
Active Certificates: A Framework for Delegation

Nikita Borisov Eric Brewer
University of California, Berkeley

E-mail: nikitab,brewer @cs.berkeley.edu

Abstract

In this paper, we present a novel approach to delegation
in computer systems. We exploit mobile code capabilities
of today’s systems to build active certificates: crypto-
graphically signed mobile agents that implement delegation
policy. Active certificates arrive at a new combination
of properties, including expressivity, transparency, and
offline operation, that is not available in existing systems.
These properties make active certificates powerful tools to
express delegation. Active certificates can also be used
as a mechanism to implement complex policy systems,
such as public key infrastructures; systems built in this
way are easily extensible and interoperable. A prototype
implementation of active certificates has been built as part
of the Ninja [17] project.

1 Introduction
Delegation is an essential tool of cooperation. In com-

puter systems, components frequently need to delegate
rights to other components in order for cooperation to
succeed. Delegation of rights always carries with it a risk
of misuse; therefore, it is important to minimize exposure
by delegating the precise set of rights necessary for the
task at hand. This security concern is especially relevant in
view of the current trends, as cooperating components are
distributed widely over the Internet among many mutually
untrusting systems [26, 27].

The issue of delegation has been addressed in several
public key infrastructures by introducing the concept of a
delegation certificate. A principal that wishes to delegate
rights to another principal issues a delegation certificate,
which acts as a signed statement of policy describing what
rights should be delegated and to whom. When access
is required, the certificate is interpreted by the access
monitor, which combines the delegation policy contained
in the certificate with internal policies, as well as any
other certificates available, and produces an authorization
decision. A challenge in designing such systems is the
choice of policy language — it must be simple enough to

be uniformly interpreted by all access monitors, and rich
enough to specify a highly restrictive delegation policy.
Consequently, such systems often encounter long delays in
standardization and deployment, differing implementations
interpret standards in incompatible ways [19], and resulting
systems are frequently less flexible than many users would
desire.

Another mechanism to perform delegation is a proxy. A
proxy is a daemon, endowed with sufficient credentials to
perform access as the original rights owner. The proxy
performs delegation by accepting requests from others and
then carrying them out on the owner’s behalf. This approach
is highly general, since the proxy completely mediates
access and can therefore enforce a wide range of policies.
Proxies can also be readily deployed and upgraded without
any changes to the infrastructure. However, the lack of
infrastructure support means that the proxy must have its
own internal mechanisms to authenticate the requesters, and
that the owner must find a way to keep the proxy available
for use. Furthermore, lending important credentials to a
daemon introduces security concerns.

Active certificates are a new approach to delegation that
arrives at a combination of these two solutions. An active
certificate is a special type of delegation certificate that
contains the program code implementing a mobile agent.
This mobile agent acts as a delegation proxy, mediating
requests and responses. However, the agent is instantiated
by the access monitor whenever use of rights is requested.
Because the certificate is signed, requests coming from
the agent are implicitly authenticated as coming from the
signer; thus, the agent can successfully proxy the original
owner’s rights.

Active certificates use mobile code to bring much of the
generality of proxies to a certificate-based system. The only
restrictions on the possible types of policy result from any
limitations of the mobile execution platform. On the other
hand, since the certificate is run at the access monitor, it
is able to avoid the availability requirements and security
concerns of proxy-based solutions. Active certificates enjoy
several properties of certificate systems that have been
responsible for their popularity, such as offline operation
and ease of certificate distribution.



Active
Cert

TCB of Resource

KAlice

Bob: Request Alice: Request

Response
ResourceBob

Response

Figure 1. Active certificate in operation.

The programmatic nature of active certificates allows
them to express concepts such as composition and modu-
larity. They can therefore be a useful policy tool even in
circumstances where delegation is not required. They are
complex enough to build systems such as a hierarchical
public key infrastructure. The use of a general purpose
language coupled with the interposition architecture make
systems built with active certificates easily extensible and
interoperable.

The rest of the paper is organized as follows: the next
section describes active certificates and their properties.
Section 3 explains how to use active certificates to build
complex systems. Section 4 formally examines the security
of active certificates. Section 5 describes our implementa-
tion of active certificates. Sections 6 and 7 discuss related
and future work. Finally, Section 8 concludes.

2 Active Certificates
2.1 Operation

In this paper, we will discuss delegation in terms of Alice,
who has some rights to access a Resource, and wishes to
delegate a portion of those rights to Bob. We will first
describe the case when Alice accesses the Resource without
delegation. It will be convenient to model her interactions
with the Resource as a flow of requests and responses; this
abstraction is sufficiently general to represent most kinds
of access. In our model, requests from Alice arrive at the
Resource over some sort of authenticated channel, and are
labeled with the authenticated sender. We will write “Alice:
Request” to represent this. The Resource applies a local
policy decision to decide whether Alice is authorized to
perform the specified request and sends back an appropriate
response.

When Alice wants to delegate some of her rights to Bob,
she needs to create a proxy that will interact with Bob and
the Resource. The proxy receives Bob’s requests to use the
Resource and applies Alice’s delegation policy to decide
whether to forward the requests onto the Resource. How-

ever, instead of running the proxy herself, Alice implements
the proxy in the form of a mobile agent. She signs the
code for the mobile agent with her private key, producing
an active certificate. This certificate is then distributed to
Bob.

