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Abstract 

Internet attacks that use malicious web sites to install 
malware programs by exploiting browser vulnerabilities 
are a serious emerging threat. In response, we have 
developed an automated web patrol system to 
automatically identify and monitor these malicious sites. 
We describe the design and implementation of the Strider 
HoneyMonkey Exploit Detection System, which consists of 
a pipeline of “monkey programs” running possibly 
vulnerable browsers on virtual machines with different 
patch levels and patrolling the Web to seek out and 
classify web sites that exploit browser vulnerabilities. 

Within the first month of utilizing this system, we 
identified 752 unique URLs hosted on 288 web sites that 
could successfully exploit unpatched Windows XP 
machines. The system automatically constructed topology 
graphs based on traffic redirection to capture the 
relationship between the exploit sites. This allowed us to 
identify several major players who are responsible for a 
large number of exploit pages. By monitoring these 752 
exploit-URLs on a daily basis, we discovered a malicious 
web site that was performing zero-day exploits of the 
unpatched javaprxy.dll vulnerability and was operating 
behind 25 exploit-URLs. It was confirmed as the first “in-
the-wild”, zero-day exploit of this vulnerability that was 
reported to the Microsoft Security Response Center. 
Additionally, by scanning the most popular one million 
URLs as classified by a search engine, we found over 
seven hundred exploit-URLs, many of which serve popular 
content related to celebrities, song lyrics, wallpapers, 
video game cheats, and wrestling. 

1. Introduction 

Internet attacks that use a malicious or hacked web 
site to exploit unpatched client-side vulnerabilities of 
visiting browsers are on the rise. Malcode distributed by 
this method in the past 12 months includes the 
Download.Ject [D04], Bofra [R04], and Xpire.info [B04] 
programs. These attacks allow web servers that host 
compromised URLs to install malcode on visiting client 
machines without requiring any user interaction beyond 
visitation. There have been several manual analyses of 
these events [E04,F04,G05,IF05,R05,S05,T05]. Although 

these analyses provide very useful and detailed 
information about which vulnerabilities are exploited and 
which malware programs are installed, such efforts are not 
scalable, do not provide a comprehensive picture of the 
problem, and are generally ineffective at efficiently 
finding new malicious sites. 

To address these issues, we developed a system that 
uses a pipeline of active, client-side, Virtual Machine 
(VM)-based honeypots [H,HC], called Strider 
HoneyMonkeys, to perform large-scale, systematic and 
automated web patrol. The HoneyMonkey system uses 
monkey programs1 that run within virtual machines with 
OS’s of various patch levels to drive web browsers in an 
attempt to mimic human web browsing. Our approach 
adopts a state-management methodology to cybersecurity: 
instead of directly detecting the acts of vulnerability 
exploits, the system uses the Strider Tracer [W03] to catch 
unauthorized file creations and configuration changes that 
are the result of a successful exploit. 

We demonstrate the effectiveness of our method by 
discovering a large community of malicious web sites that 
host exploit pages and by deriving the redirection 
relationships among them. We describe a real-world 
experience with identifying a zero-day exploit2 using this 
system. We show the existence of hundreds of malicious 
web pages amongst many popular web sites. Finally, we 
propose a comprehensive anti-exploit process based on 
this monitoring system in order to improve Internet safety. 

This paper is organized as follows. Section 2 provides 
background information on the problem space by 
describing the techniques used in actual client-side 
exploits of popular web browsers. Section 3 gives an 
overview of the Strider HoneyMonkey Exploit Detection 
System and its surrounding Anti-Exploit Process. Section 

                                                
1 An automation-enabled program such as the Internet Explorer 
browser allows programmatic access to most of the operations 
that can be invoked by a user. A “monkey program” is a program 
that drives the browser in a way that mimics a human user’s 
operation. 
2 In this paper, a zero-day exploit refers to a vulnerability exploit 
that exists before the patch for the vulnerability is released. The 
vulnerability can be known or unknown to the public at that 
time. 



 

4 evaluates the effectiveness of HoneyMonkey in both 
known-vulnerability and zero-day exploit detection, and 
presents an analysis of the exploit data to help prioritize 
investigation tasks. Section 5 discusses the limitations of 
and possible attacks on the current HoneyMonkey system 
and describes several countermeasures including an 
enhancement based on a vulnerability-specific exploit 
detection mechanism. Section 6 surveys related work and 
Section 7 concludes the paper.  

2. Browser-based Vulnerability Exploits  

Malicious activities performed by actual web sites 
exploiting browser vulnerabilities can be divided into four 
steps: code obfuscation, URL redirection, vulnerability 
exploitation, and malware installation. 

2.1. Code Obfuscation 

To complicate investigation and to escape signature-
based scanning by anti-virus/anti-spyware software, some 
web sites use a combination of the following code 
obfuscation techniques: (1) dynamic code injection using 
the document.write() function inside a script; (2) 
unreadable, long strings with encoded characters such as 
“%28”, “&#104”, etc. which are then decoded either by 
the unescape() function inside a script or by the browser; 
(3) custom decoding routine included in a script; and (4) 
sub-string replacement using the replace() function. Since 
code-obfuscation is a common technique, this limits the 
ability of attack-signature-based detectors to detect new 
attacks that leverage old exploit code. 

2.2. URL Redirection 

Most malicious web sites automatically redirect 
browser traffic to additional URLs. Specifically, when a 
browser visits a primary URL, the response from that 
URL instructs the browser to automatically visit one or 
more secondary URLs, which may or may not affect the 
content that is displayed to the user. Such redirections 

typically use one of the following mechanisms classified 
into three categories: (1) protocol redirection using HTTP 
302 Temporary Redirect; (2) HTML tags including 
<iframe>, <frame> inside <frameset>, and <META 
http-equiv=refresh>; (3) script functions including 
window.location.replace(), window.location.href(), 
window.open(), window.showModalDialog(), and 
<link_ID>.click(), etc. Since redirection is commonly 
used by non-malicious sites to enrich content, simply 
eliminating redirection from a browser would present 
significant complications 

2.3. Vulnerability Exploitation 

It is not uncommon to see a malicious web page 
attempting to exploit multiple browser vulnerabilities in 
order to maximize the chance of a successful attack. 
Figure 1 shows an example HTML fragment that uses 
various primitives to load multiple files from different 
URLs on the same server to exploit three vulnerabilities 
fixed in Microsoft Security Bulletins MS05-002 [M52], 
MS03-011 [M311], and MS04-013 [M413]. If any of the 
exploits succeeds, a Trojan downloader named win32.exe 
is downloaded and executed. Note that although Internet 
Explorer is the common target due to its popularity, other 
browsers can also be attacked. 

