group. We reasoned that such carefully watched

networks were unlikely to have open resolvers.

remaining addresses were randomly shuffled, and with the or-

dering of the addresses preserved. This allowed the survey to

be stopped and restarted as needed.

For each address, we calculated a label using a hexadecimal

representation of a blowfish encryption of each IP. Thus, to a

given IP address, IPi, we asked for an A-record for:

blowfish(IPi).parentzone.example.com

For the parent zone of the hashed label (called parentzone
in the example above), we used a zone that we controlled, and

had delegated NS authority. In other words, we asked a unique

query to nearly every IPv4 host, regarding a label in our del-

egated zone. This ensured two properties were maintained in

each query. First, each query to each IP would be unique, and

therefore (a) not cached by any intermediate server, (b) not

easily guessable, even though we did not anticipate problems

with spoofed answers in this round of study, and (c) trivially

reversible given the blowfish key, so that one can efficiently

find which of the billions of IP addresses corresponds to a

given label. Second, we ensured that recursive resolutions

would be sent to our NS, allowing us to see what resolution

path was taken by the hosts.

Figure 1(b) shows a conceptual view of how we performed

the resolution. Our desire was to not merely enumerate which

hosts performed open resolutions, but also find how each host

looked upward in the zone tree. Figure 1(b) shows two con-

ceptual paths for resolution by the resolver: either (1) directly

querying our NS for the A-record, or (2) forwarding the re-

quest to another recursive server. We imagined that the first

path might correspond to, for example, a misconfigured name-

server that was also open recursive. The second path repre-

sents an open forwarder, as discussed in Section 2, such as

a home computer that forwarded DNS requests to the ISP’s

DNS servers.

The other two types of open resolvers, open cache and au-

thoritative, were not relevant, and so we did not design a probe

technique to map them specifically. Open cache resolvers, for

example, do not provide recursion, and authority servers only

return records for their zone. That is, of the four types of open

resolvers noted in Section 2, only the first two were deemed to

be useful for studying resolution path corruption.

Thus, in our study, the sensor in Figure 1(b) examines the

DNS query traffic and for each query compares the look-up

string, i.e., blowfish(IPi) with the IP address, IPj , that sends

the query. This would tell us the DNS resolution behavior

of IPj . Specifically, if the IPi = IPj , then IPj is an open

recursive server; otherwise, it is recursive forwarding. If IPj

is properly configured (i.e., non-open recursive), it would have

dropped/ignored our query and as a result, our sensor will not

receive a look-up for blowfish(IPi).
Another simple technique to separate forward recursive

servers from other open recursive servers is to reply with the

IPj as the answer at the sensor. When the answer comes back

from IPi, check if the answer matches IPi. If it is forwarding,

then the answer will not be IPi, but rather IPj . This approach

requires less processing than encrypting IP addresses, but is

more susceptible to spoofing.

We performed two studies of IPv4. In our second scan of

IPv4, once we determined that an IP address functioned as an

open recursive resolver, we performed additional queries to

fingerprint the implementation of the DNS server. The three

additional queries we sent were a query for version.bind

in the CHAOS name space, a truncated query where we set the

TC bit and an IQUERY that is a deprecated way of performing

a reverse lookup.

In our second pass, to avoid state for randomly ordering the

IP addresses we probed, we employed a variable-sized block

cipher, as done in [23]. Determining the next IP address sim-

ply involves incrementing a 32-bit counter and encrypting it

with the block cipher. The block cipher essentially gave us a

permutation on the 32-bit IPv4 address space.

We created fingerprints for each resolver from the response

packets according to Bernstein’s methodology [11], which

consists of concatenating the codes described in Appendix A,

Table 2 depending on fields and flags in the DNS response.

In addition to the DNS queries, we also performed an HTTP

GET request against the IP address of the open resolver to de-

termine if it was also running an HTTP server. A successful

GET request allowed us to analyze the HTTP headers for infor-

mation such as the server version and the timezone the server

ran in. We pretended to be a version of Internet Explorer, to

more fully interact with HTTPD-enabled bots that screen re-

quests based on the user agent [14].

4 Analysis

Our study focuses on a class of attack that changes the

resolution path of hosts, and directs users to malicious DNS

servers. Although some anti-virus vendors report in depth on

this problem, (in particular, see the analysis in [12, 15]), we

wanted to find local evidence of resolution path corruption.

We then applied our DNS scan technique to see if we could

find evidence of this abuse in the wider Internet.

4.1 Evidence of Local DNS Abuse

The data collected at the university core router was enor-

mous. In [37], the authors were able to use hand sifting

and simple threshold analysis to spot several common trends.

For example, they sorted alphabetically the domain query

strings, and easily found typo squatting domains. Likewise,

they sorted domains by the number of A-records to find fast

flux [29] behavior. We observed these behaviors as well,

but our task required us to find much smaller needles in the

haystack.

We used two approaches to locate path corruption exam-

ples. First, we matched queries directed to open recursive

DNS servers and Storm Worm [2] infected nodes. Thus,

when university users queried remote open recursive server

or known bots, we could use this as a low pass filter, and fur-

ther analyze the matching traffic. Second, we also obtained

and ran DNS altering malware, to learn the location of rogue

DNS servers. We then used the IPs of the rogue DNS servers

to bootstrap the search for infected hosts.

To identify malware samples that change DNS settings, we

took 194,372 virus execution traces from the Malfease project,

https://malfease.oarci.net, and examined the un-

derlying execution trace, which includes system calls, to see if

the malware altered windows registry keys affecting DNS res-

olution. We found 6 samples that change the “NameServer”

registry key. We further performed a search on Malfease for

malware identified by AV tool scans as affecting DNS, e.g.,

the Trojan.DNSChanger virus. While hardly complete,

since this depends on the non-standard naming conventions of

anti-virus vendors, it helped characterize the samples.

