
Automated Web Patrol with Strider HoneyMonkeys:
Finding Web Sites That Exploit Browser Vulnerabilities

Yi-Min Wang, Doug Beck, Xuxian Jiang, Roussi Roussev,

Chad Verbowski, Shuo Chen, and Sam King
Microsoft Research, Redmond

Abstract

Internet attacks that use malicious web sites to install
malware programs by exploiting browser vulnerabilities
are a serious emerging threat. In response, we have
developed an automated web patrol system to
automatically identify and monitor these malicious sites.
We describe the design and implementation of the Strider
HoneyMonkey Exploit Detection System, which consists of
a pipeline of “monkey programs” running possibly
vulnerable browsers on virtual machines with different
patch levels and patrolling the Web to seek out and
classify web sites that exploit browser vulnerabilities.

Within the first month of utilizing this system, we
identified 752 unique URLs hosted on 288 web sites that
could successfully exploit unpatched Windows XP
machines. The system automatically constructed topology
graphs based on traffic redirection to capture the
relationship between the exploit sites. This allowed us to
identify several major players who are responsible for a
large number of exploit pages. By monitoring these 752
exploit-URLs on a daily basis, we discovered a malicious
web site that was performing zero-day exploits of the
unpatched javaprxy.dll vulnerability and was operating
behind 25 exploit-URLs. It was confirmed as the first “in-
the-wild”, zero-day exploit of this vulnerability that was
reported to the Microsoft Security Response Center.
Additionally, by scanning the most popular one million
URLs as classified by a search engine, we found over
seven hundred exploit-URLs, many of which serve popular
content related to celebrities, song lyrics, wallpapers,
video game cheats, and wrestling.

1. Introduction

Internet attacks that use a malicious or hacked web
site to exploit unpatched client-side vulnerabilities of
visiting browsers are on the rise. Malcode distributed by
this method in the past 12 months includes the
Download.Ject [D04], Bofra [R04], and Xpire.info [B04]
programs. These attacks allow web servers that host
compromised URLs to install malcode on visiting client
machines without requiring any user interaction beyond
visitation. There have been several manual analyses of
these events [E04,F04,G05,IF05,R05,S05,T05]. Although

these analyses provide very useful and detailed
information about which vulnerabilities are exploited and
which malware programs are installed, such efforts are not
scalable, do not provide a comprehensive picture of the
problem, and are generally ineffective at efficiently
finding new malicious sites.

To address these issues, we developed a system that
uses a pipeline of active, client-side, Virtual Machine
(VM)-based honeypots [H,HC], called Strider
HoneyMonkeys, to perform large-scale, systematic and
automated web patrol. The HoneyMonkey system uses
monkey programs1 that run within virtual machines with
OS’s of various patch levels to drive web browsers in an
attempt to mimic human web browsing. Our approach
adopts a state-management methodology to cybersecurity:
instead of directly detecting the acts of vulnerability
exploits, the system uses the Strider Tracer [W03] to catch
unauthorized file creations and configuration changes that
are the result of a successful exploit.

We demonstrate the effectiveness of our method by
discovering a large community of malicious web sites that
host exploit pages and by deriving the redirection
relationships among them. We describe a real-world
experience with identifying a zero-day exploit2 using this
system. We show the existence of hundreds of malicious
web pages amongst many popular web sites. Finally, we
propose a comprehensive anti-exploit process based on
this monitoring system in order to improve Internet safety.

This paper is organized as follows. Section 2 provides
background information on the problem space by
describing the techniques used in actual client-side
exploits of popular web browsers. Section 3 gives an
overview of the Strider HoneyMonkey Exploit Detection
System and its surrounding Anti-Exploit Process. Section

1 An automation-enabled program such as the Internet Explorer
browser allows programmatic access to most of the operations
that can be invoked by a user. A “monkey program” is a program
that drives the browser in a way that mimics a human user’s
operation.
2 In this paper, a zero-day exploit refers to a vulnerability exploit
that exists before the patch for the vulnerability is released. The
vulnerability can be known or unknown to the public at that
time.

4 evaluates the effectiveness of HoneyMonkey in both
known-vulnerability and zero-day exploit detection, and
presents an analysis of the exploit data to help prioritize
investigation tasks. Section 5 discusses the limitations of
and possible attacks on the current HoneyMonkey system
and describes several countermeasures including an
enhancement based on a vulnerability-specific exploit
detection mechanism. Section 6 surveys related work and
Section 7 concludes the paper.

2. Browser-based Vulnerability Exploits

Malicious activities performed by actual web sites
exploiting browser vulnerabilities can be divided into four
steps: code obfuscation, URL redirection, vulnerability
exploitation, and malware installation.

2.1. Code Obfuscation

To complicate investigation and to escape signature-
based scanning by anti-virus/anti-spyware software, some
web sites use a combination of the following code
obfuscation techniques: (1) dynamic code injection using
the document.write() function inside a script; (2)
unreadable, long strings with encoded characters such as
“%28”, “h”, etc. which are then decoded either by
the unescape() function inside a script or by the browser;
(3) custom decoding routine included in a script; and (4)
sub-string replacement using the replace() function. Since
code-obfuscation is a common technique, this limits the
ability of attack-signature-based detectors to detect new
attacks that leverage old exploit code.

2.2. URL Redirection

Most malicious web sites automatically redirect
browser traffic to additional URLs. Specifically, when a
browser visits a primary URL, the response from that
URL instructs the browser to automatically visit one or
more secondary URLs, which may or may not affect the
content that is displayed to the user. Such redirections

typically use one of the following mechanisms classified
into three categories: (1) protocol redirection using HTTP
302 Temporary Redirect; (2) HTML tags including
<iframe>, <frame> inside <frameset>, and <META
http-equiv=refresh>; (3) script functions including
window.location.replace(), window.location.href(),
window.open(), window.showModalDialog(), and
<link_ID>.click(), etc. Since redirection is commonly
used by non-malicious sites to enrich content, simply
eliminating redirection from a browser would present
significant complications

2.3. Vulnerability Exploitation

It is not uncommon to see a malicious web page
attempting to exploit multiple browser vulnerabilities in
order to maximize the chance of a successful attack.
Figure 1 shows an example HTML fragment that uses
various primitives to load multiple files from different
URLs on the same server to exploit three vulnerabilities
fixed in Microsoft Security Bulletins MS05-002 [M52],
MS03-011 [M311], and MS04-013 [M413]. If any of the
exploits succeeds, a Trojan downloader named win32.exe
is downloaded and executed. Note that although Internet
Explorer is the common target due to its popularity, other
browsers can also be attacked.

2.4. Malware Installation

The purpose of an exploit is almost always to
introduce some piece of arbitrary code on the victim
machine, as a way to achieve a larger attack goal. We
have observed a plethora of malcode types installed
through browser exploits, including viruses that infect
files, backdoors that open entry points for future
unauthorized access, bot programs that allow the attacker
to control a whole network of compromised systems,
Trojan downloaders that connect to the Internet and
download other programs, Trojan droppers that drop files
from themselves without accessing the Internet, and
Trojan proxies that redirect network traffic. Some spyware

<html><head><title></title></head><body>
<style>
* {CURSOR: url("http://vxxxxxxe.biz/adverts/033/sploit.anr")}
</style>
<APPLET ARCHIVE='count.jar' CODE='BlackBox.class' WIDTH=1 HEIGHT=1>
<PARAM NAME='url' VALUE='http://vxxxxxxe.biz/adverts/033/win32.exe'></APPLET>
<script>
try{
document.write('<object
data=`ms-its:mhtml:file://
C:\fo'+'o.mht!'+'http://vxxxx'+'xxe.biz//adv'+'erts//033//targ.ch'+'m::/targ'+'et.htm` type=`text/x-scriptlet`></ob'+'ject>');
}catch(e){}
</script>
</body></html>

MS05-002

MS03-011

MS04-013

Figure 1. Actual sample Web page attempting to exploit multiple vulnerabilities

programs and even anti-spyware programs are also
installed through exploits.

