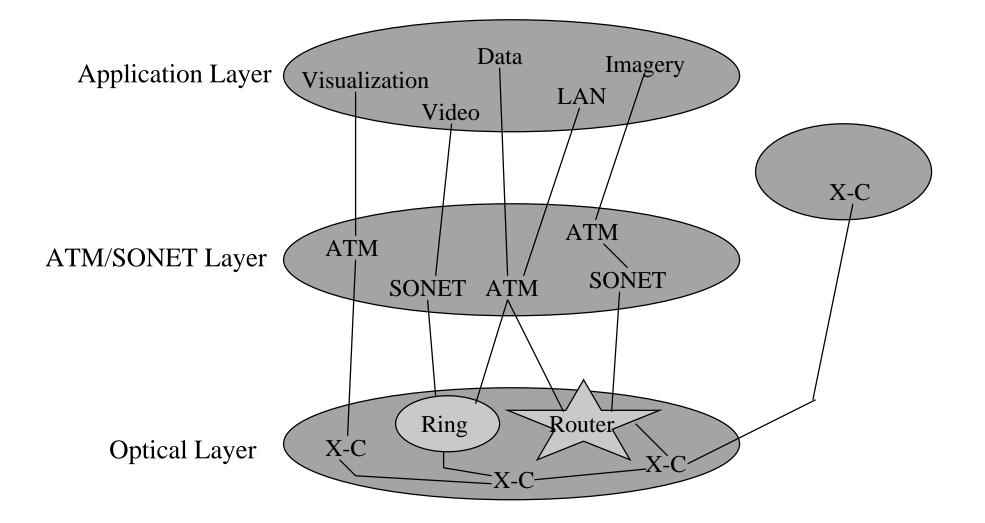
NDSS'98 March 12, 1998

Introduction to Session #3 All-Optical Network Security


Jeff Ingle

Advanced INFOSEC Technology National Security Agency 9800 Savage Rd, Suite 6516 Ft. Meade, MD 20755-6516 jtingle@alpha.ncsc.mil 301-688-0291 phone 301-688-0289 fax

Component Vulnerabilities

- M. Medard, D. Marquis, R. A. Barry, S. G. Finn, "Security Issues in All-Optical Networks," IEEE Network, pp. 42-48, May/June 1997
- Vulnerabilities particular to all-optical networks arise from a combination of
 - crosstalk
 - linear / nonlinear
 - homowavelength / heterowavelength
 - directly detected / coherent (homodyne / heterodyne)
 - transparency
- Crosstalk in components
 - fibers (nonlinear)
 - optical amplifiers (nonlinear)
 - multiplexers / demultiplexers (linear)
 - switches (linear)
 - wavelength converters (nonlinear)

Heirarchical Layering

Network Architecture Issues

From the workshop "The Role of Optical Systems and Devices for Security and Anticounterfeiting," sponsored by DARPA, NSF, USAF, February 26-28, 1996.

- Architecture
 - topology, network node composition
 - service provisioning and signaling
 - security implications of "just-in-time" signaling for minimal latency
- Network Control and Management (NC&M)
 - fault detection and localization
 - configuration management
 - quality of service (QoS) management
 - resource allocation
 - security management

Architecture Security Issues

- Authentication
 - end users
 - signaling
 - QoS negotiation
 - for access control, accounting and billing
- Security service negotiation capability
 - level of security
 - type of encryption and key exchange algorithms
 - authentication protocol
 - data integrity
 - etc. (possible model in IPv6)

Research Areas in Optical Network Security

- Survivability
 - reduce vulnerability to jamming
 - reduce crosstalk
 - organize subsystems within component for best resistance
 - develop comprehensive set of design rules and methods to counter attacks, make robust devices
 - investigate effects of architecture, including consideration of component vulnerabilities, on overall security concerns
- Network Security Management
- Confidentiality and Key Management
 - symmetric encryption algorithms for high speed encryption
 - public key cryptography to distribute keys (may need to speed up)
 - extend SONET or ATM encryptor model to WDM environment
 - need for optical encryptors is niche market DoD, DOE, NASA supercomputer facilities

Packet-Switched Optical Networks

- Network Architecture Study
 - Follow similar approach as for circuit-switched optical networks
 - authenticated signaling
 - flexible security negotiation mechanisms
 - security fields in signaling for crypto sync/resync especially when no initial end-to-end connectivity
- Research to develop devices and components
 - Counter vulnerabilities in network components like switches and routers
 - Optical packet encryptor
 - word-based one-dimensional string of bytes
 - page-based two-dimensional array of bytes
 - packet identifier, key generator (KG), optical delay, optical XOR

Longer-Term Technologies

- Soliton transmission
 - method to avoid problems with dispersion
 - near term implementation in intercontinental submarine links
 - could emerge as long term network technology
 - confidentiality mux parallel encryptors or high-speed cryptographic algorithm in fiber loop or other logic
- Code Division Multiple Access (CDMA)
 - optical spread spectrum techniques
 - privacy system, limited in distance and networking
 - may be possible to use very fast cryptographic algorithm and technology to implement for high security
- Quantum Communications
 - may reduce threat of covert channels
 - high theoretical security, but not amenable to networks
 - possible for key distribution
- Wideband Coherent Communications
 - may reduce threat of covert channels
 - may not be feasible for network distribution

Security Opportunities

- Concerns
 - Survivability (jamming, eavesdropping)
 - Network Control & Management security/survivability
 - Confidentiality scalable encryption to Gb/s rates +, with care in synchronization, especially for "just-in-time" signaling
- Opportunities
 - New, fundamental telecommunications architecture means that security mechanisms can be developed with the architecture
 - include security features in signaling and network management
 - security negotiation capability
 - authentication
 - minimize security problems inherent to architecture
- Demonstrate in consortia testbeds
 - AON (All-Optical Network)
 - MONET (Multiwavelength Optical NETwork)
 - NTONC (National Transparent Optical Networks Consortium)