There were too few PE32 binary samples that changed the

DNS path to reveal any trends. So we consulted the malware

detection infrastructure used by Google [24], and looked for

web pages that, when visited, would cause hosts to change

their DNS resolution settings (e.g., by using web exploits to

alter the host NameServer registry key). Over the last six

months, we found 2,107 such pages distributed over 605 do-

mains. In total, these pages pointed hosts to 75 unique remote

DNS servers. The graph in Figure 2(a) shows the number of

URLs encountered weekly is quite high. Where there may

be other propagation vectors we did not measure in this paper

(e.g., spam traps), the web and binary analysis suggests that

this form of attack is current and prevasive.

The trend we observe is that, after the initial DNS-altering

virus in 2003, numerous virus samples started to appear in

2005 that changed host resolution paths, e.g., DNSCharger.

These virus-driven changes were supplemented or replaced

with web-based exploits that performed the same. This attack

(a) URLs Altering Host DNS

Open Recursive Hosts in /16 CIDRs

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

O
p
e
n
 r

e
c
u
rs

iv
e
 I
P

s
 i
n
 /
1
6

IPv4 Address

Jan. 2006 Survey

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

O
p
e
n
 r

e
c
u
rs

iv
e
 I
P

s
 i
n
 /
1
6

IPv4 Address

Aug. 2007 Survey

(b) Growth of Open Recursive Hosts

Figure 2. (a) URLs encountered per week that alter host DNS settings. (b) Prevalence of Open Recursion

in IPv4 /16s, January 2006 and August 2007 compared.

exposes the victim to identity theft, without the need for elab-

orate host-based keylogging or rootkits. All of the malicious

behavior exists on remote servers, made all the more agile by

the use of a rogue DNS server.

To bootstrap our analysis, we executed 8 samples of DNS

changing malware in honeypots, and observed the changes

made to the honeypot’s resolution settings. This yielded a

set of 8 different IP addresses pointed to by the viruses. We

reasoned that traffic to/from those IPs would be most likely

malicious, and used this as a filter for our trace files. We

checked our DNS data collection, and found numerous in-

stances of DNS traffic sent to these remote sites from the

campus network. In several cases, a remote DNS server in

Russia served as the primary recursive DNS server for several

compromised machines on the US-based university network.

Specifically, there were several instances of campus hosts us-

ing known malicious resolvers from the Ukraine region for

queries like time.windows.com, www.amazon.com,

www.facebook.com, and sb.google.com. The queries

were blocked from reaching the servers, so we did not learn

what answers were provided. Below, we describe how we gen-

erated queries to other, non-blocked rogue DNS servers, and

documented incorrect answers.

4.2 Understanding the Nature of Open Recursives

Despite the relatively small numbers of malware samples

that altered DNS settings, we nonetheless found numerous in-

fected individuals in an average-sized university. This sug-

gests there may be a wider prevalence. While our evidence

of local malicious DNS traffic caused by infections was quite

clear, finding a similar pattern of abuse on the wider Internet is

not as straight forward. As noted in Section 2 it is nearly im-

possible to directly observe. Our recursive probe technique,

however, gave us a starting point for indirect evidence.

Our general analytical approach was to take the set of open

recursive servers, and attempt to find which ones were used for

malicious DNS services. We applied a series of filters (e.g.,

removing linux hosts, and embedded DSL devices), in order

to better locate malicious resolvers.

Our late August 2007 scan found 10.4 million open re-

solvers, while our early September 2007 scan found 10.5
million resolving hosts. The union of the two sets yields

17,365,759 open resolvers, since only 3.6 million IPs were in

common. The scans were only a few weeks apart, suggesting

a mass migration of some 7 million DNS server addresses.

The August and September numbers were also a significant

increase over a January 2006 scan that found only 634,941

hosts. To illustrate the IP diversity gained by this increase, a

plot of the January and August data appears in Figure 2(b),

where the IP address is plotted on the x-axis, and counts of

open resolvers by /16s form the y-axis. The graph high points

all correspond to ISP allocations.

We note that according to site ranking services, the

zcodec malware propagation site reached its peak popular-

ity (a top 15, 000 site) in Q3 of 2006–months after our initial

survey. By looking at the reports of the gross numbers of open

resolvers found by others (e.g., [35], who reported a spike in

open recursive hosts in July, 2007), we theorize that just in

the last year, there has been a dramatic rise in the number of

open resolvers, on the order of several million. This by itself

has profound implications for security, given the role these

machines could play in denial of service attacks using DNS

amplification [31].

Clearly not all open resolvers provide malicious DNS ser-

vices. With tens of millions of open recursive hosts observed,

we endeavored to find harmless explanations for the open re-

cursive behavior in our data. We first theorized that some

of these open recursive hosts could be hobbyist machines or

open source DNS servers used by small businesses. Linux ma-

chines could of course have their resolution paths changed, but

we found it unlikely the Win PE32-based binaries corrupting

host resolution would act on Unix machines, other than in spe-

cialized emulation contexts.

To test this explanation, we analyzed the pattern of

resolutions used by hosts. When performing recur-

sive lookups, Linux hosts generate a distinct pattern of

AAAA queries, followed by an A query, because of

the forward IPv6 compatibility logic in glibc, glibc-

2.6.1/resolv/gethnamaddr.c. That is, Linux hosts

perform an IPv6 lookup (regardless of whether there’s a non-

link-local v6 interface), and then an IPv4 lookup when the

query fails or the querying host has no 6-stack. As a result,

when we observed a host performing the resolution pattern

(AAAA then A) to our NS, we deemed it to be a Linux host.

This heuristic will have diminished value when Vista’s stub

resolver is refined.

We found that only 169, 407 of the open recursive hosts

used one of 37, 429 unique Linux forwarding resolvers. Fil-

tering our list of open recursives this way did not provide a

satisfying explanation for the large number of resolvers. There

had to be other factors behind these open recursive hosts.