When Bob needs to use the Resource, he must present it
with the active certificate. The Resource verifies the signa-
ture and then creates an instance of the mobile agent, setting
it up to proxy requests from Bob. The signature on the agent
certifies its right to act on Alice’s behalf; therefore, the
runtime system of the Resource implicitly authenticates all
requests coming from the proxy as coming from Alice. The
operation of active certificates is summarized in Figure 1.

To illustrate the operation of active certificates, consider
an example where Alice wishes to delegate some of her
right to read the file "foo" on the file system to Bob.
She first creates an agent program, which looks something
like the code in Figure 2. She then signs the code for the
agent program, creating an active certificate, and hands the
certificate to Bob. When Bob wishes to access "foo",
he presents the certificate to the file system, which verifies
Alice’s signature and instantiates the agent program. Bob’s
requests to access the file are sent to the certificate, which
verifies all the necessary conditions and forwards the them
onto the file system. Since the forwarded requests are iden-
tified as coming from Alice, the file system policy allows
exactly those actions that Alice is authorized to perform.
However, the checks performed by Alice’s program restrict
Bob’s actions further, enforcing Alice’s delegation policy.

2.2 Properties
Active certificates share similarities with both proxy-

based and certificate-based approaches to delegation. This
allows them to combine important properties of both sys-
tems. Active certificates inherit much of the expressivity
and transparency of proxies. On the other hand, they can be
created and distributed offline with the ease of conventional
certificates. We shall discuss these properties in detail in



processRequest(request):
IF getCurrentDate() < "Dec 31, 2001" AND

request.requester = "Bob" AND
request.type = READ AND
request.filename = "/some/pathname/foo"

THEN
return FileSystem.processRequest(request)

ELSE
return Error

Figure 2. Example Active Certificate.

this section.

Expressivity. Expressivity is of paramount importance
in a delegation system. Delegation of rights involves
weakening access control restrictions that would normally
be in place; a specific, fine-grained delegation policy is
needed to avoid weakening these restrictions more than
necessary. Delegation proxies are highly general in the
collection of policies that they are able to express, since they
are interposed between Bob and the Resource and they can
employ a powerful implementation language. The former
allows proxies to affect the entirety of communication
between Bob and the Resource; the latter allows for higher
complexity of policies.

Active certificates inherit much of this expressivity. Like
proxies, they are interposed on the request and response
path; however, the (potentially deliberate) limitations of the
mobile execution platform may restrict the types of policies
that are possible. Nonetheless, there exist mobile platforms
that support powerful languages (e.g. Java [16]), allowing
for a wide range of policies.

For example, Java and similar languages are clearly
sufficiently general to understand the application semantics
of requests and responses. The certificate in the above
example is able to understand requests for the file system
well enough to identify both the file name and the operation
that is being performed. In conventional certificate systems,
the notion of a file name would need to be integrated with
the policy language before certificates could reason about
them. Active certificates, on the other hand, can easily
support new kinds of applications and new kinds of policies
without modifying the runtime system that interprets them.

Transparency. Active certificates retain much of the
transparency of proxy-based delegation. Although the
Resource does need to be aware of and process active
certificates, this function can be restricted to a small
component of the runtime system. An authentication
library can process active certificates and mark requests as
if they were coming from Alice; the rest of the system need
not know that delegation is taking place.

This is important because it means that delegation can
proceed without explicit support from an application run-
ning at the Resource. Since applications are frequently
used in ways that are not originally intended, interfaces
provided by the application are likely to eventually become
insufficient for users’ evolving needs, and upgrading such
interfaces can be a slow and difficult process. Notice that in
the case of delegation, the policy is chosen by Alice and not
the owner of the Resource, as is the case with authorization.
Therefore, Alice may have a hard time convincing the
owner to invest the effort required to adapt the application in
order to support her policy. Active certificates allow Alice
to implement her delegation policy without changing the
application.

Of course, help from the application can greatly simplify
the task of implementing security policies. To support this,
active certificates define a mechanism to let the application
communicate with the certificate program; see Section 3.3.

Offline Delegation. The ability to perform delegation
offline gives Alice more flexibility, since otherwise she must
either remain online and participate in every transaction,
or leave an agent with her private key to do the same.
The former option limits the scope of delegation, and the
latter introduces resource constraints and security concerns.
Active certificates allow delegation to occur without Alice
being online; indeed, Alice can create the certificates offline
without ever storing her private key on a network-connected
computer.

An active certificate can be seen as an offline expression
of Alice’s intentions; i.e. what she would have done had
she been an online participant. To allow Alice to change
her policy at a later time, it is important to associate with
each certificate an expiration date, after which it is no longer
valid. If more immediate revocation is desired, certificate
revocation schemes (e.g. [25, 24, 28]) can be used; however,
they add the requirement that either the Resource or Bob
must have (at least intermittent) access to an online server.

3 Composition and Abstraction
Because active certificates are interposed on the

request/response stream, there is a natural way to
compose them. Such composition enables further re-
delegation of rights with additional restrictions. More
importantly, it allows decomposition of a complex policy
into smaller policy modules. The use of a general purpose
language makes it possible for active certificates to define
abstractions. Using these two techniques, it is possible to
build complex policy systems based on active certificates.