2.4. Malware Installation 

The purpose of an exploit is almost always to 
introduce some piece of arbitrary code on the victim 
machine, as a way to achieve a larger attack goal. We 
have observed a plethora of malcode types installed 
through browser exploits, including viruses that infect 
files, backdoors that open entry points for future 
unauthorized access, bot programs that allow the attacker 
to control a whole network of compromised systems, 
Trojan downloaders that connect to the Internet and 
download other programs, Trojan droppers that drop files 
from themselves without accessing the Internet, and 
Trojan proxies that redirect network traffic. Some spyware 

 
<html><head><title></title></head><body> 
<style> 
* {CURSOR: url("http://vxxxxxxe.biz/adverts/033/sploit.anr")} 
</style> 
<APPLET ARCHIVE='count.jar' CODE='BlackBox.class' WIDTH=1 HEIGHT=1> 
<PARAM NAME='url' VALUE='http://vxxxxxxe.biz/adverts/033/win32.exe'></APPLET> 
<script> 
try{ 
document.write('<object    
data=`&#109&#115&#45&#105&#116&#115&#58&#109&#104&#116&#109&#108&#58&#102&#105&#108&#101&#58;//
C:\fo'+'o.mht!'+'http://vxxxx'+'xxe.biz//adv'+'erts//033//targ.ch'+'m::/targ'+'et.htm` type=`text/x-scriptlet`></ob'+'ject>'); 
}catch(e){} 
</script> 
</body></html> 

MS05-002 

MS03-011 

MS04-013 

Figure 1. Actual sample Web page attempting to exploit multiple vulnerabilities 



 

programs and even anti-spyware programs are also 
installed through exploits. 

3. The HoneyMonkey System 

The HoneyMonkey system attempts to automatically 
detect and analyze a network of web sites that exploit web 
browsers. Figure 2 illustrates the HoneyMonkey Exploit 
Detection System, shown inside the dotted square, and the 
surrounding Anti-Exploit Process which includes both 
automatic and manual components.  

3.1. Exploit Detection System 

The exploit detection system is the heart of the 
HoneyMonkeys design.  This system consists of a 3-stage 
pipeline of virtual machines. Given a large list of input 
URLs with a potentially low exploit-URL density, each 
HoneyMonkey in Stage 1 starts with a scalable mode by 
visiting N URLs simultaneously inside one unpatched 
VM. When the HoneyMonkey detects an exploit, it 
switches to the basic, one-URL-per-VM mode to re-test 
each of the N suspects in order to determine which ones 
are exploit URLs. 

Stage-2 HoneyMonkeys scan Stage 1 detected 
exploit-URLs and perform recursive redirection analysis 
to identify all web pages involved in exploit activities and 
to determine their relationships. Stage-3 HoneyMonkeys 
continuously scan Stage-2 detected exploit-URLs using 
(nearly) fully patched VMs in order to detect attacks 
exploiting the latest vulnerabilities. 

We used a network of 20 machines to produce the 

results reported in this paper. Each machine had a CPU 
speed between 1.7 and 3.2 GHz, a memory size between 
512 MB and 2GB, and was responsible for running one 
VM configured with 256 MB to 512MB of RAM. Each 
VM supported up to 10 simultaneous browser processes in 
the scalable mode, with each process visiting a different 
URL. Due to the way HoneyMonkeys detect exploits 
(discussed later), there is a trade-off between the scan rate 
and the robustness of exploit detection: if the 
HoneyMonkey does not wait long enough or if too many 
simultaneous browser processes cause excessive 
slowdown, some exploit pages may not be able to perform 
a detectable attack (e.g., beginning a software 
installation). 

Through extensive experiments, we determined that a 
wait time of two minutes was a good trade-off. Taking 
into account the overhead of restarting VMs in a clean 
state, each machine was able to scan and analyze between 
3,000 to 4,000 URLs per day. We have since improved the 
scalability of the system to a scan rate of 8,000 URLs per 
day per machine in the scalable mode. (In contrast, the 
basic mode scans between 500 and 700 URLs per day per 
machine.) We expect that using a more sophisticated VM 
platform that enables significantly more VMs per host 
machine and faster rollback [VMC+05] would 
significantly increase our scalability.     

3.1.1. Exploit Detection 

Although it is possible to detect browser exploits by 
building signature-based detection code for each known 
vulnerability or exploit, this approach is manually 
intensive. To lower this cost, we take the following black-

Figure 2. HoneyMonkey Exploit Detection System and Anti-Exploit Process 
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box, non-signature-based approach: we run a monkey 
program that launches a browser instance to visit each 
input URL and then waits for a few minutes to allow 
downloading of any code which may have a short time 
delay. We then detect a group of persistent-state changes 
to signal exploitation. Since the monkey is not instructed 
to click on any dialog box to permit software installation, 
any executable files or registry entries created outside the 
browser sandbox indicate an exploit. This approach has 
the additional important advantage of allowing the 
detection of known-vulnerability exploits and zero-day 
exploits in a uniform way. Specifically, the same monkey 
program running on unpatched machines to detect a broad 
range of browser-based vulnerability exploits (as shown in 
Stages 1 and 2) can run on fully patched machines to 
detect zero-day exploits, as shown in Stage 3. 

At the end of each visit, the HoneyMonkey generates 
an XML report containing the following five pieces of 
information: 

(1) Executable files created or modified outside the 
browser sandbox folders: this is the primary mechanism 
for exploit detection. It is implemented on top of the 
Strider Tracer [W03], which uses a file-tracing driver to 
efficiently record every single file read/write operation.  

(2) Processes created: Strider Tracer also tracks all child 
processes created by the browser process. 