We next theorized that many of the open recursive hosts

were running a DNS server embedded in a home networking

appliance, such as a premium DSL router. Since we also sent a

web request to open resolvers, we checked for hosts answering

with server strings that correspond to embedded devices (e.g.,

RomPager, Agranat-EmWeb). Here, the theory was that these

embedded devices, while perhaps poisonable using traditional

DNS cache attacks, were less likely to be used as a resolv-

ing authority for malicious purposes. A break down of the

server strings appears in Table 7. We found a total of 417, 327
such hosts–again too few to explain the surge in open recursive

servers.

We next looked at properties of the recursive servers them-

selves, and how they resolved our probes. As noted in Sec-

tion 3, we tracked the IP address of the open recursive resolver

that we asked to resolve a query and the IP address that even-

tually contacted our authoritative name server for that query.

We recorded approximately 23 million such pairings. About

96.4% or about 15 million resolvers forwarded their query to

another resolver, whereas only about 580, 000 resolvers con-

tacted our name server directly (open recursive) instead of

forwarding the request (open forwarding). We analyzed the

number of IP addresses and /24s behind each forwarding re-

solver. Approximately 71% of forwarded resolvers have only

one open recursive resolver that forwards to them and 87% of

all resolvers have only a single /24 that forwards to them, and

shown in Figure 3.

Some resolvers received recursive forwards from over

20, 000 different /24s. The resolvers with a large number of

forwards from open recursive servers are mostly located in

China, Korea and the US (Table 4b). The network and geo-

graphic diversity found in these IPs was curious, since it was

not clear what relationship existed between so many open re-

solvers, and other hosts in remote countries and networks. The

actual recursive forwards with the most clients using them are

located in Italy, Netherlands, and the United States. The top

10 recursive forwarding servers are listed in Appendix Table

3. We found that a high percentage of hosts using a particular

forwarder are in the same country as the forwarder.

Although, approximately half of the legitimate DNS

servers are configured correctly to be not open-recursive, the

forwarding tables we built allowed us to query even closed re-

solvers. Any open-recursive server that forwards its queries to

the closed resolver can be used to query the closed DNS server.

Although there is a chance that the open-recursive might be ly-

ing, we can probe many of them and then do a majority vote

on the answers.

We continued to look for explanations about the behavior

of these open recursive servers. So we next compared them

with two different sets of known recursive resolvers. The first

set was a subsample of DNS servers resolving Google do-

main names, totaling some 900, 000 IPs over a period of three

months. Essentially, this was a sampling of IPs that consulted

the authority servers for google.com–DNS servers refresh-

ing cache entries. The other set consisted of about 80, 000 IP

addresses contained in the “glue records” for the .com TLD.

Essentially, these were the IP addresses of nameservers listed

in the .com zone.

Since these hosts were already known to be DNS servers,

we sought to explain what fraction of the 17 million open re-

cursive servers were observed to be DNS servers in other con-

texts. We found about 50% of the glue IP addresses in our

set of open recursives and about 25% of the Google resolvers.

The overlapped hosts are likely DNS servers, misconfigured

to be open recursive. There remained, however, a very large

number of open recursive hosts, numbering in the millions,

whose role as a DNS server cannot be explained. The fact that

they did not consult the authority servers for google.com

suggests they forward recursive queries to other machines.

Unable to find other plausible harmless explanations, we

instead began to look for negative explanations of the hosts

behavior. We consulted the “BL history” of each IP. We built

a database of every black listed host noted by SpamHaus [26],

for a period of six months prior to our study. We used

SpamHaus’s “XBL”, or exploits block list as a reference for

IP reputation, since the XBL identifies IPs hosting or sending

malware (e.g., viral attachments in email). Hosts are delisted

automatically after a few weeks, or by request.

Figure 4 shows the distribution of 396, 000 open resolvers

in our study that had a negative BL history. Many had

short listings–often a single event, while others had persistent,

mutli-week listing times. This is fairly typical of dynamic

1 10 100 1000 10000 100000
1

10

100

1000

10000

100000

1000000
N

u
m

b
e

r
o

f
re

s
o

lv
e

rs

/32s

1 10 100 1000 10000 100000
Number of entries forwarding to resolver

1

10

100

1000

10000

100000

1000000

N
u

m
b

e
r

o
f

re
s
o

lv
e

rs

/24s

(a) Forwarding Resolvers and /24s

09-14 12:00:00 09-15 12:00:00 09-16 12:00:00 09-17 12:00:00
Time in hour granularity

300000

310000

320000

330000

340000

350000

360000

370000

380000

390000

400000

410000

420000

430000

440000

450000

460000

N
u

m
b

e
r

o
f

u
n

iq
u

e
 r

e
s
o

lv
e

rs

Resolvers per hour

All resolvers

(b) Diurnal Reachability of Resolvers

Figure 3. (a) the number of resolvers being used to resolve forwarded query and howmany open recursive

IP addresses or /24 networks are forwarding to them. The distribution follows Zipf’s law. (b) A diurnal
pattern of hosts probed over time, suggesting home users acting as resolvers.

hosts that SpamHaus tracks. We similarly noted the over-

lap between our open resolvers and the Storm Worm-infected

hosts. We obtained a list of Storm bots, using a variety of

data sources. [14,30]. We counted 754, 159 hosts in the Storm

botnet that were open recursive.

5 DNS Servers That Lie

Thus far, our analysis generated a set of open resolvers,

and noted (a) the remarkable migration of 7 million hosts be-

tween scan events, (b) the lack of any satisfying explanation

for why these hosts are otherwise open resolvers (e.g., author-

ity servers, embedded devices, Linux machines). To find the

hosts in this set that were being used for malicious resolution

purposes, we designed a second study.