TCB of Resource

Active
Cert

KBob

Bob: Request Alice: Request

Response

ResourceCarol

Response

Active
Cert

KAlice

Carol: Request

Figure 3. Chained Active Certificates.

3.1 Chained Operation
To begin, consider a simple example, where Bob wishes

to delegate rights he acquired via an active certificate fur-
ther. He creates a new certificate program that enforces his
own restrictions, signs it, and hands it to Carol. When Carol
wishes to access the Resource, she presents it with both
Bob’s and Alice’s certificates. The Resource instantiates the
certificates in a chain, as shown in Figure 3. Carol’s request
is first passed to Bob’s certificate, which then forwards it to
Alice’s certificate. At this point the request is authenticated
as coming from Bob, and will therefore be accepted by
Alice’s certificate. Responses are passed back up the chain
of certificates. Carol can re-delegate her rights using the
same process; chains of certificates of arbitrary depth are
possible.

Notice that although Alice may not wish Bob to be able
to redelegate her rights, in general she cannot prevent him
from doing so. Even if the runtime system allowed Alice’s
certificate to differentiate between chained and non-chained
operation, Bob could simply create a delegation proxy that
is completely transparent to the system.

3.2 Policy Attributes
As witnessed above, chaining can be used to combine

several active certificates to implement a composite policy.
This is a powerful technique that can be used to break a
complex policy into several subcomponents, bringing with
it the promise of policy modularity. However, modularity
requires another important principle: abstraction.

Abstraction can be implemented by way of policy at-
tributes. We create a new type of request, which is a
wrapper around another request (of arbitrary type) with an
additional attribute field. This field is used to specify a
policy abstraction generated by one active certificate and
intended to be consumed by another. In this way, active
certificates can communicate policy decisions to each other.

Consider the following: suppose Alice wants to delegate
access to file "foo" to a group of her friends. An active

certificate to enforce this policy would need to perform two
checks: that the request is coming from a member of the
group of friends, and that the request is of the appropriate
form, i.e. accesses "foo". Policy attributes allow these
checks to be separated into two certificates: one that verifies
membership in the “friends” group and one that verifies
the request type. The former certificate would check the
originator of a request, and then add an isFriend attribute if
the membership is correct. The latter would verify that the
isFriend attribute is present, and then proceed with the path
name checks.

Such decomposition allows policy components to be
reused. Alice could create many policies that rely on
delegating some rights to her friends, each of which could
make use of the isFriend attribute. She can then evolve her
set of friends without modifying any of these policies by
issuing new certificates that generate the isFriend attribute.
Decomposition also allows distribution of trust. In our
example, certificates that consume the isFriend attribute
must ensure that attributed requests are authenticated as
coming from Alice, since presumably only Alice should be
allowed to decide who her friends are. However, for other
kinds of policies, Alice may trust someone else to define
those abstractions; for example, she might want to delegate
some rights to Bob’s friends.

3.3 Application Policy Adapters
Although typically policy attributes are consumed by

chained active certificates and are not passed onto the ap-
plication, some applications may wish to accept attributed
requests in order to facilitate policy implementation. For
example, it may be easier for the file system to identify
requests that are read-only internally; in this case, it may
choose to accept attributed requests with a readOnly at-
tribute, and refuse to carry out any modification operations
for such requests. Then the example certificate from
Figure 2 could be rewritten to allow any requests but add
a readOnly attribute.



Another way to provide support is to create an adapter
agent operating outside the application that consumes pol-
icy attributes such as readOnly and enforces restrictions
based on request type. This agent can either be used as
a library by Alice’s other certificates, or instantiated as
a standalone certificate. In the latter case, the certificate
would not be performing delegation but instead enforcing
a higher-level policy; therefore, it should be signed by
Alice and only accept requests from her. Placing the agent
outside the application has the advantage that it can evolve
independently.

3.4 Hierarchical PKI
A more complex example that uses composition and ab-

straction is a hierarchical public key infrastructure. A public
key infrastructure uses certificates to create associations
between names and public keys. We can represent these
name associations as policy attributes. For example, in a flat
hierarchy, a certificate authority may assign Bob the key .
In this case, the CA would create an active certificate that
accepts any request authenticated with key and forwards
an attributed request with the field name set to “Bob”. Other
certificates can rely on such mappings to delegate rights to
named principals, instead of public keys; those certificates
should accept requests authenticated as coming from the
CA and with the name field set appropriately. Of course,
the CA is then able to issue arbitrary requests claiming to
be from an authorized principal, but this is inherent in all
hierarchical public key infrastructures: a CA is always free
to associate a name with its own key and thus impersonate
any principal. Our formulation merely makes this ability
more explicit.

It is easy to introduce subauthorities: the root CA cre-
ates a certificate which accepts any named request that is
authenticated by the key of the subauthority, as long as the
name is within the authority’s domain of power; this is a
straightforward example of rights delegation. Notice that
in this case there is a one-to-one correspondence between
conventional certificates used in a hierarchical PKI to create
the name-key bindings for “Bob” and active certificates.
In this case, each active certificate encodes the operational
semantics of its passive counterpart.