(3) Windows registry entries created or modified: 
Strider Tracer additionally includes a driver that 
efficiently records every single registry [G04] read/write. 
To highlight the most critical entries, we use the Strider 
Gatekeeper and GhostBuster filters [W04,W05], which 
target registry entries most frequently attacked by 
spyware, Trojans, and rootkits based on an extensive 
study. This allows HoneyMonkey to detect exploits that 
modify critical configuration settings (such as the browser 
home page and the wallpaper) without creating executable 
files. 

(4) Vulnerability exploited: to provide additional 
information and to address limitations of the black-box 
approach, we have developed and incorporated a 
vulnerability-specific detector, to be discussed in Section 
5. This is based on the vulnerability signature of the 
exploit, rather than on any particular piece of malcode. 

(5) Redirect-URLs visited: Since malcode is often 
laundered through other sites, this module allows us to 
track redirections to determine both the real source of the 
malcode and those involved in the distribution chain. 

To ease cleanup of infected state, we run 
HoneyMonkeys inside a VM. (Our current 
implementation uses Microsoft Virtual PC and Virtual 
Server.) Upon detecting an exploit, the monkey saves its 

logs and notifies the Monkey Controller on the host 
machine to destroy the infected VM and re-spawn a clean 
HoneyMonkey, which then continues to visit the 
remaining URL list. The Monkey Controller then passes 
the detected exploit-URL to the next monkey in the 
pipeline to further investigate the strength of the exploit. 

3.1.2.  Redirection Analysis 

Many exploit-URLs identified in Stage 1 do not 
perform the actual exploits but instead act as front-end 
content providers that serve “interesting” content such as 
pornography in order to attract browser traffic. This traffic 
is then sold and redirected to back-end exploit providers, 
which specialize in exploiting clients and installing 
malware. 

URLs visited through traffic redirection can be 
tracked with a Browser Helper Object (BHO) running 
within each browser process or by intercepting and 
analyzing network packets. When the HoneyMonkey runs 
in its “redirection analysis” mode, any automatically 
visited URLs are fed back to the system for further 
checking. This recursive scanning allows the construction 
of topology graphs based on traffic redirection. In 
Section 4, we present our analysis of topology graphs to 
demonstrate how they enable the identification of major 
exploit providers that receive traffic from a large number 
of content providers; they also show how exploit providers 
organize their web pages in a way that facilitates 
customized malware installations for each of their 
affiliates. Finally, we are able to positively identify the 
web pages that actually perform the exploits by 
implementing an option in our redirection tracker to block 
all redirection traffic. 

3.2. Anti-Exploit Process 

The Anti-Exploit Process involves generating the input 
URL lists for HoneyMonkeys to scan, and taking various 
actions based on analyses of the output exploit-URL data. 

3.2.1.  Generating Input URL Lists 

We use three sources for generating “interesting” 
URLs for analysis. The first category consists of 
suspicious URLs including web sites that are known to 
host spyware [CWS05] or malware, links appearing in 
phishing or spam emails [S05] or instant messages, web 
pages serving questionable content such as pornography, 
URL names that are typos of popular sites [G05], web 
sites involved in DNS cache poisoning [HD05,IW05,S04], 
and similar common sources of malicious web content. 

The second category consists of the most popular web 
pages, which, if compromised, can potentially infect a 
large population. Examples include the top 100,000 web 
sites based on browser traffic ranking [AL] or the top N 



 

million web sites based on click-through counts as 
measured by search engines. 

The third category encompasses URL lists of a more 
localized scope. For example, an organization may want to 
regularly verify that its web pages have not been 
compromised to exploit visitors; a user may want to 
investigate whether any recently visited URL was 
responsible for causing a spyware infection. 

3.2.2.  Acting on Output Exploit-URL Data 

Stage 1 Output –  Exploit-URLs 

The percentage of exploit-URLs in a given list can be 
used to measure the risk of web surfing. For example, by 
comparing the percentage numbers from two URL lists 
corresponding to two different search categories (e.g., 
gambling versus shopping), we can assess the relative risk 
of malware infection for people with different browsing 
habits. Also, we have observed that depth-N crawling of 
exploit pages containing a large number of links, as 
illustrated at the top of Figure 2, often leads to the 
discovery of more exploit pages. 

Stage 2 Output – Traffic-Redirection Topology Graphs  

The HoneyMonkey system currently serves as a lead-
generation tool for the Internet safety enforcement team in 
the Microsoft legal department. The topology graphs and 
subsequent investigations of the malicious behavior of the 
installed malware programs provide a prioritized list for 
potential enforcement actions that include sending site-
takedown notices, notifying law enforcement agencies, 
and filing civil suits against the individuals responsible for 
distributing the malware programs. We have successfully 
shut down several malicious URLs discovered by the 
HoneyMonkey. 

Due to the international nature of the exploit 
community, access blocking may be more appropriate and 
effective than legal actions in many cases. Blocking can 
be implemented at different levels: search engines can 
remove exploit-URLs from their database; Internet 
Service Providers (ISPs) can black-list exploit-URLs to 
protect their entire customer base; corporate proxy servers 
can prevent employees from accessing any of the exploit-
URLs; and individual users can block their machines from 
communicating with any exploit sites by editing their local 
“hosts” files to map those server hostnames to a local 
loopback IP address.  

Exploit-URLs also provide valuable leads to our anti-
spyware product team. Each installed program is tagged 
with an “exploit-based installation without user 
permission” attribute. This clearly distinguishes the 
program from other more benign spyware programs that 
are always installed after a user accepts the licensing 
agreement.  

Stage 3 Output – Zero-Day Exploit-URLs and 
Topology Graphs 

By constantly monitoring all known exploit-URLs 
using HoneyMonkeys running on fully patched machines, 
we can detect zero-day exploits either when one of the 
monitored URLs “upgrade” its own exploit code or when 
a new URL that hosts zero-day exploit code starts 
receiving redirection traffic from any of the monitored 
URLs. Zero-day exploit monitoring is perhaps the most 
valuable contribution of the HoneyMonkey because zero-
day exploits can be extremely damaging and whether they 
are actually being used in the wild is the most critical 
piece of information in the decision process for security 
guidance, patch development, and patch release. When a 
HoneyMonkey detects a zero-day exploit, it reports the 
URL to the Microsoft Security Response Center, which 
works closely with the enforcement team and the groups 
owning the software with the vulnerability to thoroughly 
investigate the case and determine the most appropriate 
course of action. We will discuss an actual case in Section 
4.2. 