We selected a set of approximately 600, 000 resolvers that

were chosen from three different categories: 200, 000 selected

uniformly randomly from all 17, 000, 000 resolvers, 200, 000
selected from resolvers that overlap with resolvers contacting

Google, and 200, 000 IP addresses selected from known Storm

bot infected nodes. Over a period of four days, we asked these

IP addresses to resolve 84 different domains. The domains

consisted of a subset of banking sites, social networking sites,

anti-virus sites and other domains likely to be a subject of

Phishing attacks. We sent about 670 probes per seconds so

that we would probe each resolver every 15 minutes on the

average. Over the course of the four days, we sent approxi-

mately 220 million probes.

To determine if a resolver provides incorrect answers, we

identified the set of authoritative net blocks that contain valid

responses to IN A queries for every single domain. We then

compared the answers we received from the probed resolvers

and checked if the answers fell within the netblocks we iden-

tified. For each probe, we recorded the time it was sent, the

answers we received or a timeout in case we did not re-

ceive any answers. Note that we use the term “incorrect” in a

precise clinical sense, and do not merely use DNS to describe

the result as “false”, “misleading”, or “malicious”. Instead,

to characterize the motives behind the incorrect answers, we

visited the IPs provided by the DNS server.

Figure 3 shows how many unique resolvers answered our

probes per hour and also the cumulative number of resolvers

that answered our probes so far. The graphs show that over the

course of our study we received answers from approximately

460, 000 of the approximately 600, 000 resolvers we probed.

However, at any given hour, we received answers from only

about 310, 000 to 330, 000 resolvers. In general, we would

expect that DNS servers to be available all the time. How-

ever, as seen in Figure 3, 30% of all answering resolvers are

unreachable at any given time. Also, the small diurnal trend

we observed seems to indicate that the majority of machines

we probed might be end-user devices or hosts that are being

turned on and off depending on their usage.

Table 1 shows statistics for the resolvers organized by coun-

try. The country was derived from geo-location data on the

IP address of the resolver. We use four different categories

to describe the nature of an open-recursive resolver: All

True indicates a resolver that answered correctly to all our

queries, All lies indicates resolvers never correctly an-

swering queries, NXDomain indicates resolvers returning ad-

dresses to IN A queries for non-existent domain names, and

Buggy for resolvers that return IN A records that are off-

by-one from the correct answer in one of the octets of an IP

address.

A resolver that never correctly answers a query is often in-

Country/Type Number of re-

solvers

Answering All True All Lies NXDomain Buggy

All 593092 457643 (77.2%) 446689 (97.6%) 566 (0.1%) 9955 (2%) 212 (0%)

Storm 211778 166869 (78.8%) 164107 (98.3%) 86 (0.1%) 2560 (2%) 26 (0%)

Google 192629 160385 (83.3%) 158129 (98.6%) 105 (0.1%) 1829 (1%) 142 (0%)

Random 188685 130389 (69.1%) 124453 (95.4%) 375 (0.3%) 5566 (4%) 44 (0%)

Other Fingerprints 319684 227007 (71.0%) 220143 (97.0%) 422 (0.2%) 6244 (3%) 90 (0%)

Fingerprint: 1q1 141490 123747 (87.5%) 122052 (98.6%) 70 (0.1%) 1482 (1%) 102 (0%)

Fingerprint: ttt 107049 89795 (83.9%) 87484 (97.4%) 72 (0.1%) 2149 (2%) 20 (0%)

Fingerprint: 5q5q 24869 17094 (68.7%) 17010 (99.5%) 2 (0.0%) 80 (0%) 0 (0%)

Unknown OS 553956 423212 (76.4%) 412443 (97.5%) 556 (0.1%) 9796 (2%) 207 (0%)

RomPager 31260 26733 (85.5%) 26572 (99.4%) 4 (0.0%) 149 (1%) 3 (0%)

Linux 7876 7698 (97.7%) 7674 (99.7%) 6 (0.1%) 10 (0%) 2 (0%)

USA 127008 101851 (80.2%) 97196 (95.4%) 293 (0.3%) 4327 (4%) 11 (0%)

Turkey 57041 48593 (85.2%) 48581 (100.0%) 1 (0.0%) 4 (0%) 7 (0%)

Brazil 30900 24876 (80.5%) 24850 (99.9%) 5 (0.0%) 13 (0%) 2 (0%)

Spain 30458 21867 (71.8%) 20070 (91.8%) 2 (0.0%) 1794 (8%) 0 (0%)

Japan 21370 16758 (78.4%) 16737 (99.9%) 4 (0.0%) 13 (0%) 0 (0%)

India 17611 16094 (91.4%) 16054 (99.8%) 1 (0.0%) 20 (0%) 1 (0%)

Peru 16414 15890 (96.8%) 15878 (99.9%) 2 (0.0%) 9 (0%) 1 (0%)

Thailand 15954 14640 (91.8%) 14513 (99.1%) 28 (0.2%) 68 (0%) 6 (0%)

China 28683 13398 (46.7%) 10920 (81.5%) 38 (0.3%) 2406 (18%) 20 (0%)

France 19317 13137 (68.0%) 12893 (98.1%) 9 (0.1%) 236 (2%) 1 (0%)

Italy 16984 12292 (72.4%) 12248 (99.6%) 7 (0.1%) 30 (0%) 0 (0%)

Taiwan 6158 4162 (67.6%) 4004 (96.2%) 12 (0.3%) 15 (0%) 134 (3%)

Table 1. The table shows the geographic distribution of probed resolvers and how they answered to

probing queries. The table also shows statistics for the operating system or fingerprint class a resolver
belongs to.

dicative of captive portals where users need to authenticate

before they can use the Internet. Making these resolvers ac-

cessible over the Internet is likely due to misconfiguration.

It is interesting to note that Turkey has the largest fraction

of resolvers that return accurate answers. The country with

the largest fraction of resolvers answering for non-existent do-

mains is China.