3.5 Discussion
The fact that it was easy to build a hierarchical PKI out of

active certificates speaks to their generality. The resulting
system not only duplicates many of the features of conven-
tional PKIs, it also has interesting new properties, such as
ease of interoperation, extensibility, and the potential for a
more secure TCB.

Interoperation is an important requirement of PKIs: com-
panies frequently use cross-certification [2] to connect their
corporate infrastructures. However, both systems must be

able to understand each other’s certificate format, name-
spaces, etc. The use of active certificates provides an easier
way to connect two hierarchies; all that is necessary is an
active certificate chaining trust from a node on the first
hierarchy to the root (or some other node) on the other.
The certificate acts as a “bridge” between the two systems,
performing any necessary namespace translations and other
modifications to make the systems compatible. Its role here
can be compared to an active proxy [11] protocol adapter.

Active certificates also leave plenty of room for exten-
sion. A general purpose language allows any computable
function to be used as a policy, and the interposition
architecture avoids any limitations of an explicit interface
with the Resource. As a result, it is possible to create
certificates expressing new types of policies and integrate
them with an existing system. It is even possible to evolve
policy abstractions over time, using adapter certificates to
provide backwards compatibility. In contrast, conventional
certificate systems are difficult to upgrade, since all the
libraries that interpret certificates must be replaced, and
backwards compatibility may be difficult to achieve.

The active certificate architecture may also help to make
the trusting computing base more secure. Complex certifi-
cate libraries can be removed from the TCB and replaced
by a general-purpose language interpreter. An interpreter
for an established language is likely to be more mature than
any given certificate library. Further, there may be incentive
for commercial vendors to offer the core of their system
as open-source, since most of a given solution’s value lies
in management subcomponents which, while essential to
operation, are not security critical. In this way, they can
provide their customers with a higher assurance of security
than is possible today.

Unfortunately, active certificates cannot duplicate all of
the features of modern PKIs. Since it is undesirable to
allow a mobile agent to open new network connections,
it is difficult to implement certificate revocation lists using
active certificates (although the “bill-of-health” certificates
proposed by Rivest [31] could be supported). It is still pos-
sible to implement revocation lists in the runtime system,
but that solution lacks the advantages of active certificates
such as the easy ability to change algorithms. Automated
certificate management is also complicated by the fact
that it is infeasible to automatically tell what an active
certificate does based on its content, thus it is difficult
to tell which subset of a collection of certificates will be
useful to authenticate Bob to the Resource. And despite
a smaller TCB, running untrusted mobile code, even in
a restricted environment, is still considered a risk today.
Nonetheless, active certificates present an interesting, if
not yet practical, new direction for implementing PKIs and
other policy systems.



4 Security Analysis
In this section, we formally model the operation of

active certificates using a belief logic defined by Abadi et
al [1]. Formal methods have been used to examine and
formally verify a large number of security systems; they
have helped to identify problems and hidden assumptions
in many. Even outside the context of proofs of security, a
formal specification of a system can often lead to a better
understanding of its properties. We will therefore proceed
to describe the operation of active certificates using the
logic.

When Alice ordinarily accesses the Resource without del-
egation, she sends a request over a secure channel. This is
represented in the logic as . The Resource receives
the message and performs an authorization decision to see
if Alice is allowed to do action , and if the authorization is
successful, proceeds with the request.

When Bob wishes to access the resource, he first sends
Alice’s active certificate to the Resource. The certificate
is signed by Alice’s public key, which we can model by

. The contents of the certificates represent Alice’s
policy delegating access to Bob, so it may be tempting to
say , where is the “speaks for” operator,
defined as

1 (1)

However, this would be incorrect, since that statement gives
unrestricted ability to do anything is allowed to do,

as opposed to only the things allowed by the certificate
program. We must therefore examine the operation of active
certificates more closely.

After sending the certificate, Bob sends his request to
the Resource. The request is given as input to the certificate
program, which we will call . To model the program
within the logic, we consider it as a function on statements
in the logic. Since the program knows that it was Bob who
made the request, we give it as input. The program
then produces another request , which
is then passed to the Resource. At this point, must be
interpreted as if it were coming from Alice for delegation
to succeed. Since the program is acting on Alice’s behalf,
it is appropriate to use the operator. We need to define a
new principal representing the program, and introduce
the following rule:

(2)

In other words, says whatever the program outputs.
Now Alice’s certificate can be defined simply as:

(3)
1Similar to the notation used by Abadi et al, we use to represent the

logical containment relation; means that if then .

So, upon getting the request from Bob, the Resource
passes it to the active certificate to obtain

. It then applies (2) to obtain . Now it needs to
interpret the policy in the active certificate. We will assume
that it knows that is Alice’s public key, and therefore

. Then it can derive . We also
need another assumption: , which
says that Alice has the authority to delegate her rights —
this is not implicit in the logic, but necessary for our system.
Combining the two statements, the Resource obtains

, which allows it to apply (1) and finally derive .
At this point it can apply the authorization decision as if
Alice made the request herself, and the delegation succeeds.