Due to the unavoidable delay between patch release 
and patch deployment, it is important to know whether the 
vulnerabilities fixed in the newly released patch are being 
actively exploited in the wild. Such latest-patched-
vulnerability exploit monitoring can be achieved by 
running HoneyMonkeys on nearly fully patched machines, 
which are missing only the latest patch. This provides 
visibility into the prevalence of such exploits to help 
provide guidance on the urgency of patch deployment. 

4. Experimental Evaluation 

We present experimental results in three sections: 
scanning suspicious URLs, zero-day exploit detection, and 
scanning popular URLs. We refer to the first and the third 
sets of data as “suspicious-list data” and “popular-list 
data”, respectively. All experiments were performed with 
Internet Explorer browser version 6.0. 

We note that the statistics reported in this paper do 
not allow us to calculate the total number of end-hosts 
exploited by the malicious web sites we have found. Such 
calculations would require knowing precisely the number 
of machines that have visited each exploit page and 
whether each machine has patched the specific 
vulnerabilities targeted by each visited exploit page. 

4.1. Scanning Suspicious URLs 

4.1.1. Summary Statistics 
Our first experiment aimed at gathering a list of most 

likely candidates for exploit-URLs in order to get the 
highest hit rate possible. We collected 16,190 potentially 
malicious URLs from three sources: (1) a web search of 



 

“known-bad” web sites involved in the installations of 
malicious spyware programs [CWS05]; (2) a web search 
for Windows “hosts” files [HF] that are used to block 
advertisements and bad sites by controlling the domain 
name-to-IP address mapping; (3) depth-2 crawling of 
some of the discovered exploit-URLs. 

We used the Stage-1 HoneyMonkeys running on 
unpatched WinXP SP1 and SP2 VMs to scan the 16,190 
URLs and identified 207 as exploit-URLs; this translates 
into a density of 1.28%. This serves as an upper bound on 
the infection rate: if a user does not patch his machine at 
all and he exclusively visits risky web sites with 
questionable content, his machine will get exploited by 
approximately one out of every 100 URLs he visits. We 
will discuss the exploit-URL density for normal browsing 
behavior in Section 4.3.  

After recursive redirection analysis by Stage-2 
HoneyMonkeys, the list expanded from 207 URLs to 752 
URLs – a 263% expansion. This reveals that there is a 
sophisticated network of exploit providers hiding behind 
URL redirection to perform malicious activities. 

Figure 3 shows the breakdown of the 752 exploit-
URLs among different service-pack (SP1 or SP2) and 
patch levels, where “UP” stands for “UnPatched”, “PP” 
stands for “Partially Patched”, and “FP” stands for “Fully 
Patched”. As expected, the SP1-UP number is much 
higher than the SP2-UP number because the former has 
more known vulnerabilities that have existed for a longer 
time. 

 Number of  
Exploit-URLs  

Number of 
Exploit Sites 

Total 752 288 

SP1 Unpatched (SP1-UP) 688 268 

SP2 Unpatched (SP2-UP) 204 115 

SP2 Partially Patched 
(SP2-PP) 

17 10 

SP2 Fully Patched  
(SP2-FP) 

0 0 

Figure 3. Exploit statistics for Windows XP as a 
function of patch levels (May/June 2005 data) 

The SP2-PP numbers are the numbers of exploit 
pages and sites that successfully exploited a WinXP SP2 
machine partially patched up to early 2005. The fact that 
the numbers are one order of magnitude lower than their 
SP2-UP counterparts demonstrates the importance of 
patching. An important observation is that only a small 
percentage of exploit sites are updating their exploit 

capabilities to keep up with the latest vulnerabilities, even 
though proof-of-concept exploit code for most of the 
vulnerabilities are publicly posted. We believe this is due 
to three factors: (1) Upgrading and testing new exploit 
code incurs some cost which needs to be traded off against 
the increase in the number of victim machines; (2) Some 
vulnerabilities are more difficult to exploit than others; for 
example, some of the attacks are nondeterministic or take 
longer. Most exploiters tend to stay with existing, reliable 
exploits, and only upgrade when they find the next easy 
target. (3) Most security-conscious web users diligently 
apply patches. Exploit sites with “advanced” capabilities 
are likely to draw attention from knowledgeable users and 
become targets for investigation. 

The SP2-FP numbers again demonstrate the 
importance of software patching: none of the 752 exploit-
URLs was able to exploit a fully updated WinXP SP2 
machine according to our May/June 2005 data. As we 
describe in Section 4.2, there was a period of time in early 
July when this was no longer true. We were able to 
quickly identify and report the few exploit providers 
capable of infecting fully patched machines, which led to 
actions to shut them down. 

4.1.2. Topology graphs and node ranking  

Figure 4 shows the topology graph of the 17 exploit-
URLs for SP2-PP. These are among the most powerful 
exploit pages in terms of the number of machines they are 
capable of infecting and should be considered high 
priorities for investigation. Rectangular nodes represent 
individual exploit-URLs. Solid arrows between rectangles 
represent automatic traffic redirection. Circles represent 
site nodes that act as an aggregation point for all exploit 
pages hosted on that site, with the site node having a thin 
edge connecting each of its child-page rectangles. Nodes 
that do not receive redirected traffic are most likely 
content providers. Nodes that receive traffic from multiple 
exploit sites (for example, the large rectangle R at the 
bottom) are most likely exploit providers.  

The size of a node is proportional to the number of 
cross-site arrows directly connected to it, both incoming 
and outgoing. Such numbers provide a good indication of 
the relative popularity of exploit-URLs and sites and are 
referred to as connection counts. It is clear from the 
picture that the large rectangle R and its associated circle 
C have the highest connection counts. Therefore, blocking 
access to this site would be the most effective starting 
point since it would disrupt nearly half of this exploit 
network. 

 



 

The topology graph for the 688 SP1-UP exploit-URLs 
is much larger and more complex. It is only useful when 
viewed from a graph manipulation tool and is therefore 
omitted here.  Most of the URLs appear to be pornography 
pages and the aggressive traffic redirection among them 
leads to the complexity of the bulk of the graph. In the 
isolated corners, we found a shopping site redirecting 
traffic to five advertising companies that serve exploiting 
advertisements, a screensaver freeware site, and over 20 
exploit search sites. Next, we describe two ranking 
algorithms that help prioritize the investigations of these 
hundreds of URLs and sites. 