In addition to looking at the geographic distribution of re-

solvers, we also analyzed them according to the sample set

they belonged to: Random, Storm or Google. There are no

significant differences other than the fact that the randomly

sampled set has a larger fraction of resolvers that answer for

non-existent domains.

We also separated the resolvers into different classes de-

pending on their DNS fingerprint and the operating system

implied by the HTTP Server header. We notice that resolvers

running Linux web servers have much higher availability and

more correct query answers compared to the set of resolvers

for which we could not determine an operating system version.

To further characterize the “incorrect” answers, we ac-

cepted the answers given by the DNS server, and browsed

to the web site they resolved. Thus, we visited sites such as

Ebay, Amazon, and Google, using the DNS server’s incorrect

answer. We captured each of these pages into a database and

extracted them later for analysis. By hand analyzing over 250

randomly sampled webpages, we found the common types of

misdirection and built heuristics to detect them. A large num-

ber of sites were parked domain splash pages (although the

real domain does exist) with 221 pages for one domain, 224

pages for another, and 96 for yet another. We also found 48

proxied google pages, 29 Chinese splash sites, and 66 Com-

cast pages requesting a completion of registration. These ra-

tios of parked, proxied and apparent phishing pages held over

the entire database.

All of these pages, of course, could be altered trivially by

the proxying host. And all of them let the remote site act as a

man-in-the-middle for all transactions (checking mail, logging

in, searching etc.) In Table 1, we identify such DNS answers

as “lies”, since they point to pages that are clearly not the orig-

inal requested resource (e.g., Ebay), but provide no indication

to the user that they are not associated with the site the user

looked up.

5.1 Commercial Abuse of DNS

Companies such as Nominum, Paxfire, Barefruit, Sim-

plicita, and OpenDNS derive commercial value from altering

some DNS answers. The primary motivation is a practice in-

formally called error-path correction in which bad user input

errors lead to DNS queries that should normally return NX-

DOMAIN. Instead of forwarding NXDOMAIN to the end host,

the DNS resolver returns IN A records to an IP address that

return advertisements and search results relating to the incor-

rectly entered host name. In some cases, the commercial re-

solvers also return incorrect IN A records when a DNS query

has timed out. In the case of OpenDNS, the user is prevented

from resolving known malicious (phishing) domains. This

practice is the dual opposite of the involuntary, malicious path

corruption attacks noted in Section 4.

Our analysis shows that approximately 2% of all resolvers

answer for non-existent domains. Most commercial DNS ser-

vices behave this way as well. This has unfortunate conse-

quences for non-HTTP protocols such as SMTP where mail

is being delivered to the IN A records if no IN MX record

can be found. In China, this practice is most prevalent with

about 18% of all probed resolvers answering for queries to

non-existent domains.

Thus, these DNS services use either an opt-out or opt-in

system to affect user DNS settings. This contrasts with the

“no option” model used by malware, which of course does not

notify users. We see consent and user notification as the key

issues in all of the DNS-altering systems (both commercial

and malicious). Of all the commercial DNS services, only

OpenDNS appears to have a voluntary system, coupled with

meaningful user notification and education.

We note that there are no RFCs, policy guidelines or even

informal standards to guide DNS rewriting. Given the wide-

spread use of these commercial services (and the parallel rise

of malicious DNS answers), we urge further study of this area.

5.2 Implementation Errors

We found a noticeable number of resolvers that returned

incorrect answers due to implementation errors. Although we

have no insights into the nature of the bug, the behavior was

deterministic and happened only for queries that return multi-

ple IN A records. In some cases, resolvers decremented the

second-most-significant octet in one of the IN A records, in

other cases, we found the least-significant octet decremented.

The approximately 200 resolvers we found behaving this way

either timed out to our CHAOS queries or answered with 9.3.1
or 9.4.1 indicating the version of BIND they claim to run.

6 Related Work

The closest work to ours is [37], which used passive DNS

monitoring to observe numerous resolution anomalies such as

typo squatting. By sorting epochs of DNS traffic, and not-

ing the IN A’s geographic origins, the authors were also able

to identify fast flux domains. Their description of fast flux

is more narrow than the Honeynet Project paper, [29], which

takes a general view of flux, noting that it may involve both

DNS indirection via a rotating NS layer, and an HTTP proxy

layer. The double-flux described in [29] is a single example

of the misbehavior we describe. Our work considers resolu-

tion path corruption as a general form of attack, which may

involve the use of rotating malicious NS servers, as well as

malicious trojans to alter a victim’s default recursive behavior,

and ultimately, the creation of a second malicious resolution

authority.

Part of our analysis of course makes use of passive DNS

replication, first introduced by Florian Weimer [33]. Tech-

nologically, we merely used a datastore technique similar to

Weimer’s. From a policy point of view, however, logging DNS

traffic not flowing to or from known DNS servers, as in [33],

has tremendous privacy implications. For this reason, we have

not proposed a general extension to passive DNS, and leave

this for future work.

Scanning large portions of IPv4 for DNS activity was ad-

dressed in [20], where the authors considered how malicious

reverse DNS probes can reveal darknet space. Their work en-

deavored to better mask darknet space, while ours endeavored

to discover hosts in routed space.

Our work is different from those studying DNS cache poi-

soning. Our analysis focused on the host-based manipula-

tion of stub resolvers, and the answer stream from selected

DNS servers. In contrast, surveys such as those by the Mea-

surementFactory [34] examined poisonous answers (usually

from authority servers) for parent zones (e.g., TLDs and the

root zone). Such surveys point to misconfiguration, while our

study points to intentionally altered DNS answers, either for

commercial or malicious reasons.

Our works fits into the larger set of literature that charac-

terizes DNS behavior. In this vein, open recursion has been

studied as a security problem on the Internet. [31]. Our sur-

vey also revealed likely misconfiguration of DNS servers. Our

concern was on the intentional malicious subversion of DNS;

for a treatment of how general configuration errors affect the

robustness of DNS, see [22]. For a thoughtful treatment of

open recursion, see John Kristoff’s assorted talks on the sub-

ject [17].