We also could have modeled active certificates using the
restricted delegation primitive defined by defined by Howell
and Kotz [22]. , or “ speaks for regarding ”
means that has the authority to act on the behalf of
for any action contained in the set . An active certificate
would then be modeled as:

However, this expression is awkward and difficult to under-
stand, since an active certificate defines both the potential
recepients of delegated rights and the set of allowed actions
implicitly (and in general, these sets are not computable).

4.1 Authentication of Responses
We can also use the logic to reason about the valid-

ity of responses received from the Resource when active
certificates are used. When Alice accesses the Resource
directly, a response to a request is interpreted as

. The predicate is used to
associate a response with the appropriate request. However,
what can Bob tell about the response when active certifi-
cates are in place? Unfortunately, as a consequence of in-
terposition, Bob cannot assume that ,
because Alice’s active certificate is allowed to modify
both requests and responses arbitrarily. In a sense, Alice
is defining her own predicate by her certificate,
which may be different from the Resource’s predicate.
However, it would be incorrect for Bob to assume that

, since the execution of Alice’s cer-
tificate at the Resource is not monitored by either Alice or
Bob; the Resource is free to return arbitrary results. We
must therefore take a closer look at the operation of active
certificates.

Recall that the active certificate passes a request to
the Resource, where . Therefore, when
Alice’s certificate receives a response from the Resource,
it can infer that: . The certificate then uses

to derive the final response . It is therefore appropriate



to model the certificate’s modifications to the response as:

In other words, given the response from the Resource
to the request , Alice’s certificate computes its own
response to the request . The resource can apply (2),
substituting for , and (3), to obtain

. This can be sent back to Bob, who
can obtain the final result:

This must be the interpretation that Bob gives to the
result, as it reflects the nature in which the result is derived.
Unfortunately, this statement is weaker than one Bob would
expect in the non-delegated case; however, it is sufficient
in many common instances of delegation. Consider, for
example, the case where Alice gives Bob the right to check
her email while she is away, or where Alice shares access
to some of her files with Bob because they are working
on a project together. In both cases, it does not make
sense for Alice to try to deceive Bob by returning malicious
results in her certificate; delegation here is used as a tool for
cooperation, which requires a certain degree of mutual trust
to begin with. Problems arise when Bob’s ability to use the
Resource properly is not directly beneficial for Alice; for
example, if she is selling her access to the Resource to Bob.
In such cases, Bob may want to examine the operation of the
active certificate in order to derive a stronger statement on
the result. However, in general, properties of the certificate
may be undecidable given the program code; providing
better support for auditing is the subject of future work.

5 Implementation
We have built a prototype implementation of active cer-

tificates as part of the service call mechanism in Ninja [17].
The Ninja project aims to serve as a platform for building a
distributed services infrastructure, with a focus on service
composition. This section discusses the details of our
implementation.

5.1 Service Calls
Service calls in Ninja are represented as typed messages,

or tasks. A task is implemented as a Java object. Java [16] is
used in Ninja because it provides a rich type hierarchy, plat-
form independence, and automated memory management.
When a client wishes to send a task to a service, it calls
the handleTask method on a stub object for the service.
The task is serialized and sent to the service for processing.
Responses, or completions, are returned in the form of typed
messages as well.

5.2 Certificate Implementation
Because of its support for code mobility and restricted

program execution, we use Java as the language for active
certificates in our implementation. This choice also simpli-
fied the integration of active certificates with the rest of the
Ninja framework.

An active certificate implements the ActiveCertIF
interface, which has two methods: init, which accepts
a reference to a stub object for the downstream service,
and handleTask, which performs a policy decision on
incoming tasks and sends tasks to the service, using the
handleTask method on the stub object. It also pro-
cesses the responses received from the service, potentially
modifying them before returning them to the user. The
interposition of the active certificate is transparent to both
the service and the client.

The ActiveCertIF interface is well suited for chain-
ing. An active certificate that is part of a chain gets a
reference to another certificate, and not to a service stub,
as the argument to its init method. Therefore, calls to
handleTask pass the tasks to the next certificate in the
chain. In this way, chaining is also transparent to all the
certificates.

5.3 Authentication
We will not discuss the authentication protocol used by

Ninja, other than to say that it is similar in spirit to TLS [9],
and can be modeled as a secure channel. The result of
authentication is expressed as message metadata: each
typed message includes an authKey field that is set by
the infrastructure to be the public key of the authenticated
originator of the message. When a service receives a
message with it can derive the statement

.
Active certificates are implemented by changing the

authKey field of messages. When an active certificate
receives a message from a client, the authKey is set
to the client’s public key. When it calls handleTask,
the resulting message that is sent to the service has its
authKey set to the signer of the certificate. This makes
the service behave as if the principal who signed the
certificate was interacting with it directly.

5.4 Certificate Format
An active certificate consists of four fields: the certificate

program, represented by the bytecode for a class that
implements the ActiveCertIF interface, a parameter
object (see below), an expiration date, and the public key
of the signer of the certificate. The final certificate consists
of a byte array containing the serialized version of these
fields and a signature over the byte array using the specified
public key.



When the infrastructure receives an active certificate from
a client, it first verifies the signature. If the verification suc-
ceeds, a special class loader is used to load the implemen-
tation of the certificate with restricted permissions. Then
the infrastructure creates an instance of the certificate class,
passing the parameter object to the constructor. Finally, it
installs the certificate in the message path between the client
and the service by calling the certificate’s init method.