3. The HoneyMonkey System

The HoneyMonkey system attempts to automatically
detect and analyze a network of web sites that exploit web
browsers. Figure 2 illustrates the HoneyMonkey Exploit
Detection System, shown inside the dotted square, and the
surrounding Anti-Exploit Process which includes both
automatic and manual components.

3.1. Exploit Detection System

The exploit detection system is the heart of the
HoneyMonkeys design. This system consists of a 3-stage
pipeline of virtual machines. Given a large list of input
URLs with a potentially low exploit-URL density, each
HoneyMonkey in Stage 1 starts with a scalable mode by
visiting N URLs simultaneously inside one unpatched
VM. When the HoneyMonkey detects an exploit, it
switches to the basic, one-URL-per-VM mode to re-test
each of the N suspects in order to determine which ones
are exploit URLs.

Stage-2 HoneyMonkeys scan Stage 1 detected
exploit-URLs and perform recursive redirection analysis
to identify all web pages involved in exploit activities and
to determine their relationships. Stage-3 HoneyMonkeys
continuously scan Stage-2 detected exploit-URLs using
(nearly) fully patched VMs in order to detect attacks
exploiting the latest vulnerabilities.

We used a network of 20 machines to produce the

results reported in this paper. Each machine had a CPU
speed between 1.7 and 3.2 GHz, a memory size between
512 MB and 2GB, and was responsible for running one
VM configured with 256 MB to 512MB of RAM. Each
VM supported up to 10 simultaneous browser processes in
the scalable mode, with each process visiting a different
URL. Due to the way HoneyMonkeys detect exploits
(discussed later), there is a trade-off between the scan rate
and the robustness of exploit detection: if the
HoneyMonkey does not wait long enough or if too many
simultaneous browser processes cause excessive
slowdown, some exploit pages may not be able to perform
a detectable attack (e.g., beginning a software
installation).

Through extensive experiments, we determined that a
wait time of two minutes was a good trade-off. Taking
into account the overhead of restarting VMs in a clean
state, each machine was able to scan and analyze between
3,000 to 4,000 URLs per day. We have since improved the
scalability of the system to a scan rate of 8,000 URLs per
day per machine in the scalable mode. (In contrast, the
basic mode scans between 500 and 700 URLs per day per
machine.) We expect that using a more sophisticated VM
platform that enables significantly more VMs per host
machine and faster rollback [VMC+05] would
significantly increase our scalability.

3.1.1. Exploit Detection

Although it is possible to detect browser exploits by
building signature-based detection code for each known
vulnerability or exploit, this approach is manually
intensive. To lower this cost, we take the following black-

Figure 2. HoneyMonkey Exploit Detection System and Anti-Exploit Process

Depth-N crawling
of given URL

List of “interesting URLs”

Exploit URLs

Topology graph
of exploit URLs

Topology graphs
of zero-day or
latest-patched-
vulnerability
exploit URLs

Stage 1: Scalable HoneyMonkey exploit
detection with unpatched virtual

machines without redirection analysis

Stage 2: Basic HoneyMonkey exploit
detection with unpatched virtual

machines with redirection analysis

Stage 3: Basic HoneyMonkey exploit
detection with (nearly) fully patched

virtual machines with redirection analysis

Analysis of exploit URL density

Fix compromised machines

Internet safety enforcement team

Access blocking

Anti-spyware team

Security response center

Browser and other related teams

Redirect
URLs

HoneyMonkey Exploit Detection System

box, non-signature-based approach: we run a monkey
program that launches a browser instance to visit each
input URL and then waits for a few minutes to allow
downloading of any code which may have a short time
delay. We then detect a group of persistent-state changes
to signal exploitation. Since the monkey is not instructed
to click on any dialog box to permit software installation,
any executable files or registry entries created outside the
browser sandbox indicate an exploit. This approach has
the additional important advantage of allowing the
detection of known-vulnerability exploits and zero-day
exploits in a uniform way. Specifically, the same monkey
program running on unpatched machines to detect a broad
range of browser-based vulnerability exploits (as shown in
Stages 1 and 2) can run on fully patched machines to
detect zero-day exploits, as shown in Stage 3.

At the end of each visit, the HoneyMonkey generates
an XML report containing the following five pieces of
information:

(1) Executable files created or modified outside the
browser sandbox folders: this is the primary mechanism
for exploit detection. It is implemented on top of the
Strider Tracer [W03], which uses a file-tracing driver to
efficiently record every single file read/write operation.

(2) Processes created: Strider Tracer also tracks all child
processes created by the browser process.

(3) Windows registry entries created or modified:
Strider Tracer additionally includes a driver that
efficiently records every single registry [G04] read/write.
To highlight the most critical entries, we use the Strider
Gatekeeper and GhostBuster filters [W04,W05], which
target registry entries most frequently attacked by
spyware, Trojans, and rootkits based on an extensive
study. This allows HoneyMonkey to detect exploits that
modify critical configuration settings (such as the browser
home page and the wallpaper) without creating executable
files.

(4) Vulnerability exploited: to provide additional
information and to address limitations of the black-box
approach, we have developed and incorporated a
vulnerability-specific detector, to be discussed in Section
5. This is based on the vulnerability signature of the
exploit, rather than on any particular piece of malcode.

(5) Redirect-URLs visited: Since malcode is often
laundered through other sites, this module allows us to
track redirections to determine both the real source of the
malcode and those involved in the distribution chain.

To ease cleanup of infected state, we run
HoneyMonkeys inside a VM. (Our current
implementation uses Microsoft Virtual PC and Virtual
Server.) Upon detecting an exploit, the monkey saves its

logs and notifies the Monkey Controller on the host
machine to destroy the infected VM and re-spawn a clean
HoneyMonkey, which then continues to visit the
remaining URL list. The Monkey Controller then passes
the detected exploit-URL to the next monkey in the
pipeline to further investigate the strength of the exploit.

3.1.2. Redirection Analysis

Many exploit-URLs identified in Stage 1 do not
perform the actual exploits but instead act as front-end
content providers that serve “interesting” content such as
pornography in order to attract browser traffic. This traffic
is then sold and redirected to back-end exploit providers,
which specialize in exploiting clients and installing
malware.

URLs visited through traffic redirection can be
tracked with a Browser Helper Object (BHO) running
within each browser process or by intercepting and
analyzing network packets. When the HoneyMonkey runs
in its “redirection analysis” mode, any automatically
visited URLs are fed back to the system for further
checking. This recursive scanning allows the construction
of topology graphs based on traffic redirection. In
Section 4, we present our analysis of topology graphs to
demonstrate how they enable the identification of major
exploit providers that receive traffic from a large number
of content providers; they also show how exploit providers
organize their web pages in a way that facilitates
customized malware installations for each of their
affiliates. Finally, we are able to positively identify the
web pages that actually perform the exploits by
implementing an option in our redirection tracker to block
all redirection traffic.