Site ranking based on connection counts 

Figure 5 illustrates the top 15 exploit sites for SP1-UP 
according to their connection counts. The bar height 
indicates how many other sites a given site has direct 
traffic-redirection relationship with and likely reflects how 
entrenched a site owner is with the exploit community. 
The bar for each site is composed of three segments of 
different colors: a black segment represents the number of 
sites that redirect traffic here; a white segment represents 
the number of sites to which traffic is redirected; a gray 
segment indicates the number of sites that have two-way 
traffic redirection relationship with the given site. 

For example, site #15 corresponds to a content 
provider who is selling traffic to multiple exploit providers 
and sharing traffic with a few other content providers. Site 
#7 corresponds to an exploit provider that is receiving 
traffic from multiple web sites. Sites #4, #5, and #9 
correspond to pornography sites that play a complicated 
role: they redirect traffic to many exploit providers and 
receive traffic from many content providers. Their heavy 
involvement in exploit activities and the fact that they are 
registered to the same owner suggest that they may be set 
up primarily for exploit purposes.  

Site ranking, categorization, and grouping play a key 
role in the anti-exploit process because it serves as the 
basis for deciding the most effective resource allocation 
for monitoring, investigation, blocking, and legal actions. 

For example, high-ranked exploit sites in Figure 5 should 
be heavily monitored because a zero-day exploit page 
connected to any of them would likely affect a large 
number of web sites. Legal investigations should focus on 
top exploit providers, rather than content providers that 
are mere traffic redirectors and do not perform exploits 
themselves. 

Site ranking based on number of hosted exploit-URLs 

Figure 6 illustrates the top 129 sites, each hosting 
more than one exploit URL. This ranking helps highlight 
those web sites whose internal page hierarchy provides 
important insights. First, some web sites host a large 
number of exploit pages with a well-organized 
hierarchical structure. For example, the #1 site hosts 24 
exploit pages that are organized by what look likes 
account names for affiliates; many others organize their 
exploit pages by affiliate IDs or referring site names; some 
even organize their pages by the names of the 
vulnerabilities they exploit and a few of them have the 
word “exploit” as part of the URL names. 

The second observation is that some sophisticated 
web sites use transient URLs that contain random strings. 
This is designed to make investigations more difficult. 
Site ranking based on the number of hosted exploit-URLs 
helps highlight such sites so that they are prioritized 
higher for investigation. The zero-day exploits discussed 
in the next sub-section provide a good example of this. 

4.2. Zero-Day Exploit Detection 

In early July 2005, a Stage-3 HoneyMonkey 
discovered our first zero-day exploit. The javaprxy.dll 
vulnerability was known at that time without an available 
patch [J105,J205], and whether it was actually being 
exploited was a critical piece of information that was 
previously not known. The HoneyMonkey system 
detected the first exploit page within 2.5 hours of scanning 
and it was confirmed to be the first in-the-wild exploit-
URL of the vulnerability reported to the Microsoft 
Security Response Center. A second exploit-URL was 

Figure 4. SP2-PP topology graph (17 URLs, 10 sites) 



 

detected in the next hour. These two occupy positions 
#132 and #179, respectively, in our list of 752 monitored 
URLs. This information enabled the response center to 
provide customers with a security advisory and a follow-
up security bulletin [SH, J205]. 

During the subsequent five days, HoneyMonkey 
detected that 26 of the 752 exploit-URLs upgraded to the 
zero-day exploit. Redirection analysis further revealed that 
25 of them were redirecting traffic to a previously 
unknown exploit provider site that was hosting exploit-
URLs with names in the following form: 

http://[IP address]/[8 chars]/test2/iejp.htm 

where [8 chars] consists of 8 random characters that 
appeared to change gradually over time. Takedown 
notices were sent after further investigation of the installed 
malware programs, and most of the 25 web pages stopped 
exploiting the javaprxy.dll vulnerability shortly after that. 

Latest-Patched-Vulnerability Exploit Monitoring 

One day after the patch release, HoneyMonkey 
detected another jump in the number of exploit-URLs for 
the vulnerability: 53 URLs from 12 sites were upgraded in 
the subsequent six days. Redirection analysis revealed that 
all of them were redirecting traffic to a previously known 
exploit provider (ranked #1 in Figure 6) who decided to 
add a new exploit page for javaprxy.dll to increase its 
infection base. A takedown notice was sent after malware 
investigation and all 53 URLs stopped exploiting within a 
couple of days. 

Important Observations 
This experience provides concrete evidence that the 

HoneyMonkey system can potentially evolve into a full-
fledged, systematic and automatic zero-day exploit 
monitoring system for browser-based attacks. We make 
the following observations from the initial success: 

(1) Monitoring easy-to-find exploit-URLs is 
effective: we predicted that monitoring the 752 exploit-
URLs would be useful for detecting zero-day exploits 

Figure 6. Top 129 SP1-UP exploit sites ranked by the number of exploit-URLs hosted 
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Figure 5. Top 15 exploit sites ranked by connection counts, among the 268 SP1-UP exploit sites 
from the suspicious list  



 

because the fact that we could find them quickly within 
the first month implies that they are more popular and 
easier to reach. Although zero-day exploits are extremely 
powerful, they need to connect to popular web sites in 
order to receive traffic to exploit. If they connect to any of 
the monitored URLs in our list, the HoneyMonkey can 
quickly detect the exploits and identify the exploit 
providers behind the scene through redirection analysis. 
Our zero-day exploit detection experience confirmed the 
effectiveness of this approach. 

(2) Monitoring content providers with well-known 
URLs is effective: we predicted that monitoring content 
providers would be useful for tracking the potentially 
dynamic behavior of exploit providers. Unlike exploit 
providers who could easily move from one IP address to 
another and use random URLs, content providers need to 
maintain their well-known URLs in order to continue 
attracting browser traffic. The HoneyMonkey takes 
advantage of this fundamental weakness in the browser-
based exploit model and utilizes the content providers as 
convenient entry points into the exploit network. Again, 
our zero-day exploit detection experience confirmed the 
effectiveness of this approach. 