The parameter object allows the reuse of a single class
implementing an active certificate program in multiple
certificates. For example, a blanket delegation certificate
that delegates all possible rights to key (for a limited
time) might store the value of in a parameter object. This
allows the same implementation to be reused to perform a
similar delegation to key . In the absence of a parameter
field, or would have to be specified as a static field
in the class, requiring two separate classes for the two
certificates.

5.5 Principal Names
The Ninja infrastructure does not have an inherent under-

standing of principal names; it uses public keys to identify
participants. To support named principals, we implemented
a hierarchical PKI as described in Section 3.4. We created
a special wrapper message type called MessageFrom,
which contains a name attribute and a message. The
semantics of a message of the formMessageFrom
can be modeled as . However, unlike the
authKey field, the name field in a MessageFrom object
is not verified by the infrastructure, so a service must be
careful to accept such messages only from trusted sources.
In our prototype hierarchical PKI each service knows the
key of the root authority and only accepts MessageFrom
objects authorized by that key.

The root authority issues delegation certificates that ac-
cept MessageFrom messages authenticated by its subau-
thorities, checking that the name field is within the juris-
diction of each authority. The subauthorities, in turn, issue
certificates that accept messages sent by a particular public
key and create a MessageFrom message that includes the
corresponding name. An example of such a certificate is
shown in Figure 4. When a client accesses a service, it sets
up a chain of active certificates leading up to the root, and
then proceeds to send requests. The first certificate in the
chain will create a MessageFrom message, which will
be accepted by the certificates that follow it in the chain.
Finally, the message will arrive at the service authenticated
by the root authority. The service can then perform a
decision based on the now-authenticated name field.

5.6 Applications
We built a certificate directory service, which is used

to look up active certificates by name. Clients use the

public class NameCertificate
implements ActiveCertIF {
private PublicKey key;
private Name name;
private ServiceIF service;
// ...

void handleTask(Task task) {
if (task.authKey.equals(key)) {

service.handleTask(
new MessageFrom(name, task), ...)

} else {
// error

}
}

}

Figure 4. A Name Certificate.

certificate service to look up their name certificates, which
they use to authenticate themselves to services. The direc-
tory service only accepts updates from the root authority.
However, we use a delegation certificate issued by the root
that implements the following policy: any client that can
authenticate itself under name is allowed to update the
certificate stored for that name. This allows clients to
update their own entries in the directory, but not those of
others. Note that this policy was implemented by the root
authority without modifying the directory service, as would
be necessary in a conventional system.

We also experimented with using active certificates
to delegate access to the Ninja Jukebox [14] and
NinjaMail [36] services. We successfully implemented
certificates with policies to provide read-only access to
individual song preferences to a “collaborative DJ” service.
In NinjaMail, we use active certificates to grant a procmail-
like [35] service the ability to examine message headers
and automatically file messages into folders. In this way,
a compromise of the procmail service will have limited
impact on the mail system; in particular, mail cannot be
deleted.

5.7 Discussion
Java Platform. Our experience using Java has been gen-
erally positive. The Java 1.2 Security Architecture [15] is a
big improvement over the previous version; restricting the
execution of active certificates was quite natural. It is im-
possible, however, to enforce resource limits such as CPU
time or memory usage on the certificate in our prototype.
We are hoping to benefit from research on resource limits
in Java [13, 33], and provide better resource monitoring for
active certificates as well as other components of the Ninja
framework.

The method of creating Java active certificates presented



a barrier to automated certificate generation. To create a
certificate, it is necessary to locate the bytecode for its
implementation; in an interactive setting this is done by
reading the corresponding .class file off the file system.
However, Ninja services are shipped as mobile code to their
execution environments and frequently do not have access
to the file system. To let a service create new certificates,
it is necessary to include a static parameter to the service
that contains the bytecode of the certificate implementation.
This approach is functional, but it requires administrative
overhead to set and update the service parameter. If the
bytecode implementation of a class visible at runtime could
be obtained through reflection, automatic generation of
certificates would be more natural.

Message Interfaces. The use of typed message interfaces
helped make active certificates simpler and cleaner. The
previous version of the Ninja platform [18] used RMI-
style interfaces, which were a collection of method sig-
natures (i.e. a Java interface). To interpose on a service
that uses a method interface it is necessary to provide an
implementation of each method. Message interfaces, on
the other hand, allow a certificate to operate as a message
filter, with only partial or no knowledge of the interface.
This makes expressing “vertical policies”, which are the
same for every request type, very natural. (An example
of such vertical policy is a name certificate described in
Section 5.5.) Request-dependent “horizontal” policies can
also be easily represented using message interfaces by
branching on the message type. Even in this case, message
interfaces have the advantage of being able to adapt to
an evolving service interface by denying any unrecognized
request types. A policy that has both horizontal and vertical
components (this will be true of many policies in practice)
is also natural to represent in message interfaces; method
interfaces on the other hand would require code duplication
to implement the vertical components of policies.

This experience suggests that in other systems that use
messages to encode remote calls (e.g. RPC over SOAP [7]),
active certificates should be implemented as message filters
instead of RPC wrappers.