3.2. Anti-Exploit Process

The Anti-Exploit Process involves generating the input
URL lists for HoneyMonkeys to scan, and taking various
actions based on analyses of the output exploit-URL data.

3.2.1. Generating Input URL Lists

We use three sources for generating “interesting”
URLs for analysis. The first category consists of
suspicious URLs including web sites that are known to
host spyware [CWS05] or malware, links appearing in
phishing or spam emails [S05] or instant messages, web
pages serving questionable content such as pornography,
URL names that are typos of popular sites [G05], web
sites involved in DNS cache poisoning [HD05,IW05,S04],
and similar common sources of malicious web content.

The second category consists of the most popular web
pages, which, if compromised, can potentially infect a
large population. Examples include the top 100,000 web
sites based on browser traffic ranking [AL] or the top N

million web sites based on click-through counts as
measured by search engines.

The third category encompasses URL lists of a more
localized scope. For example, an organization may want to
regularly verify that its web pages have not been
compromised to exploit visitors; a user may want to
investigate whether any recently visited URL was
responsible for causing a spyware infection.

3.2.2. Acting on Output Exploit-URL Data

Stage 1 Output – Exploit-URLs

The percentage of exploit-URLs in a given list can be
used to measure the risk of web surfing. For example, by
comparing the percentage numbers from two URL lists
corresponding to two different search categories (e.g.,
gambling versus shopping), we can assess the relative risk
of malware infection for people with different browsing
habits. Also, we have observed that depth-N crawling of
exploit pages containing a large number of links, as
illustrated at the top of Figure 2, often leads to the
discovery of more exploit pages.

Stage 2 Output – Traffic-Redirection Topology Graphs

The HoneyMonkey system currently serves as a lead-
generation tool for the Internet safety enforcement team in
the Microsoft legal department. The topology graphs and
subsequent investigations of the malicious behavior of the
installed malware programs provide a prioritized list for
potential enforcement actions that include sending site-
takedown notices, notifying law enforcement agencies,
and filing civil suits against the individuals responsible for
distributing the malware programs. We have successfully
shut down several malicious URLs discovered by the
HoneyMonkey.

Due to the international nature of the exploit
community, access blocking may be more appropriate and
effective than legal actions in many cases. Blocking can
be implemented at different levels: search engines can
remove exploit-URLs from their database; Internet
Service Providers (ISPs) can black-list exploit-URLs to
protect their entire customer base; corporate proxy servers
can prevent employees from accessing any of the exploit-
URLs; and individual users can block their machines from
communicating with any exploit sites by editing their local
“hosts” files to map those server hostnames to a local
loopback IP address.

Exploit-URLs also provide valuable leads to our anti-
spyware product team. Each installed program is tagged
with an “exploit-based installation without user
permission” attribute. This clearly distinguishes the
program from other more benign spyware programs that
are always installed after a user accepts the licensing
agreement.

Stage 3 Output – Zero-Day Exploit-URLs and
Topology Graphs

By constantly monitoring all known exploit-URLs
using HoneyMonkeys running on fully patched machines,
we can detect zero-day exploits either when one of the
monitored URLs “upgrade” its own exploit code or when
a new URL that hosts zero-day exploit code starts
receiving redirection traffic from any of the monitored
URLs. Zero-day exploit monitoring is perhaps the most
valuable contribution of the HoneyMonkey because zero-
day exploits can be extremely damaging and whether they
are actually being used in the wild is the most critical
piece of information in the decision process for security
guidance, patch development, and patch release. When a
HoneyMonkey detects a zero-day exploit, it reports the
URL to the Microsoft Security Response Center, which
works closely with the enforcement team and the groups
owning the software with the vulnerability to thoroughly
investigate the case and determine the most appropriate
course of action. We will discuss an actual case in Section
4.2.

Due to the unavoidable delay between patch release
and patch deployment, it is important to know whether the
vulnerabilities fixed in the newly released patch are being
actively exploited in the wild. Such latest-patched-
vulnerability exploit monitoring can be achieved by
running HoneyMonkeys on nearly fully patched machines,
which are missing only the latest patch. This provides
visibility into the prevalence of such exploits to help
provide guidance on the urgency of patch deployment.

4. Experimental Evaluation

We present experimental results in three sections:
scanning suspicious URLs, zero-day exploit detection, and
scanning popular URLs. We refer to the first and the third
sets of data as “suspicious-list data” and “popular-list
data”, respectively. All experiments were performed with
Internet Explorer browser version 6.0.

We note that the statistics reported in this paper do
not allow us to calculate the total number of end-hosts
exploited by the malicious web sites we have found. Such
calculations would require knowing precisely the number
of machines that have visited each exploit page and
whether each machine has patched the specific
vulnerabilities targeted by each visited exploit page.

4.1. Scanning Suspicious URLs

4.1.1. Summary Statistics
Our first experiment aimed at gathering a list of most

likely candidates for exploit-URLs in order to get the
highest hit rate possible. We collected 16,190 potentially
malicious URLs from three sources: (1) a web search of

“known-bad” web sites involved in the installations of
malicious spyware programs [CWS05]; (2) a web search
for Windows “hosts” files [HF] that are used to block
advertisements and bad sites by controlling the domain
name-to-IP address mapping; (3) depth-2 crawling of
some of the discovered exploit-URLs.

We used the Stage-1 HoneyMonkeys running on
unpatched WinXP SP1 and SP2 VMs to scan the 16,190
URLs and identified 207 as exploit-URLs; this translates
into a density of 1.28%. This serves as an upper bound on
the infection rate: if a user does not patch his machine at
all and he exclusively visits risky web sites with
questionable content, his machine will get exploited by
approximately one out of every 100 URLs he visits. We
will discuss the exploit-URL density for normal browsing
behavior in Section 4.3.

After recursive redirection analysis by Stage-2
HoneyMonkeys, the list expanded from 207 URLs to 752
URLs – a 263% expansion. This reveals that there is a
sophisticated network of exploit providers hiding behind
URL redirection to perform malicious activities.

Figure 3 shows the breakdown of the 752 exploit-
URLs among different service-pack (SP1 or SP2) and
patch levels, where “UP” stands for “UnPatched”, “PP”
stands for “Partially Patched”, and “FP” stands for “Fully
Patched”. As expected, the SP1-UP number is much
higher than the SP2-UP number because the former has
more known vulnerabilities that have existed for a longer
time.

 Number of
Exploit-URLs

Number of
Exploit Sites

Total 752 288

SP1 Unpatched (SP1-UP) 688 268

SP2 Unpatched (SP2-UP) 204 115

SP2 Partially Patched
(SP2-PP)

17 10

SP2 Fully Patched
(SP2-FP)

0 0

Figure 3. Exploit statistics for Windows XP as a
function of patch levels (May/June 2005 data)

The SP2-PP numbers are the numbers of exploit
pages and sites that successfully exploited a WinXP SP2
machine partially patched up to early 2005. The fact that
the numbers are one order of magnitude lower than their
SP2-UP counterparts demonstrates the importance of
patching. An important observation is that only a small
percentage of exploit sites are updating their exploit

capabilities to keep up with the latest vulnerabilities, even
though proof-of-concept exploit code for most of the
vulnerabilities are publicly posted. We believe this is due
to three factors: (1) Upgrading and testing new exploit
code incurs some cost which needs to be traded off against
the increase in the number of victim machines; (2) Some
vulnerabilities are more difficult to exploit than others; for
example, some of the attacks are nondeterministic or take
longer. Most exploiters tend to stay with existing, reliable
exploits, and only upgrade when they find the next easy
target. (3) Most security-conscious web users diligently
apply patches. Exploit sites with “advanced” capabilities
are likely to draw attention from knowledgeable users and
become targets for investigation.