Our survey also noted several DNS deployments that su-

perficially appeared vulnerable. The vulnerabilities of various

DNS systems have been observed since [10]. Some portions

of our analysis relied on historical information associated with

IP addresses, which may have been affected by DHCP churn.

In [36], the authors addressed this issue directly.

7 Conclusion and Future Work

We have witnessed an increase in malware that changes

host resolution paths. This trend, combined with a large sup-

ply of open recursive hosts, threatens to create a new, mali-

cious second authority within the DNS hierarchy. We urge the

attention of the community to the following issues.

Measurement. Our short study provides a glimpse into a

group of tens and hundreds of thousands of DNS servers that

provide incorrect DNS replies. We need to better understand

and detect when this is done for commercial gain, with varying

levels of transparency and notification, and when this is done

for purely malicious purposes.

DNSSEC/DLV. We believe DNSSEC [6–8] provides a so-

lution to malicious path changes (and other issues) if end-to-

end validation is permitted on hosts. It remains to be seen

what manipulations malware can have on the host’s use of the

validation process.

As reported in a recent study [21], DNSSEC deployment

requires good understanding of managing cryptography, e.g.,

key management, and coordination across administrative do-

mains, and support of gradual roll-out (e.g., supporting the

DNSSEC in isolated “islands”). These are non-trivial issues

to overcome and will take time before DNSSEC is fully de-

ployed on the Internet. This suggests that DNSSEC Looka-

side Validation (DLV) [5] records may play an important role

as well.

We are also concerned that the monetization of DNS an-

swer rewriting may provide a counter-incentive to the adop-

tion of DNSSEC. For example, networks monetizing user ty-

pos may have financial reasons to discourge the use of end-to-

end DNSSEC, which would reveal the substitution of NXDO-

MAIN answers.

Blocking. It seems likely some networks will impose sim-

ple restrictions on egress DNS traffic (e.g., as many .aero

zones do already) and require the use of local servers. Some

networks may allow the use of remote DNS servers; however,

as our study has shown, that trust may be misplaced. If users

do not consent to or know about DNS alterations (either from

commercial DNS services, or malicious software), then block-

ing user DNS traffic at the edge may provide an appealing so-

lution to some operators, particularly enterprises.

The security community needs to understand how this

might create a brittle DNS infrastructure, and what tradeoffs

exist in local networks.

Recovery. When rogue DNS servers are taken down or

blocked, the victims are left without DNS, and ISPs may face

enormous support costs. It is essential that the security com-

munity coordinate with the ISPs and law enforcement.

Acknowledgments

This material is based upon work supported by the Na-

tional Science Foundation under Grants CCR-0133629, CNS-

0627477, and CNS-0716570, and by the U.S. Army Research

Office under Grant W911NF0610042. Any opinions, findings,

and conclusions or recommendations expressed in this mate-

rial are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation and the U.S. Army

Research Office.

The authors gatefully acknowledge David Presotto and

Ankur Jain of Google for assistance with the Google DNS

data, as well as Panayiotis Mavrommatis and Dean McNamee

of Google for help with the malware detection infrastructure.

The authors also gratefully acknowledge the draft review and

advice provided by Paul Vixie, David Ulevitch, and Cricket

Liu. Expert system administration was provided by Robert

Edmonds. And endless supply of patience and abuse@ sup-

port was provided by the Georgia Tech Office of Information

Technology. Peter Honeyman and M5 Hosting also assisted

with DNS scanning.

References

[1] Operations, analysis, and research center. https://

oarc.isc.org/, 2007.

[2] Storm worm. http://en.wikipedia.org/

wiki/Storm_Worm, 2007.

[3] Zlob trojan. http://en.wikipedia.org/wiki/

Zlob_trojan, 2007.

[4] Alexa. Alexa the web information company. http:

//www.alexa.com/, 2007.

[5] M. Andrews. The dnssec lookaside validation (dlv) dns

resource record, rfc 4431. http://www.faqs.org/

rfcs/rfc4431.html, 2006.

[6] R. Arends. Dns security introduction and require-

ments, rfc 4033. http://www.faqs.org/rfcs/

rfc4033.html, 2005.

[7] R. Arends. Protocol modifications for the dns secu-

rity extensions, rfc 4035. http://www.faqs.org/

rfcs/rfc4035.html, 2005.

[8] R. Arends. Resource records for the dns security ex-

tensions, rfc 4034. http://www.faqs.org/rfcs/

rfc4034.html, 2005.

[9] D. Atkins and R. Austein. Threat analysis of the

domain name system (DNS). http://www.ietf.

org/rfc/rfc3833.txt, August 2004.

[10] Steven Bellovin. Using the domain name system for sys-

tem break-ins. In Proceedings of the Fifth USENIX UNIX

Security Symposim, June 1995.

[11] D. J. Bernstein. ”dns software”. http://cr.yp.to/

surveys/dns1.html, 2002.

[12] Mayee Corpin. Rogue domain name system servers (re-

posted). http://tinyurl.com/327b2k, March

2007.

[13] Brian Eckman and Lenny Zelster. An overview of the

freevideo player trojan. http://isc.sans.org/

diary.html?storyid=1872, 2006.

[14] J. Grizzard, V.Sharma, C. Nunnery, B. Kang, and

D. Dagon. Peer-to-peer botnets: Overview and case

study. In Usenix Hotbots 2007, April 2007.

[15] Feike Hacquebord and Chenghuai Lu. Rogue domain

name system servers part 2. http://tinyurl.com/

2sjgft, September 2007.

[16] IANA. Special-use ipv4 addresses. http://

www.faqs.org/rfcs/rfc3330.html, Septem-

ber 2002.

[17] John Kristoff. Dns - open recursive name server probing.

condor.depaul.edu/˜jkristof/orns/, 2007.