(3) Monitoring highly ranked and advanced exploit-
URLs is effective: we predicted that the top exploit sites 
we identified are more likely to upgrade their exploits 
because they have a serious investment in this business. 
Also, web sites that appear in the SP2-PP graph are more 
likely to upgrade because they appeared to be more up-to-
date exploiters. Both predictions have been shown to be 
true: the first detected zero-day exploit-URL belongs to 
the #9 site in Figure 5 (which is registered to the same 
email address that also owns the #4 and #5 sites) and 7 of 
the top 10 sites in Figure 5 upgraded to the javaprxy.dll 
exploit; nearly half of the SP2-PP exploit-URLs in Figure 
4 upgraded as well. 

4.3. Scanning Popular URLs 

By specifically searching for potentially malicious 
web sites, we were able to obtain a list of URLs that have 
1.28% of the pages performing exploits. A natural 
question that most web users will ask is: if I never visit 
those risky web sites that serve dangerous or questionable 
content, do I have to worry about vulnerability exploits? 
To answer this question, we gathered the most popular one 
million URLs as measured by the click-through counts 
from a search engine and tested them with the 
HoneyMonkey system. We also compared the results of 
this popular-list data with the suspicious-list data in 
Section 4.1. Figure 7 summarizes the comparison of key 
data. 

 

 

 Suspicious List Popular List 

# URLs scanned 16,190 1,000,000 

# Exploit URLs 207 (1.28%) 710 (0.071%) 

# Exploit URLs 
After Redirection 

(Expansion Factor) 

752  

(263%) 

1,036  

(46%) 

# Exploit Sites 288 470 

SP2-to-SP1 Ratio 204/688 = 0.30 131/980 = 0.13 

Figure 7. Comparison of the suspicious-list and 
popular-list data. 

4.3.1. Summary Statistics 
Before redirection analysis 

Of the one million URLs, HoneyMonkey determined 
that 710 were exploit pages. This translates into a density 
of 0.071%, which is between one to two orders of 
magnitude lower than the 1.28% number from the 
suspicious-list data. The distribution of exploit-URLs 
among the ranked list is fairly uniform, which implies that 
the next million URLs likely exhibit a similar distribution 
and so there are likely many more exploit URLs to be 
discovered. Eleven of the 710 exploit pages are very 
popular: they are among the top 10,000 of the one million 
URLs that we scanned. This demonstrates the need for 
constant, automatic web patrol of popular pages in order 
to protect the Internet from large-scale infections.   

After redirection analysis: 
The Stage-2 HoneyMonkey redirection analysis 

expanded the list of 710 exploit-URLs to 1,036 URLs 
hosted by 470 sites. This (1,036-710)/710=46% expansion 
is much lower than the 263% expansion in the suspicious-
list data, suggesting that the redirection network behind 
the former is less complex. The SP2-to-SP1 ratio of 0.13 
is lower than its counterpart of 0.30 from the suspicious-
list data (see Figure 7). This suggests that overall the 
exploit capabilities in the popular list are not as advanced 
as those in the suspicious list, which is consistent with the 
findings from our manual analysis.      

Intersecting the 470 exploit sites with the 288 sites 
from Section 4.1 yields only 17 sites. These numbers 
suggest that the degree of overlap between the suspicious 
list, generally with more powerful attacks, and the popular 
list is not alarmingly high at this point. But more and more 
exploit sites from the suspicious list may try to “infiltrate” 
the popular list to increase their infection base. In total, we 
have collected 1,780 exploit-URLs hosted by 741 sites.  

 
 
 
 



 

4.3.2. Node ranking 

Site ranking based on connection counts 
Figure 8 illustrates the top 15 SP1-UP exploit sites by 

connection counts. There are several interesting 
differences between the two data sets behind the 
suspicious-list exploiters (Figure 5) and the popular-list 
exploiters (Figure 8). First, there is not a single pair of 
exploit sites in the popular-list data that are doing two-
way traffic redirection, which appears to be unique in the 
malicious pornography community. Second, while it is not 
uncommon to see web sites redirecting traffic to more 
than 10 or even 20 sites in the suspicious-list, sites in the 
popular-list data redirect traffic to at most 4 sites. This 
suggests that aggressive traffic selling is also a 
phenomenon unique to the malicious pornography 
community.  

Finally, the top four exploit providers in the popular-
list clearly stand out. None of them have any URLs in the 
original list of one million URLs, but all of them are 
behind a large number of exploit pages which redirect 
traffic to them. The #1 site provides exploits to 75 web 
sites primarily in the following five categories: (1) 
celebrities, (2) song lyrics, (3) wallpapers, (4) video game 
cheats, and (5) wrestling. The #2 site receives traffic from 
72 web sites, the majority of which are located in one 
particular country. The #3 site is behind 56 related web 
sites that serve cartoon-related pornographic content. The 
#4 site appears to be an advertising company serving 
exploiting links through web sites that overlap 
significantly with those covered by the #1 site. 

Site ranking based on number of hosted exploit-URLs 
Figure 9 illustrates the top 122 sites hosting more than 

one exploit URL. Unlike Figure 6, which highlights 

Figure 8. Top 15 exploit sites ranked by connection counts, among the 426 SP1-UP exploit sites 
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Figure 9. Top 122 sites ranked by the number of exploit-URLs, among the 426 SP1-UP exploit sites 
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mostly exploit provider sites, Figure 9 highlights many 
content provider sites that host a large number of exploit 
pages containing a similar type of content. Again, the top 
four sites stand out: the #1 site is a content provider of 
video game cheats information for multiple game 
consoles. The #2 site (which also appears as the third 
entry in Figure 8) hosts a separate URL for each different 
web site from which it receives traffic. The #3 site is a 
content provider that has a separate entry page for each 
celebrity figure. The #4 site is a content provider of song 
lyrics with one entry page per celebrity singer.  