The SP2-FP numbers again demonstrate the
importance of software patching: none of the 752 exploit-
URLs was able to exploit a fully updated WinXP SP2
machine according to our May/June 2005 data. As we
describe in Section 4.2, there was a period of time in early
July when this was no longer true. We were able to
quickly identify and report the few exploit providers
capable of infecting fully patched machines, which led to
actions to shut them down.

4.1.2. Topology graphs and node ranking

Figure 4 shows the topology graph of the 17 exploit-
URLs for SP2-PP. These are among the most powerful
exploit pages in terms of the number of machines they are
capable of infecting and should be considered high
priorities for investigation. Rectangular nodes represent
individual exploit-URLs. Solid arrows between rectangles
represent automatic traffic redirection. Circles represent
site nodes that act as an aggregation point for all exploit
pages hosted on that site, with the site node having a thin
edge connecting each of its child-page rectangles. Nodes
that do not receive redirected traffic are most likely
content providers. Nodes that receive traffic from multiple
exploit sites (for example, the large rectangle R at the
bottom) are most likely exploit providers.

The size of a node is proportional to the number of
cross-site arrows directly connected to it, both incoming
and outgoing. Such numbers provide a good indication of
the relative popularity of exploit-URLs and sites and are
referred to as connection counts. It is clear from the
picture that the large rectangle R and its associated circle
C have the highest connection counts. Therefore, blocking
access to this site would be the most effective starting
point since it would disrupt nearly half of this exploit
network.

The topology graph for the 688 SP1-UP exploit-URLs
is much larger and more complex. It is only useful when
viewed from a graph manipulation tool and is therefore
omitted here. Most of the URLs appear to be pornography
pages and the aggressive traffic redirection among them
leads to the complexity of the bulk of the graph. In the
isolated corners, we found a shopping site redirecting
traffic to five advertising companies that serve exploiting
advertisements, a screensaver freeware site, and over 20
exploit search sites. Next, we describe two ranking
algorithms that help prioritize the investigations of these
hundreds of URLs and sites.

Site ranking based on connection counts

Figure 5 illustrates the top 15 exploit sites for SP1-UP
according to their connection counts. The bar height
indicates how many other sites a given site has direct
traffic-redirection relationship with and likely reflects how
entrenched a site owner is with the exploit community.
The bar for each site is composed of three segments of
different colors: a black segment represents the number of
sites that redirect traffic here; a white segment represents
the number of sites to which traffic is redirected; a gray
segment indicates the number of sites that have two-way
traffic redirection relationship with the given site.

For example, site #15 corresponds to a content
provider who is selling traffic to multiple exploit providers
and sharing traffic with a few other content providers. Site
#7 corresponds to an exploit provider that is receiving
traffic from multiple web sites. Sites #4, #5, and #9
correspond to pornography sites that play a complicated
role: they redirect traffic to many exploit providers and
receive traffic from many content providers. Their heavy
involvement in exploit activities and the fact that they are
registered to the same owner suggest that they may be set
up primarily for exploit purposes.

Site ranking, categorization, and grouping play a key
role in the anti-exploit process because it serves as the
basis for deciding the most effective resource allocation
for monitoring, investigation, blocking, and legal actions.

For example, high-ranked exploit sites in Figure 5 should
be heavily monitored because a zero-day exploit page
connected to any of them would likely affect a large
number of web sites. Legal investigations should focus on
top exploit providers, rather than content providers that
are mere traffic redirectors and do not perform exploits
themselves.

Site ranking based on number of hosted exploit-URLs

Figure 6 illustrates the top 129 sites, each hosting
more than one exploit URL. This ranking helps highlight
those web sites whose internal page hierarchy provides
important insights. First, some web sites host a large
number of exploit pages with a well-organized
hierarchical structure. For example, the #1 site hosts 24
exploit pages that are organized by what look likes
account names for affiliates; many others organize their
exploit pages by affiliate IDs or referring site names; some
even organize their pages by the names of the
vulnerabilities they exploit and a few of them have the
word “exploit” as part of the URL names.

The second observation is that some sophisticated
web sites use transient URLs that contain random strings.
This is designed to make investigations more difficult.
Site ranking based on the number of hosted exploit-URLs
helps highlight such sites so that they are prioritized
higher for investigation. The zero-day exploits discussed
in the next sub-section provide a good example of this.

4.2. Zero-Day Exploit Detection

In early July 2005, a Stage-3 HoneyMonkey
discovered our first zero-day exploit. The javaprxy.dll
vulnerability was known at that time without an available
patch [J105,J205], and whether it was actually being
exploited was a critical piece of information that was
previously not known. The HoneyMonkey system
detected the first exploit page within 2.5 hours of scanning
and it was confirmed to be the first in-the-wild exploit-
URL of the vulnerability reported to the Microsoft
Security Response Center. A second exploit-URL was

Figure 4. SP2-PP topology graph (17 URLs, 10 sites)

detected in the next hour. These two occupy positions
#132 and #179, respectively, in our list of 752 monitored
URLs. This information enabled the response center to
provide customers with a security advisory and a follow-
up security bulletin [SH, J205].

During the subsequent five days, HoneyMonkey
detected that 26 of the 752 exploit-URLs upgraded to the
zero-day exploit. Redirection analysis further revealed that
25 of them were redirecting traffic to a previously
unknown exploit provider site that was hosting exploit-
URLs with names in the following form:

http://[IP address]/[8 chars]/test2/iejp.htm

where [8 chars] consists of 8 random characters that
appeared to change gradually over time. Takedown
notices were sent after further investigation of the installed
malware programs, and most of the 25 web pages stopped
exploiting the javaprxy.dll vulnerability shortly after that.

Latest-Patched-Vulnerability Exploit Monitoring

One day after the patch release, HoneyMonkey
detected another jump in the number of exploit-URLs for
the vulnerability: 53 URLs from 12 sites were upgraded in
the subsequent six days. Redirection analysis revealed that
all of them were redirecting traffic to a previously known
exploit provider (ranked #1 in Figure 6) who decided to
add a new exploit page for javaprxy.dll to increase its
infection base. A takedown notice was sent after malware
investigation and all 53 URLs stopped exploiting within a
couple of days.