[18] P. Mockapetris. Domain names - concepts and facil-

ities. http://www.faqs.org/rfcs/rfc1034.

html, 1987.

[19] P. Mockapetris. Domain names - implementation

and specification. http://www.faqs.org/rfcs/

rfc1035.html, 1987.

[20] Jon Oberheide, Manish Karir, and Zhuoqing Mao. Char-

acterizing dark dns behavior. In Fourth GI International

Conference on Detection of Intrusions and Malware, and

Vulnerability Assessment (DIMVA ’07), 2007.

[21] Eric Osterweil, Dan Massey, and Lixia Zhang. Observa-

tions from dnssec deployment. In The 3rd Workshop on

Secure Network Protocols (NPSec), 2007.

[22] V. Pappas, Z. Xu, S. Lu, D. Massey, A. Terzis, and

L. Zhang. Impact of configuration errors on dns robust-

ness. In Proceedings of ACM SIGCOMM 2004, August

2004.

[23] Niels Provos and Peter Honeyman. ScanSSH - Scanning

the Internet for SSH Servers. In Proceedings of the 16th

USENIX Systems Administration Conference, December

2001.

[24] Niels Provos, Dean McNamee, Panayiotis Mavromma-

tis, Ke Wang, and Nagendra Modadugu. The Ghost in

the Browser: Analysis of Web-based Malware. InUsenix

Hotbots 2007, April 2007.

[25] Sophos. Troj/qhosts-1. http://www.sophos.com/

virusinfo/analyses/trojqhosts1.html,

2003.

[26] SpamHaus. Exploits block list. http://www.

spamhaus.org/xbl/index.lasso, 2007.

[27] Inc. Symantec. Symantec gateway security

products dns cache poisoning vulnerability.

http://securityresponse.symantec.

com/avcenter/security/Content/2004.

06.%21.html, 2004.

[28] Team Cymru. The team cymru bogon reference page.

http://www.cymru.com/Bogons/, 2007.

[29] The Honeynet Project and Research Alliance. Know

your enemy: Fast-flux service networks. http://

www.honeynet.org/papers/ff/index.html,

2007.

[30] ThreatStop. Emergency public blocklist available.

http://www.threatstop.com/, 2007.

[31] US-CERT. The continuing denial of ser-

vice threat posed by dns recursion (v2.0).

http://www.us-cert.gov/reading_room/

DNS-recursion121605.pdf, 2006.

[32] Paul Vixie. DNS complexity, April 2007.

[33] Florian Weimer. Passive dns replication. In 17th Annual

FIRST Conference on Computer Security Incident Han-

dling (FIRST ’05), 2005.

[34] Duane Wessels. Dns survey: Cache poisoners.

http://dns.measurement-factory.com/

surveys/poisoners.html, 2007.

[35] Duane Wessels. The measurement factory

open recursive dns reports. http://dns.

measurement-factory.com/surveys/

openresolvers/ASN-reports/, 2007.

[36] Yinglian Xie, Fang Yu, Kannan Achan, Eliot Gillum,

Moises Goldszmidt, and Ted Wobber. How dynamic are

ip addresses? In Proceedings of the 2007 conference on

Applications, technologies, architectures, and protocols

for computer communications (SIGCOMM’07), 2007.

[37] Bojan Zdrnja, Nevil Brownlee, and Duane Wessels. Pas-

sive monitoring of dns anomalies. In Detection of

Intrusions and Malware, and Vulnerability Assessment

(DIMVA), 2007.

APPENDIX

t timeout

0 Return code 0: normal answer

1 Return code 1: format error

2 Return code 2: server failure

3 Return code 3: name error

4 Return code 4: not implemented

5 Return code 5: refused

TC TC (Message truncated) bit set

RD RD (Recursion desired) bit set

AA AA (Is Authoritative) bit set

Z0 Z0 bit set

Z1 Z1 bit set

Z2 Z2 bit set

q no queries listed in response

Q2 two queries listed in response

D response included an answer record

Table 2. A list of designations used to finger-

print a DNS response packet.

Country Forwarder Open Recursives

Italy 82.53.187.212 316697

Italy 85.38.28.8 215087

Italy 85.38.28.5 178763

Netherlands 213.75.17.74 157619

Netherlands 213.75.17.76 157513

Netherlands 213.75.76.80 155518

Netherlands 213.75.76.79 155357

Italy 151.99.125.9 144516

Peru 200.48.225.130 123467

Italy 82.53.187.213 116104

USA 71.242.0.36 110472

USA 71.242.0.38 110463

USA 71.242.0.37 110163

Denmark 212.242.34.227 102616

Table 3. The table shows the top 10 recursive
forwarding servers and the number of open re-

cursive clients they serve.

Country Number of

forwarded-to

resolvers

Percentage

USA 187990 28.5

Japan 58816 8.9

Germany 51554 7.8

Korea 28595 4.3

Brazil 26228 4.0

Taiwan 25886 3.9

China 24672 3.7

Russia 21620 3.3

Great Britain 21409 3.2

France 20819 3.2

Canada 16935 2.6

Poland 14654 2.2

Netherlands 13823 2.1

Italy 9369 1.4
(a) Location of all resolvers that are being used as forwards

from open recursive resolvers.

Country Number of

forwarded-to

resolvers

Percentage

China 231 20.1

Korea 187 16.3

USA 139 12.1

Japan 85 7.4

Poland 51 4.4

Germany 47 4.1

Spain 46 4.0

France 46 4.0

Turkey 38 3.3
(b) Location of resolvers that get forwards from more

than 1, 000 different /24s.

Table 4. The table shows the location of
forwarded-to resolvers and how many sub re-

solvers are forwarding to them.