5. Discussions 

Now that the effectiveness of the HoneyMonkey 
system is widely known [HM], it is expected that exploit 
sites will start adopting techniques to evade 
HoneyMonkey detection. We discuss three types of 
potential evasion techniques and our countermeasures. 
Since it has become clear that a weakness of the 
HoneyMonkey is the time window between a successful 
exploit that allows foreign code execution and the 
subsequent execution of the HoneyMonkey exploit 
detection code, we have developed and integrated a tool 
called Vulnerability-Specific Exploit Detector (VSED), 
which allows the HoneyMonkey to detect and record the 
first sign of an exploit. Such a detector only works for 
known vulnerabilities though; detecting zero-day exploits 
of totally unknown vulnerabilities remains a challenge. 
The VSED tool will be discussed in Section 5.4. 

5.1. Identifying HoneyMonkey Machines 

There are three ways for an exploit site to identify 
HoneyMonkey machines and skip exploits.  

(1) Targeting HoneyMonkey IP addresses: The 
easiest way is to black-list the IP addresses of 
HoneyMonkey machines. We plan to run the 
HoneyMonkey network behind multiple ISPs with 
dynamically assigned IP addresses. If an exploit site wants 
to black-list all IP addresses belonging to these ISPs, it 
will need to sacrifice a significant percentage of its 
infection base. One market research study of ISP client 
membership [ISP] shows that the top 10 US ISPs service 
over 62% of US Internet users. 

(2) Performing a test to determine if a human is 
present: Currently, HoneyMonkeys do not click on any 
dialog box. A malicious web site could introduce a one-
time dialog box that asks a simple question; after the user 
clicks the OK button to prove he’s human, the web site 
drops a cookie to suppress the dialog box for future visits. 
More sophisticated web sites can replace the simple dialog 
box with a CAPTCHA Turing Test [ABL04] (although 
this would raise suspicion because most non-exploiting 
sites do not use such tests). We will need to incorporate 

additional intelligence into the HoneyMonkeys to handle 
dialog boxes and to detect CAPTCHA tests when we see 
web sites starting to adopt such techniques to evade 
detection. 

(3) Detecting the presence of a VM or the 
HoneyMonkey code: Malicious code could detect a VM 
by executing a series of instructions with high 
virtualization overhead and comparing the elapsed time to 
some external reference [VMC+05]; by detecting the use 
of reserved x86 opcodes normally only used by specific 
VMs [L05]; by leveraging information leaked by 
sensitive, non-privileged instructions [RP]; and by 
observing certain file directory contents known to be 
associated with UML (User-Mode Linux) [CDF+04] or a 
specific hardware configuration, default MAC address, or 
I/O backdoor associated with VMware [HR05]. 

Most VM-detection techniques arise due to the fact 
that the x86 processors are not fully virtualizable. 
Fortunately, both Intel [VT] and AMD [PVT] have 
proposed architecture extensions that would make x86 
processors fully virtualizable, and thus make detecting a 
VM more difficult. In the meantime, we can adopt anti-
detection techniques that target known VM-detection 
methods [CDF+04,VMC+05]. As VMs are increasingly 
used as general computing platforms, the approach of 
detecting HoneyMonkeys by detecting VMs will become 
less effective. 

Alternatively, we developed techniques that allow us 
to also run HoneyMonkey on non-virtual machines so that 
the results can be cross-checked to identify sophisticated 
attackers. We implemented support to efficiently 
checkpoint our system (both memory and disk state) when 
it is in a known-good state, and roll back to that 
checkpoint after an attack has been detected. To 
checkpoint memory, we utilized the hibernation 
functionality already present in Windows to efficiently 
store and restore memory snapshots. To support disk 
checkpoints, we implemented copy-on-write disk 
functionality by modifying the generic Windows disk 
class driver which is used by most disks today. Our copy-
on-write implementation divides the physical disk into 
two equally sized partitions. We use the first partition to 
hold the default disk image that we roll back to when 
restoring a checkpoint, and the second partition as a 
scratch partition to store all disk writes made after taking a 
checkpoint. We maintain a bitmap in memory to record 
which blocks have been written to so we know which 
partition contains the most recent version of each 
individual block. As a result, no extra disk reads or writes 
are needed to provide copy-on-write functionality and a 
rollback can be simply accomplished by zeroing out the 
bitmap. To provide further protection, we can adopt 
resource-hiding techniques to hide the driver from 



 

sophisticated attackers who are trying to detect the driver 
to identify a HoneyMonkey machine. 

Some exploit sites may be able to obtain the 
“signatures” of the HoneyMonkey logging infrastructure 
and build a detection mechanism to allow them to disable 
the logging or tamper with the log. Since such detection 
code can only be executed after a successful exploit, we 
can use VSED to detect occurrences of exploits and 
highlight those that do not have a corresponding file-
creation log. Additionally, we are incorporating log 
signing techniques to detect missing or modified log 
entries. 

We note that some classes of exploits require writing 
a file to disk and then executing that file for running 
arbitrary code. These exploits cannot escape our detection 
by trying to identify a HoneyMonkey machine because 
our file-based detection actually occurs before they can 
execute code. 

5.2. Exploiting without Triggering HoneyMonkey 
Detection 

Currently, HoneyMonkey cannot detect exploits that 
do not make any persistent-state changes or make such 
changes only inside browser sandbox. Even with this 
limitation, the HoneyMonkey is able to detect most of 
today’s Trojans, backdoors, and spyware programs that 
rely on significant persistent-state changes to enable 
automatic restart upon reboot. Again, the VSED tool can 
help address this limitation. 

HoneyMonkeys only wait for a few minutes for each 
URL. So a possible evasion technique is to delay the 
exploit. However, such delays reduce the chance of 
successful infections because real users may close the 
browser before the exploit happens. We plan to run 
HoneyMonkeys with random wait times and highlight 
those exploit pages that exhibit inconsistent behaviors 
across runs for more in-depth manual analysis. 

5.3. Randomizing the Attacks 

Exploit sites may try to inject nondeterministic 
behavior to complicate the HoneyMonkey detection. They 
may randomly exploit one in every N browser visits. We 
consider this an acceptable trade-off: while this would 
require multiple scans by the HoneyMonkeys to detect an 
exploit, it forces the exploit sites to reduce their infection 
rates by N times as well. If a major exploit provider is 
behind more than N monitored content providers, the 
HoneyMonkey can still detect it through redirection 
tracking in one round of scans. 