Important Observations
This experience provides concrete evidence that the

HoneyMonkey system can potentially evolve into a full-
fledged, systematic and automatic zero-day exploit
monitoring system for browser-based attacks. We make
the following observations from the initial success:

(1) Monitoring easy-to-find exploit-URLs is
effective: we predicted that monitoring the 752 exploit-
URLs would be useful for detecting zero-day exploits

Figure 6. Top 129 SP1-UP exploit sites ranked by the number of exploit-URLs hosted

0

5

10

15

20

25

30

0 20 40 60 80 100 120

Site ranking based on the number of hosted exploit URLs

N
u

m
b

er
 o

f h
o

st
ed

 e
xp

lo
it

U
R

L
s

0

10

20

30

40

50

60

Site
 #1

Site
 #2

Site
 #3

Site
 #4

Site
 #5

Site
 #6

Site
 #7

Site
 #8

Site
 #9

Site
 #1

0

Site
 #11

Site
 #1

2

Site
 #1

3

Site
 #1

4

Site
 #1

5

N
u

m
b

er
 o

f d
ir

ec
tly

 c
o

n
n

ec
te

d
 s

ite
s

Number of sites from which traffic is received

Number of sites with two-way redirection

Number of sites to which traffic is redirected

Figure 5. Top 15 exploit sites ranked by connection counts, among the 268 SP1-UP exploit sites
from the suspicious list

because the fact that we could find them quickly within
the first month implies that they are more popular and
easier to reach. Although zero-day exploits are extremely
powerful, they need to connect to popular web sites in
order to receive traffic to exploit. If they connect to any of
the monitored URLs in our list, the HoneyMonkey can
quickly detect the exploits and identify the exploit
providers behind the scene through redirection analysis.
Our zero-day exploit detection experience confirmed the
effectiveness of this approach.

(2) Monitoring content providers with well-known
URLs is effective: we predicted that monitoring content
providers would be useful for tracking the potentially
dynamic behavior of exploit providers. Unlike exploit
providers who could easily move from one IP address to
another and use random URLs, content providers need to
maintain their well-known URLs in order to continue
attracting browser traffic. The HoneyMonkey takes
advantage of this fundamental weakness in the browser-
based exploit model and utilizes the content providers as
convenient entry points into the exploit network. Again,
our zero-day exploit detection experience confirmed the
effectiveness of this approach.

(3) Monitoring highly ranked and advanced exploit-
URLs is effective: we predicted that the top exploit sites
we identified are more likely to upgrade their exploits
because they have a serious investment in this business.
Also, web sites that appear in the SP2-PP graph are more
likely to upgrade because they appeared to be more up-to-
date exploiters. Both predictions have been shown to be
true: the first detected zero-day exploit-URL belongs to
the #9 site in Figure 5 (which is registered to the same
email address that also owns the #4 and #5 sites) and 7 of
the top 10 sites in Figure 5 upgraded to the javaprxy.dll
exploit; nearly half of the SP2-PP exploit-URLs in Figure
4 upgraded as well.

4.3. Scanning Popular URLs

By specifically searching for potentially malicious
web sites, we were able to obtain a list of URLs that have
1.28% of the pages performing exploits. A natural
question that most web users will ask is: if I never visit
those risky web sites that serve dangerous or questionable
content, do I have to worry about vulnerability exploits?
To answer this question, we gathered the most popular one
million URLs as measured by the click-through counts
from a search engine and tested them with the
HoneyMonkey system. We also compared the results of
this popular-list data with the suspicious-list data in
Section 4.1. Figure 7 summarizes the comparison of key
data.

 Suspicious List Popular List

URLs scanned 16,190 1,000,000

Exploit URLs 207 (1.28%) 710 (0.071%)

Exploit URLs
After Redirection

(Expansion Factor)

752

(263%)

1,036

(46%)

Exploit Sites 288 470

SP2-to-SP1 Ratio 204/688 = 0.30 131/980 = 0.13

Figure 7. Comparison of the suspicious-list and
popular-list data.

4.3.1. Summary Statistics
Before redirection analysis

Of the one million URLs, HoneyMonkey determined
that 710 were exploit pages. This translates into a density
of 0.071%, which is between one to two orders of
magnitude lower than the 1.28% number from the
suspicious-list data. The distribution of exploit-URLs
among the ranked list is fairly uniform, which implies that
the next million URLs likely exhibit a similar distribution
and so there are likely many more exploit URLs to be
discovered. Eleven of the 710 exploit pages are very
popular: they are among the top 10,000 of the one million
URLs that we scanned. This demonstrates the need for
constant, automatic web patrol of popular pages in order
to protect the Internet from large-scale infections.

After redirection analysis:
The Stage-2 HoneyMonkey redirection analysis

expanded the list of 710 exploit-URLs to 1,036 URLs
hosted by 470 sites. This (1,036-710)/710=46% expansion
is much lower than the 263% expansion in the suspicious-
list data, suggesting that the redirection network behind
the former is less complex. The SP2-to-SP1 ratio of 0.13
is lower than its counterpart of 0.30 from the suspicious-
list data (see Figure 7). This suggests that overall the
exploit capabilities in the popular list are not as advanced
as those in the suspicious list, which is consistent with the
findings from our manual analysis.

Intersecting the 470 exploit sites with the 288 sites
from Section 4.1 yields only 17 sites. These numbers
suggest that the degree of overlap between the suspicious
list, generally with more powerful attacks, and the popular
list is not alarmingly high at this point. But more and more
exploit sites from the suspicious list may try to “infiltrate”
the popular list to increase their infection base. In total, we
have collected 1,780 exploit-URLs hosted by 741 sites.

4.3.2. Node ranking

Site ranking based on connection counts
Figure 8 illustrates the top 15 SP1-UP exploit sites by

connection counts. There are several interesting
differences between the two data sets behind the
suspicious-list exploiters (Figure 5) and the popular-list
exploiters (Figure 8). First, there is not a single pair of
exploit sites in the popular-list data that are doing two-
way traffic redirection, which appears to be unique in the
malicious pornography community. Second, while it is not
uncommon to see web sites redirecting traffic to more
than 10 or even 20 sites in the suspicious-list, sites in the
popular-list data redirect traffic to at most 4 sites. This
suggests that aggressive traffic selling is also a
phenomenon unique to the malicious pornography
community.

Finally, the top four exploit providers in the popular-
list clearly stand out. None of them have any URLs in the
original list of one million URLs, but all of them are
behind a large number of exploit pages which redirect
traffic to them. The #1 site provides exploits to 75 web
sites primarily in the following five categories: (1)
celebrities, (2) song lyrics, (3) wallpapers, (4) video game
cheats, and (5) wrestling. The #2 site receives traffic from
72 web sites, the majority of which are located in one
particular country. The #3 site is behind 56 related web
sites that serve cartoon-related pornographic content. The
#4 site appears to be an advertising company serving
exploiting links through web sites that overlap
significantly with those covered by the #1 site.

Site ranking based on number of hosted exploit-URLs
Figure 9 illustrates the top 122 sites hosting more than

one exploit URL. Unlike Figure 6, which highlights

Figure 8. Top 15 exploit sites ranked by connection counts, among the 426 SP1-UP exploit sites

0

10

20

30

40

50

60

70

80

Site
 #1

Site
 #2

Site
 #3

Site
 #4

Site
 #5

Site
 #6

Site
 #7

Site
 #8

Site
 #9

Site
 #10

Site
 #11

Site
 #12

Site
 #13

Site
 #14

Site
 #15N

u
m

b
er

 o
f d

ir
ec

tly
 c

o
n

n
ec

te
d

 s
ite

s

 Number of sites from which traffic is received

 Number of sites with two-way redirection

 Number of sites to which traffic is redirected

Figure 9. Top 122 sites ranked by the number of exploit-URLs, among the 426 SP1-UP exploit sites

0

10

20

30

40

50

60

70

0 20 40 60 80 100 120

Site ranking based on number of hosted exploit URLs

N
u

m
b

er
 o

f h
o

st
ed

 e
xp

lo
it

U
R

L
s

mostly exploit provider sites, Figure 9 highlights many
content provider sites that host a large number of exploit
pages containing a similar type of content. Again, the top
four sites stand out: the #1 site is a content provider of
video game cheats information for multiple game
consoles. The #2 site (which also appears as the third
entry in Figure 8) hosts a separate URL for each different
web site from which it receives traffic. The #3 site is a
content provider that has a separate entry page for each
celebrity figure. The #4 site is a content provider of song
lyrics with one entry page per celebrity singer.