6 Related Work
A number of certificate systems have attempted to in-

corporate the concept of delegation. For example, proxy
certificates [34] are a proposed way to add delegation to
X.509 [8]; SPKI [10] uses delegation as a central concept
in its operation. Both systems include a mechanism to
restrict delegation: proxy certificates allow one to specify
a restriction in a (yet-to-be-specified) policy language, and
SPKI supports application-specific restriction tags. In both
cases, further standardization on application semantics is

required, and this process must be repeated for each new
application domain.

Several systems have used a general-purpose program-
ming language to specify policy. PolicyMaker [4] is a
system that manages collections of assertions, which can
include arbitrary programs in a safe version of AWK, and
computes policy decisions on their basis. Proof-Carrying
Certificates [3] use proofs written in Twelf [29], which
is a powerful, if not general-purpose, language. Both
systems, in typical usage, lack the transparency of active
certificates. PolicyMaker applications must define security
attributes that are relevant and specify local policy in
terms of them. Proof-Carrying Certificates must prove
an application-dependent theorem, with local policy repre-
sented by axioms. However, a variant of PolicyMaker could
be used to produce a system similar to active certificates,
wherein an entire request is passed as a query to the
policy management system, and a language appropriate for
parsing such requests is used to define assertions. Such
a system would lack the full proxying aspects of active
certificates, and have a less general area of application
than PolicyMaker, but it would combine a number of their
strengths.

Proxy-based solutions can be used to implement general
delegation policies with complete transparency. Several
projects have used proxy technology to perform security
adaptation [32, 12]. However, maintaining an online proxy
imposes significant computational, connectivity, and man-
agement overhead on its owner. In addition, prevalence of
such proxies might put excessive bandwidth requirements
on the infrastructure because of the resulting inefficient
routes. Most importantly, the proxy has to maintain its
owner’s private key, which makes it an attractive attack
target.

Active certificates avoid all of these pitfalls by executing
at the Resource. They are, however, less expressive than
proxies, since they are instantiated only temporarily during
access to the Resource, and cannot maintain persistent state.
To implement policies that require persistent state, a hybrid
solution is possible, wherein an online proxy stores the
persistent state necessary and an active certificate is used
to specify policy with input from the proxy. The proxy does
not need to store its owner’s public key, instead it can have
its own key recognized by the certificate. Such a solution
combines the expressive power of proxies with the security
advantages of active certificates, since the proxy is only
trusted to maintain correct state, but not to authorize use
of Alice’s rights.

7 Future Work
Although active certificates provide a very powerful del-

egation mechanism, it is important to be able to manage
certificates effectively in order to exploit their full potential.



In a complicated system with a large pool of available
certificates, it is important to have automated search mech-
anisms to find a sequence of certificates that will allow
Bob to use the Resource. There has been much research
into the problem of deciding authentication [20, 23, 5, 6]
with varied results; however, it should be clear that the
use of programs to specify policies makes this problem
undecidable. Nonetheless, we hope to be able to attach
attributes to certificates to make searches for a trust path
feasible in practice, by trying to express which certificates
may be useful to solve a particular authentication problem.
For example, if a higher-level policy language is translated
into active certificates, such attributes could take the form
of the original high-level language source. This would
allow active certificates to be managed in the same way as
conventional certificates.

Such “translation annotations” can also serve to check
certain certificate properties, if it is possible to prove that the
certificate code is indeed a semantically equivalent transla-
tion of the annotation [30]. Such a proof would ensure that
the certificate program is bound by any restrictions that are
inherent in the source language. For example, a translation
from a policy language that has a bounded execution time
can ease concerns of resource misuse by the certificate. We
are also investigating other properties that may be useful to
prove about active certificates, and other ways of proving
them.

Finally, we are evaluating the performance impact of
using active certificates. One promising feature of active
certificates is that complex functions such as interpreting
high-level policies or finding a trust path are shifted from
servers onto clients; this allows us to exploit the vast
disparities in the aggregate computing power of services
and their large user bases to improve performance.

8 Conclusions
In this paper we presented a novel approach to delegation

based on active certificates. It combines the strengths of
previous approaches, including expressivity, transparency,
offline operation, and convenience; these features make
active certificates useful tools for expressing delegation.
We also explained how to use active certificates as a
platform to build larger systems; this approach has im-
portant advantages such as extensibility. We performed a
formal security analysis of active certificates and built a
prototype implementation validating our techniques. Active
certificates are an exciting new direction in delegation and
present many directions for further research.

9 Acknowledgments
We would like to thank Adrian Perrig, Mark Miller, David

Wagner, Dawn Song, Oleg Kolesnikov, and the anonymous

referees for insightful comments on earlier versions of this
paper.

References
[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A

calculus for access control in distributed systems. ACM
Transactions on Programming Languages and Systems,
15(4):706–734, September 1993.

[2] American National Standards Institute. Public key
cryptography for the financial service industry: Certificate
management. ANSI X9.57-1997, 1997.

[3] A.W. Appel and E.W. Felten. Proof-carrying authentication.
In 5th ACM Conference on Computer and Communications
Security, pages 52–62, Singapore, November 1999. ACM
Press.

[4] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust
management. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, Oakland, CA, May 1996.
IEEE Computer Society Press.