Exploit sites may try to randomize URL redirections 
by selecting a random subset of machines to forward 
traffic to each time, from a large set of infected machines 
that are made to host exploit code. Our node ranking 

algorithm based on connection counts should discourage 
this because such sites would end up prioritizing 
themselves higher for investigation. Also, they reveal the 
identities of infected machines, whose owners can be 
notified to clean up the machines. 

5.4. Vulnerability-Specific Exploit Detector 
(VSED) 

To address some of the limitations discussed above 
and to provide additional information on the exact 
vulnerabilities being exploited, we have developed a 
vulnerability-specific detector, called VSED, and 
integrated it into the HoneyMonkey. The VSED tool 
implements a source-code level, vulnerability-specific 
intrusion detection technique that is similar to IntroVirt 
[JKD+05]. For each vulnerability, we manually write 
“predicates” to test the state of the monitored program to 
determine when an attacker is about to trigger a 
vulnerability. VSED operates by inserting breakpoints 
within buggy code to stop execution before potentially 
malicious code runs, in order to allow secure logging of an 
exploit alert. For example, VSED would detect a buffer 
overflow involving the “strcpy” function by setting a 
breakpoint right before the buggy “strcpy” executes. Once 
VSED stops the application, the predicate examines the 
variables passed into “strcpy” to determine if an overflow 
is going to happen. 

To evaluate the effectiveness of VSED for detecting 
browser-based exploits, we wrote predicates for six recent 
IE vulnerabilities and tested them against the exploit-
URLs from both the suspicious list and the popular list. 
Although we do not have a comprehensive list of 
predicates built yet, we can already pinpoint the 
vulnerabilities exploited by hundreds of exploit-URLs. 
One limitation of VSED is that it cannot identify zero-day 
exploits of unknown vulnerabilities.  

6. Related Work  

There is a rich body of literature on honeypots. Most 
honeypots are deployed to mimic vulnerable servers 
waiting for attacks from client machines 
[H,P04,J04,KGO+05]. In contrast, HoneyMonkeys are 
deployed to mimic clients drawing attacks from malicious 
servers. 

To our knowledge, there are three other projects 
related to the concept of client-side honeypots: email 
quarantine, shadow honeypots, and Honeyclient. 
Sidiroglou et al. [SK05] described an email quarantine 
system which intercepts every incoming message, “opens” 
all suspicious attachments inside instrumented virtual 
machines, uses behavior-based anomaly detection to flag 
potentially malicious actions, quarantines flagged emails, 
and only delivers messages that are deemed safe. 



 

Anagnostakis et al. [ASA+05] proposed the technique 
of “shadow honeypots” which are applicable to both 
servers and clients. The key idea is to combine anomaly 
detection with honeypots by diverting suspicious traffic 
identified by anomaly detectors to a shadow version of the 
target application that is instrumented to detect potential 
attacks and filter out false positives. As a demonstration of 
client-side protection, the authors deployed their prototype 
on Mozilla Firefox browsers. 

The two client-side honeypots described above are 
both passive in that they are given existing traffic and do 
not actively solicit traffic. In contrast, HoneyMonkeys are 
active and are responsible for seeking out malicious web 
sites and drawing attack traffic from them. The former has 
the advantage of providing effective, focused protection of 
targeted population. The latter has the advantages of 
staying out of the application’s critical path and achieving 
a broader coverage, but it does require additional defense 
against potential traps/black-holes during the recursive 
redirection analysis. The two approaches are 
complementary and can be used in conjunction with each 
other to provide maximum protection. 

In parallel with our work, the Honeyclient project 
[HC] shares the same goal of trying to identify browser-
based attacks. However, the project has not published any 
deployment experience or any data on detected exploit-
URLs. There are also several major differences in terms of 
implementation: Honeyclient is not VM-based, does not 
use a pipeline of machines with different patch levels, and 
does not track URL redirections. 

Existing honeypot techniques can be categorized 
using two other criteria: (1) physical honeypots [KGO+05] 
with dedicated physical machines versus virtual honeypots 
built on Virtual Machines [VMW,UML]; (2) low-
interaction honeypots [P04], which only simulate network 
protocol stacks of different operating systems, versus 
high-interaction honeypots [J04], which provide an 
authentic decoy system environment. HoneyMonkeys 
belong to the category of high-interaction, virtual 
honeypots. 

In contrast with the black-box, state-change-based 
detection approach used in HoneyMonkey, several papers 
proposed vulnerability-oriented detection methods, which 
can be further divided into vulnerability-specific and 
vulnerability-generic methods. The former includes Shield 
[WGS+04], a network-level filter designed to detect 
worms exploiting known vulnerabilities, and IntroVirt 
[JKD+05], a technique for specifying and monitoring 
vulnerability-specific predicates at code level. The latter 
includes system call-based intrusion detection systems 
[FHS+96,FKF+03], memory layout randomization 
[ASLR,XKI03], non-executable pages [AA] and pointer 
encryption [CBJ+03]. An advantage of vulnerability-

oriented techniques is the ability to detect an exploit 
earlier and identify the exact vulnerability being exploited. 
As discussed in Section 5.4, we have incorporated 
IntroVirt-style, vulnerability-specific detection capability 
into the HoneyMonkey. 

7. Summary 

We have presented the design and implementation of 
the Strider HoneyMonkey as the first systematic method 
for automated web patrol to hunt for malicious web sites 
that exploit browser vulnerabilities. Our analyses of two 
sets of data showed that the densities of malicious URLs 
are 1.28% and 0.071%, respectively. In total, we have 
identified a large community of 741 web sites hosting 
1,780 exploit-URLs. We proposed using topology graphs 
based on redirection traffic to capture the relationship 
between exploit sites and using site ranking algorithms 
based on the number of directly connected sites and the 
number of hosted exploit-URLs to identify major players. 
Our success in detecting the first-reported, in-the-wild, 
zero-day exploit-URL of the javaprxy.dll vulnerability 
provided the best demonstration of the effectiveness of our 
approach by monitoring easy-to-find content providers 
with well-known URLs as well as top exploit providers 
with advanced exploit capabilities. Finally, we discussed 
several techniques that malicious web sites can adopt to 
evade HoneyMonkey detection, which motivated us to 
incorporate an additional vulnerability-specific exploit 
detection mechanism to complement the HoneyMonkey’s 
core black-box exploit detection approach. 
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