5. Discussions

Now that the effectiveness of the HoneyMonkey
system is widely known [HM], it is expected that exploit
sites will start adopting techniques to evade
HoneyMonkey detection. We discuss three types of
potential evasion techniques and our countermeasures.
Since it has become clear that a weakness of the
HoneyMonkey is the time window between a successful
exploit that allows foreign code execution and the
subsequent execution of the HoneyMonkey exploit
detection code, we have developed and integrated a tool
called Vulnerability-Specific Exploit Detector (VSED),
which allows the HoneyMonkey to detect and record the
first sign of an exploit. Such a detector only works for
known vulnerabilities though; detecting zero-day exploits
of totally unknown vulnerabilities remains a challenge.
The VSED tool will be discussed in Section 5.4.

5.1. Identifying HoneyMonkey Machines

There are three ways for an exploit site to identify
HoneyMonkey machines and skip exploits.

(1) Targeting HoneyMonkey IP addresses: The
easiest way is to black-list the IP addresses of
HoneyMonkey machines. We plan to run the
HoneyMonkey network behind multiple ISPs with
dynamically assigned IP addresses. If an exploit site wants
to black-list all IP addresses belonging to these ISPs, it
will need to sacrifice a significant percentage of its
infection base. One market research study of ISP client
membership [ISP] shows that the top 10 US ISPs service
over 62% of US Internet users.

(2) Performing a test to determine if a human is
present: Currently, HoneyMonkeys do not click on any
dialog box. A malicious web site could introduce a one-
time dialog box that asks a simple question; after the user
clicks the OK button to prove he’s human, the web site
drops a cookie to suppress the dialog box for future visits.
More sophisticated web sites can replace the simple dialog
box with a CAPTCHA Turing Test [ABL04] (although
this would raise suspicion because most non-exploiting
sites do not use such tests). We will need to incorporate

additional intelligence into the HoneyMonkeys to handle
dialog boxes and to detect CAPTCHA tests when we see
web sites starting to adopt such techniques to evade
detection.

(3) Detecting the presence of a VM or the
HoneyMonkey code: Malicious code could detect a VM
by executing a series of instructions with high
virtualization overhead and comparing the elapsed time to
some external reference [VMC+05]; by detecting the use
of reserved x86 opcodes normally only used by specific
VMs [L05]; by leveraging information leaked by
sensitive, non-privileged instructions [RP]; and by
observing certain file directory contents known to be
associated with UML (User-Mode Linux) [CDF+04] or a
specific hardware configuration, default MAC address, or
I/O backdoor associated with VMware [HR05].

Most VM-detection techniques arise due to the fact
that the x86 processors are not fully virtualizable.
Fortunately, both Intel [VT] and AMD [PVT] have
proposed architecture extensions that would make x86
processors fully virtualizable, and thus make detecting a
VM more difficult. In the meantime, we can adopt anti-
detection techniques that target known VM-detection
methods [CDF+04,VMC+05]. As VMs are increasingly
used as general computing platforms, the approach of
detecting HoneyMonkeys by detecting VMs will become
less effective.

Alternatively, we developed techniques that allow us
to also run HoneyMonkey on non-virtual machines so that
the results can be cross-checked to identify sophisticated
attackers. We implemented support to efficiently
checkpoint our system (both memory and disk state) when
it is in a known-good state, and roll back to that
checkpoint after an attack has been detected. To
checkpoint memory, we utilized the hibernation
functionality already present in Windows to efficiently
store and restore memory snapshots. To support disk
checkpoints, we implemented copy-on-write disk
functionality by modifying the generic Windows disk
class driver which is used by most disks today. Our copy-
on-write implementation divides the physical disk into
two equally sized partitions. We use the first partition to
hold the default disk image that we roll back to when
restoring a checkpoint, and the second partition as a
scratch partition to store all disk writes made after taking a
checkpoint. We maintain a bitmap in memory to record
which blocks have been written to so we know which
partition contains the most recent version of each
individual block. As a result, no extra disk reads or writes
are needed to provide copy-on-write functionality and a
rollback can be simply accomplished by zeroing out the
bitmap. To provide further protection, we can adopt
resource-hiding techniques to hide the driver from

sophisticated attackers who are trying to detect the driver
to identify a HoneyMonkey machine.

Some exploit sites may be able to obtain the
“signatures” of the HoneyMonkey logging infrastructure
and build a detection mechanism to allow them to disable
the logging or tamper with the log. Since such detection
code can only be executed after a successful exploit, we
can use VSED to detect occurrences of exploits and
highlight those that do not have a corresponding file-
creation log. Additionally, we are incorporating log
signing techniques to detect missing or modified log
entries.

We note that some classes of exploits require writing
a file to disk and then executing that file for running
arbitrary code. These exploits cannot escape our detection
by trying to identify a HoneyMonkey machine because
our file-based detection actually occurs before they can
execute code.

5.2. Exploiting without Triggering HoneyMonkey
Detection

Currently, HoneyMonkey cannot detect exploits that
do not make any persistent-state changes or make such
changes only inside browser sandbox. Even with this
limitation, the HoneyMonkey is able to detect most of
today’s Trojans, backdoors, and spyware programs that
rely on significant persistent-state changes to enable
automatic restart upon reboot. Again, the VSED tool can
help address this limitation.

HoneyMonkeys only wait for a few minutes for each
URL. So a possible evasion technique is to delay the
exploit. However, such delays reduce the chance of
successful infections because real users may close the
browser before the exploit happens. We plan to run
HoneyMonkeys with random wait times and highlight
those exploit pages that exhibit inconsistent behaviors
across runs for more in-depth manual analysis.

5.3. Randomizing the Attacks

Exploit sites may try to inject nondeterministic
behavior to complicate the HoneyMonkey detection. They
may randomly exploit one in every N browser visits. We
consider this an acceptable trade-off: while this would
require multiple scans by the HoneyMonkeys to detect an
exploit, it forces the exploit sites to reduce their infection
rates by N times as well. If a major exploit provider is
behind more than N monitored content providers, the
HoneyMonkey can still detect it through redirection
tracking in one round of scans.

Exploit sites may try to randomize URL redirections
by selecting a random subset of machines to forward
traffic to each time, from a large set of infected machines
that are made to host exploit code. Our node ranking

algorithm based on connection counts should discourage
this because such sites would end up prioritizing
themselves higher for investigation. Also, they reveal the
identities of infected machines, whose owners can be
notified to clean up the machines.