[5] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance
checking in the PolicyMaker trust management system. In
Hirschfeld [21], pages 254–274.

[6] D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos,
and R.L. Rivest. Certificate chain discovery in SPKI/SDSI.
http://theory.lcs.mit.edu/˜rivest/
publications.html.

[7] WWW Consortium. Simple object access protocol (SOAP)
1.1. http://www.w3.org/TR/SOAP/.

[8] Consultative Committee on International Telegraphy and
Telephony. Recommendation X.509: The Directory—
Authentication Framework, 1988.

[9] T. Dierks and C. Allen. The TLS prtocol version 1.0.
RFC2246, January 1999.

[10] C.M. Ellison, B. Frantz, B. Lampson, R. Rivest, B.M.
Thomas, and T. Ylonen. SPKI certificate theory. Internet
Draft, March 1998. Expires: 16 September 1998.

[11] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer.
Adapting to network and client variation using active
proxies: Lessons and perspectives. Special Issue of IEEE
Personal Communications on Adaptation, August 1998.

[12] A. Fox and S.D. Gribble. Security on the move: Indirect
authentication using Kerberos. In 2nd ACM International
Conference on Mobile Computing and Networking, Novem-
ber 1996.

[13] G.Back, W.C. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, resource management, and sharing in
Java. In Fourth Symposium on Operating Systems Design
and Implementation (OSDI), October 2000.

[14] I. Goldberg, S. Gribble, D. Wagner, and E. Brewer. The
Ninja Jukebox. In Second USENIX Symposium on Internet
Technologies and Systems (USITS), Boulder, CO, October
1999.



[15] L. Gong. Inside Java 2 Platform Security. Addison-Wesley,
June 1999.

[16] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison Wesley, 1997.

[17] S. Gribble, M. Welsh, R. von Behren, E. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
A. Josheph, R. Katz, Z. Mao, S. Ross, and B. Zhao.
The Ninja architecture for robust Internet-scale systems and
services. Special Issue of Computer Networks on Pervasive
Computing, March 2001.

[18] S.D. Gribble, M.Welsh, E.A. Brewer, and D.Culler. The
MultiSpace: An evolutionary platform for infrastructural ser-
vices. In Proceedings of the 1999 USENIX Annual Technical
Conference (USENIX-99), pages 157–170, Berkeley, CA,
June 6–11 1999. USENIX Association.

[19] P. Gutmann. X.509 style guide.
http://www.cs.auckland.ac.nz/˜pgut001/
pubs/x509guide.txt, October 2000.

[20] M.H. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in
operating systems. Communications of the ACM, 19(8):461–
471, 1976.

[21] R. Hirschfeld, editor. Financial Cryptography, Anguilla,
British West Indies, February 1998.

[22] J. Howell and D. Kotz. A formal semantics for SPKI. In
6th European Symposium on Research in Computer Security,
pages 140–158, 2000.

[23] A.K. Jones, R.J. Lipton, and L. Snyder. A linear time
algorithm for deciding security. In 17h IEEE Symposium on
the Foundations of Computer Science, pages 33–41, 1976.

[24] P. Kocher. On certificate revocation and validation. In
Hirschfeld [21], pages 172–177.

[25] S. Micali. Efficient certificate revocation. Technical Memo
MIT/LCS/TM-542b, Massachusetts Institute of Technology,
Laboratory for Computer Science, March 1996.

[26] Microsoft. Microsoft .NET.
http://www.microsoft.com/net/.

[27] Sun Microsystems. Sun Open Net Environment (Sun ONE).
http://www.sun.com/software/sunone/.

[28] M. Naor and K. Nissim. Certificate revocation and certificate
update. In Proceedings of the 7th USENIX Security
Symposium, pages 217–228, Berkeley, January 26–29 1998.
Usenix Association.

[29] F. Pfenning and C. Schurmann. System description: Twelf
— a meta-logical framework for deductive sstems. In 16th
International Conference on Automated Deduction (CADE-
16), Trento, Italy, June 1999.

[30] A. Puneli, M. Siegel, and E. Signerman. Translation
validation. In 4th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,
Lisbon, Portugal, March 1998.

[31] R. Rivest. Can we eliminate certificate revocation lists? In
Hirschfeld [21], pages 178–183.

[32] S. Ross, J. Hill, M. Chen, A. Joseph, D. Culler, and
E. Brewer. A composable framework for secure multi-
modal access to Internet services from Post-PC devices. In
Third IEEE Workshop on Mobile Computing Systems and
Applications (WMCSA), to appear, Monterey, CA, 2000.

[33] A. Rudys, J. Clements, and D.S. Wallach. Termination
in language-based systems. In Network and Distributed
Systems Security Symposium ’01, 2001.

[34] S. Tuecke. Internet X.509 public key infrastructure proxy
certificate profile. Internet Draft, 2001.

[35] S.R. van den Berg. Procmail - autonomous mail processor.
http://www.procmail.org/.

[36] J.R. von Behren, S. Czerwinski, A.D. Joseph, E.A. Brewer,
and J. Kubiatowicz. NinjaMail: The design of a high
performance clustered, distributed e-mail system. In First
International Workshop on Scalable Web Services, Toronto,
Canada, August 2000.