Count Percent Query Iquery TC Chaos

2694403 (26.3%) 0RDD t t t

2325179 (22.7%) 0RDD 1q 1 0RDAAD

971579 (9.5%) 0RDD 5q 5q t

722668 (7.0%) 0RDD t t 0RDAAD

403802 (3.9%) 0RDD 5q 5 0RDAAD

333807 (3.3%) 0RDD t 2 t

291932 (2.8%) 0RDD t 1 0RDAAD

239063 (2.3%) 0RDD 1q t 0RDAAD

235423 (2.3%) 0RDD 1q 1 t

214298 (2.1%) 0D t t t

177110 (1.7%) 0RDD 4q 0TCZ2 0RDAAD

175820 (1.7%) 0RDD 5q 5 t

117906 (1.1%) 0RDD 5q t t

105578 (1.0%) 0RDD t 1 t

104396 (1.0%) 0RDD t 5q t

Table 5. DNS fingerprints of all open recursive
resolvers.

Figure 4. Logscale histogram of time open re-
cursive hosts appeared on virus-related black
lists, for 6-month period.

Count Percent Query Iquery TC Chaos

63820 (39.5%) 0RDD 1q 1 0RDAAD

18852 (11.7%) 0RDD t t t

16761 (10.4%) 0D t t t

9773 (6.0%) 0RDD 4q 0TCZ2 0RDAAD

7715 (4.8%) 0RDD t 1 0RDAAD

6655 (4.1%) 0RDD 1q 1 t

6589 (4.1%) 0RDD 1q t 0RDAAD

3896 (2.4%) 0RDD t t 0RDAAD

3891 (2.4%) 0RDD 5q 5q t

2359 (1.5%) 0RDD t 1 t

2179 (1.3%) 0RDD t 0TCZ2 0RDAAD

1358 (0.8%) 0RDD 1q t t

1306 (0.8%) 0RDD 4q 0TCZ2 t
(a) DNS fingerprints for resolvers overlapping with Google

Count Percent Query Iquery TC Chaos

262003 (31.4%) 0RDD 1q 1 0RDAAD

228765 (27.4%) 0RDD t t t

55892 (6.7%) 0RDD t t 0RDAAD

43647 (5.2%) 0RDD t 1 0RDAAD

40598 (4.9%) 0RDD 5q 5q t

32144 (3.8%) 0RDD 1q 1 t

26967 (3.2%) 0RDD 1q t 0RDAAD

14844 (1.8%) 0RDD t 2 t

12772 (1.5%) 0RDD t 1 t

11366 (1.4%) 0RDD 5q 5 0RDAAD

7371 (0.9%) 0D t t t

7339 (0.9%) 0RDD 1q t t

6439 (0.8%) 0RDD 5q 5q 0RDAAD

5461 (0.7%) 0RDD 0qD t t
(b) DNS fingerprints for resolvers overlapping with Storm/Peacomm

Table 6. DNS fingerprints for resolvers belong-

ing to either Storm or Google.

Count Percent HTTP Server

Version

8132640 (79.3%) (no answer)

335827 (3.3%) RomPager/4.07

205034 (2.0%) Nucleus/4.3

175488 (1.7%) Apache/1.3.37

161247 (1.6%) (empty header)

148699 (1.4%) Microsoft-

IIS/6.0

142807 (1.4%) (no header)

113518 (1.1%) mini httpd/1.19

69517 (0.7%) GoAhead-

Webs

59201 (0.6%) Microsoft-

IIS/5.0

55680 (0.5%) RomPager/4.51

53925 (0.5%) Apache

45083 (0.4%) Apache/1.3.33

39643 (0.4%) Apache/2.0.54

34710 (0.3%) Apache/2.0.52

30806 (0.3%) Apache/2.2.3

28567 (0.3%) Apache/1.3.34
(a) HTTP Servers version for all open recursive

resolvers

Count Percent HTTP Server

Version

76371 (56.1%) (no answer)

6175 (4.5%) Microsoft-

IIS/6.0

4273 (3.1%) Apache/1.3.33

3764 (2.8%) Microsoft-

IIS/5.0

3351 (2.5%) Apache

3211 (2.4%) Apache/2.2.3

3204 (2.4%) Apache/2.0.54

3122 (2.3%) Apache/1.3.37

2478 (1.8%) Apache/2.0.52

2363 (1.7%) (no header)

1944 (1.4%) RomPager/4.07

1727 (1.3%) Apache/1.3.34

1723 (1.3%) Apache/1.3.27

1554 (1.1%) Apache/2.2.4

1229 (0.9%) Nucleus/4.3

1138 (0.8%) Apache/2.0.40

964 (0.7%) Apache/2.0.55

912 (0.7%) Apache/2.0.59

907 (0.7%) Apache/2.0.46

880 (0.6%) Apache/1.3.26

854 (0.6%) Apache/2.0.53
(b) Open recursive resolvers overlapping with

Google

Count Percent HTTP Server

Version

534368 (64.0%) (no answer)

92201 (11.0%) RomPager/4.07

60484 (7.2%) Nucleus/4.3

55624 (6.7%) mini httpd/1.19

33938 (4.1%) (empty header)

19679 (2.4%) RomPager/4.51

14453 (1.7%) (no header)

5170 (0.6%) Unknown/0.0

3915 (0.5%) GoAhead-

Webs

1640 (0.2%) Microsoft-

IIS/6.0

1300 (0.2%) nginx/0.5.17

1136 (0.1%) httpd

966 (0.1%) Apache/0.6.5

843 (0.1%) ZyXEL-

RomPager/3.02

748 (0.1%) Apache/1.3.33

723 (0.1%) Apache/2.2.3

653 (0.1%) Apache/1.3.27

503 (0.1%) Apache/2.0.54

475 (0.1%) Microsoft-

IIS/5.0

464 (0.1%) Apache

458 (0.1%) Apache/2.2.4
(c) Open recursive resolvers overlapping with

Storm

Table 7. HTTP Servers version of open recursive resolvers.