5.4. Vulnerability-Specific Exploit Detector
(VSED)

To address some of the limitations discussed above
and to provide additional information on the exact
vulnerabilities being exploited, we have developed a
vulnerability-specific detector, called VSED, and
integrated it into the HoneyMonkey. The VSED tool
implements a source-code level, vulnerability-specific
intrusion detection technique that is similar to IntroVirt
[JKD+05]. For each vulnerability, we manually write
“predicates” to test the state of the monitored program to
determine when an attacker is about to trigger a
vulnerability. VSED operates by inserting breakpoints
within buggy code to stop execution before potentially
malicious code runs, in order to allow secure logging of an
exploit alert. For example, VSED would detect a buffer
overflow involving the “strcpy” function by setting a
breakpoint right before the buggy “strcpy” executes. Once
VSED stops the application, the predicate examines the
variables passed into “strcpy” to determine if an overflow
is going to happen.

To evaluate the effectiveness of VSED for detecting
browser-based exploits, we wrote predicates for six recent
IE vulnerabilities and tested them against the exploit-
URLs from both the suspicious list and the popular list.
Although we do not have a comprehensive list of
predicates built yet, we can already pinpoint the
vulnerabilities exploited by hundreds of exploit-URLs.
One limitation of VSED is that it cannot identify zero-day
exploits of unknown vulnerabilities.

6. Related Work

There is a rich body of literature on honeypots. Most
honeypots are deployed to mimic vulnerable servers
waiting for attacks from client machines
[H,P04,J04,KGO+05]. In contrast, HoneyMonkeys are
deployed to mimic clients drawing attacks from malicious
servers.

To our knowledge, there are three other projects
related to the concept of client-side honeypots: email
quarantine, shadow honeypots, and Honeyclient.
Sidiroglou et al. [SK05] described an email quarantine
system which intercepts every incoming message, “opens”
all suspicious attachments inside instrumented virtual
machines, uses behavior-based anomaly detection to flag
potentially malicious actions, quarantines flagged emails,
and only delivers messages that are deemed safe.

Anagnostakis et al. [ASA+05] proposed the technique
of “shadow honeypots” which are applicable to both
servers and clients. The key idea is to combine anomaly
detection with honeypots by diverting suspicious traffic
identified by anomaly detectors to a shadow version of the
target application that is instrumented to detect potential
attacks and filter out false positives. As a demonstration of
client-side protection, the authors deployed their prototype
on Mozilla Firefox browsers.

The two client-side honeypots described above are
both passive in that they are given existing traffic and do
not actively solicit traffic. In contrast, HoneyMonkeys are
active and are responsible for seeking out malicious web
sites and drawing attack traffic from them. The former has
the advantage of providing effective, focused protection of
targeted population. The latter has the advantages of
staying out of the application’s critical path and achieving
a broader coverage, but it does require additional defense
against potential traps/black-holes during the recursive
redirection analysis. The two approaches are
complementary and can be used in conjunction with each
other to provide maximum protection.

In parallel with our work, the Honeyclient project
[HC] shares the same goal of trying to identify browser-
based attacks. However, the project has not published any
deployment experience or any data on detected exploit-
URLs. There are also several major differences in terms of
implementation: Honeyclient is not VM-based, does not
use a pipeline of machines with different patch levels, and
does not track URL redirections.

Existing honeypot techniques can be categorized
using two other criteria: (1) physical honeypots [KGO+05]
with dedicated physical machines versus virtual honeypots
built on Virtual Machines [VMW,UML]; (2) low-
interaction honeypots [P04], which only simulate network
protocol stacks of different operating systems, versus
high-interaction honeypots [J04], which provide an
authentic decoy system environment. HoneyMonkeys
belong to the category of high-interaction, virtual
honeypots.

In contrast with the black-box, state-change-based
detection approach used in HoneyMonkey, several papers
proposed vulnerability-oriented detection methods, which
can be further divided into vulnerability-specific and
vulnerability-generic methods. The former includes Shield
[WGS+04], a network-level filter designed to detect
worms exploiting known vulnerabilities, and IntroVirt
[JKD+05], a technique for specifying and monitoring
vulnerability-specific predicates at code level. The latter
includes system call-based intrusion detection systems
[FHS+96,FKF+03], memory layout randomization
[ASLR,XKI03], non-executable pages [AA] and pointer
encryption [CBJ+03]. An advantage of vulnerability-

oriented techniques is the ability to detect an exploit
earlier and identify the exact vulnerability being exploited.
As discussed in Section 5.4, we have incorporated
IntroVirt-style, vulnerability-specific detection capability
into the HoneyMonkey.

7. Summary

We have presented the design and implementation of
the Strider HoneyMonkey as the first systematic method
for automated web patrol to hunt for malicious web sites
that exploit browser vulnerabilities. Our analyses of two
sets of data showed that the densities of malicious URLs
are 1.28% and 0.071%, respectively. In total, we have
identified a large community of 741 web sites hosting
1,780 exploit-URLs. We proposed using topology graphs
based on redirection traffic to capture the relationship
between exploit sites and using site ranking algorithms
based on the number of directly connected sites and the
number of hosted exploit-URLs to identify major players.
Our success in detecting the first-reported, in-the-wild,
zero-day exploit-URL of the javaprxy.dll vulnerability
provided the best demonstration of the effectiveness of our
approach by monitoring easy-to-find content providers
with well-known URLs as well as top exploit providers
with advanced exploit capabilities. Finally, we discussed
several techniques that malicious web sites can adopt to
evade HoneyMonkey detection, which motivated us to
incorporate an additional vulnerability-specific exploit
detection mechanism to complement the HoneyMonkey’s
core black-box exploit detection approach.

Acknowledgement

We would like to express our sincere thanks to the
anonymous reviewers and our shepherd Nick Weaver for
their valuable comments.

References

[AA] S. Andersen and V. Abella, “Data Execution Prevention.
Changes to Functionality in Microsoft Windows XP Service
Pack 2, Part 3: Memory Protection Technologies.,”
http://www.microsoft.com/technet/prodtechnol/winxppro/mai
ntain/ sp2mempr.mspx.

[ABL04] L. von Ahn, M. Blum, and J. Langford, “Telling
Humans and Computers Apart Automatically,”
Communications of the ACM, Feb. 2004.

[AL] Alexa, http://www.alexa.com/.

[ASA+05] K. Anagnostakisy, S. Sidiroglouz, P. Akritidis, K.
Xinidis, E. Markatos, and A. Keromytis. “Detecting Targeted
Attacks Using Shadow Honeypots,” in Proc. USENIX Security
Symposium, August 2005.

[ASLR] PaX Address Space Layout Randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[B04] Xpire.info, http://www.vitalsecurity.org/xpire-
splitinfinity-serverhack_malwareinstall-condensed.pdf, Nov.
2004.

[CBJ+03] C. Cowan, S. Beattie, J. Johansen, and P. Wagle.
“PointGuard: Protecting pointers from buffer overflow
vulnerabilities,” in Proc. USENIX Security Symposium,
August 2003.

[CDF+04] C. Carella, J. Dike, N. Fox, and M. Ryan, “UML
Extensions for Honeypots in the ISTS Distributed Honeypot
Project,” in Proc. IEEE Workshop on Information Assurance,
2004.

[CWS05] “Webroot: CoolWebSearch Top Spyware Threat,”
http://www.techweb.com/showArticle.jhtml?articleID=16040
0314, TechWeb, March 30, 2005.

[D04] Download.Ject,
http://www.microsoft.com/security/incident/download_ject.ms
px, June 2004.

[E04] Ben Edelman, “Who Profits from Security Holes?”, Nov.
2004, http://www.benedelman.org/news/111804-1.html.

[F04] “Follow the Money; or, why does my computer keep
getting infested with spyware?”
http://www.livejournal.com/users/tacit/125748.html.

[FHS+96] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longsta,
“A sense of self for Unix processes,” in Proc. IEEE Symp. on
Security and Privacy, May 1996.

[FKF+03] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W.
Gong, “Anomaly detection using call stack information,” in
Proc. IEEE Symp. on Security and Privacy, May 2003.

[G05] “Googkle.com installed malware by exploiting browser
vulnerabilities,” http://www.f-secure.com/v-
descs/googkle.shtml.

[G04] Archana Ganapathi, Yi-Min Wang, Ni Lao, and Ji-Rong
Wen, "Why PCs Are Fragile and What We Can Do About It:
A Study of Windows Registry Problems", in Proc. IEEE
DSN/DCC, June 2004.

[H] The Honeynet Project, http://www.honeynet.org/.

[HC] Honeyclient Development Project,
http://www.honeyclient.org/.

[HD05] “Another round of DNS cache poisoning,” Handlers
Diary, March 30, 2005, http://isc.sans.org/.

[HF] hpHOSTS community managed hosts file,
http://www.hosts-file.net/downloads.html.

[HM] Strider HoneyMonkey Exploit Detection,
http://research.microsoft.com/HoneyMonkey.

[HR05] T. Holz and F. Raynal, “Detecting Honeypots and other
suspicious environments,” in Proc. IEEE Workshop on
Information Assurance and Security, 2005.

[IF05] “iframeDOLLARS dot biz partnership maliciousness,”
http://isc.sans.org/diary.php?date=2005-05-23.

[ISP] ISP Ranking by Subscriber, http://www.isp-
planet.com/research/rankings/index.html.

[IW05] “Scammers use Symantec, DNS holes to push adware,”
InfoWorld.com, March 7, 2005,
http://www.infoworld.com/article/05/03/07/HNsymantecholes
andadware_1.html?DESKTOP%20SECURITY.

[J04] Xuxian Jiang, Dongyan Xu, “Collapsar: A VM-Based
Architecture for Network Attack Detention Center”, in Proc.
USENIX Security Symposium, Aug. 2004.

[J105] Microsoft Security Advisory (903144) - A COM Object
(Javaprxy.dll) Could Cause Internet Explorer to Unexpectedly
Exit,
http://www.microsoft.com/technet/security/advisory/903144.
mspx.

[J205] Microsoft Security Bulletin MS05-037 - Vulnerability in
JView Profiler Could Allow Remote Code Execution
(903235),
http://www.microsoft.com/technet/security/bulletin/ms05-
037.mspx.

[JKD+05] Ashlesha Joshi, Sam King, George Dunlap, Peter
Chen, “Detecting Past and Present Intrusions Through
Vulnerability-Specific Predicates,” in Proc. SOSP, 2005.

[KGO+05] Sven Krasser, Julian Grizzard, Henry Owen, and
John Levine, “The Use of Honeynets to Increase Computer
Network Security and User Awareness”, in Journal of
Security Education, pp. 23-37, vol. 1, no. 2/3. March 2005.

[L05] Lallous, ” Detect if your program is running inside a
Virtual Machine,” March 2005,
http://www.codeproject.com/system/VmDetect.asp.

[M52] Microsoft Security Bulletin MS05-002, Vulnerability in
Cursor and Icon Format Handling Could Allow Remote Code
Execution,
http://www.microsoft.com/technet/security/Bulletin/MS05-
002.mspx.

[M311] Microsoft Security Bulletin MS03-011, Flaw in
Microsoft VM Could Enable System Compromise,
http://www.microsoft.com/technet/security/Bulletin/MS03-
011.mspx.

[M413] Microsoft Security Bulletin MS04-013, Cumulative
Security Update for Outlook Express,
http://www.microsoft.com/technet/security/Bulletin/MS04-
013.mspx.

[NK04] Neal Krawetz, Anti-honeypot technology, Security &
Privacy Magazine, IEEE Volume 2, Issue 1, Jan.-Feb. 2004
Page(s):76–79.

[P04] Niels Provos, “A Virtual Honeypot Framework”, in Proc.
USENIX Security Symposium, Aug. 2004.

[PVT] AMD Pacifica Virtualization Technology,
http://enterprise.amd.com/downloadables/Pacifica.ppt.

[R05] “Russians use affiliate model to spread spyware,”
http://www.itnews.com.au/newsstory.aspx?CIaNID=18926.

[R04] Team Register, “Bofra exploit hits our ad serving
supplier,”
http://www.theregister.co.uk/2004/11/21/register_adserver_att
ack/, November 2004.

[RP] Red Pill, http://invisiblethings.org/papers/redpill.html.

[S04] Symantec Gateway Security Products DNS Cache
Poisoning Vulnerability,
http://securityresponse.symantec.com/avcenter/security/Conte
nt/2004.06.21.html.

[S05] “Michael Jackson suicide spam leads to Trojan horse,”
http://www.sophos.com/virusinfo/articles/jackotrojan.html,
Sophos, June 9, 2005.

[SH] “What is Strider HoneyMonkey,”
http://research.microsoft.com/honeymonkey/article.aspx, Aug.
2005.

[SK05] Stelios Sidiroglou and Angelos D. Keromytis, “A
Network Worm Vaccine Architecture,” in 1st Information
Security Practice and Experience Conference (ISPEC), April
2005.

[T05] Michael Ligh, “Tri-Mode Browser Exploits - MHTML,
ANI, and ByteVerify,”
http://www.mnin.org/write/2005_trimode.html, April 30,
2005.

[UML] Know Your Enemy: Learning with User-Mode Linux.
Building Virutal Honeynets using UML,
http://www.honeynet.org/papers/uml/.

[VMC+05] Michael Vrable, Justin Ma, Jay Chen, David Moore,
Erik Vandekieft, Alex Snoeren, Geoff Voelker, and Stefan
Savage, “Scalability, Fidelity and Containment in the
Potemkin Virtual Honeyfarm,” in Proc. ACM Symposium on
Operating Systems Principles (SOSP), Oct. 2005.

[VMW] Know Your Enemy: Learning with VMware. Building
Virutal Honeynets using VMware,
http://www.honeynet.org/papers/vmware/.

[VT] Vanderpool Technology, Technical report, Intel
Corporation, 2005.

[W03] Yi-Min Wang, et al., “STRIDER: A Black-box, State-
based Approach to Change and Configuration Management
and Support”, in Proc. Usenix LISA, Oct. 2003.

[W04] Yi-Min Wang, et al., “Gatekeeper: Monitoring Auto-Start
Extensibility Points (ASEPs) for Spyware Management”, in
Proc. Usenix LISA, 2004

[W05] Yi-Min Wang, Doug Beck, Binh Vo, Roussi Roussev,
and Chad Verbowski, “Detecting Stealth Software with Strider
GhostBuster,” in Proc. DSN, June 2005

[WGS+04] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon,
and Alf Zugenmaier, “Shield: Vulnerability-Driven Network
Filters for Preventing Known Vulnerability Exploits,” in Proc.
ACM SIGCOMM, August 2004.

[XKI03] J. Xu, Z. Kalbarczyk and R. K. Iyer, “Transparent
Runtime Randomization for Security,” in Proc. Symp.
Reliable and Distributed Systems (SRDS), October 2003.

[XSS] “Code insertion in Blogger comments”, March 28, 2005,
http://www.securityfocus.com/archive/1/394532.

