
Korean Shellcode with ROP Based Decoding

Ji-Hyeon Yoon* and Hae Young Lee
Department of Information Security

Seoul Women’s University
Republic of Korea

{ jhy,haelee}@swu.ac.kr

Our Previous Work (Korean Shellcode)

Conclusions & Future Work

 Korean shellcode with ROP based decoding:
 Shellcode can be hidden in Korean text and
reconstructed by ROP based gadgets.
 May evade many detection techniques thanks to
the elimination of the signature.
 Easy to be implemented, yet effective against
payload inspection and LBR based defensive
measures.
 Can be applied to other East Asian languages
such as Chinese and Japanese.

 The future work includes:
 Automation of our approach
 Detection of Korean shellcode
 Applications to other languages

Our Present Approach Background & Motivation

 Demerits in Korean shellcode
 Shellcode embedded in Korean text could be
detected due to ‘the signature of its decoder.’

 Return-Oriented Programming (ROP)
 A computer security exploit technique that
allows an attacker to divert control flow and
execute arbitrary code using existing codes –
without injecting any code.
 Gadget: several small instruction sequences of
existing code used in ROP. Gadgets end with an
indirect ret instruction and are chained together
through that instruction.
 Demerits: Conducting malicious operations
through ‘pure’ ROP may be very difficult or even
impossible to implement if there is no
appropriate instructions in the target program.

 Motivation – How about decoding Korean
shellcode based on ROP?
 The signature of Korean shellcode may be
virtually eliminated if we can reconstruct it using
ROP.
 It would be easier to implement than ‘pure’
ROP; we just need to find appropriate instructions
for the reconstruction.

 Background & Motivation
 Sino-Korean: About 6~70% words in the Korean vocabulary originated from Chinese words.
 Chinese characters are often used to clarify meaning of Sino-Korean.
 Korean text may include Korean, Chinese, alphanumeric characters, and symbols, which make up a large portion
(approximately 70%) of the UTF-16 character set.

 Basic Idea
 Each 2-byte code of shellcode is transformed into a Chinese character and then placed within Korean text.
 Many 2-byte codes will already appear to be Chinese characters.
 The others can be transformed into Chinese ones by XOR operations.

 Our Approach: Hiding shellcode by placing pseudo-Chinese words
 A simple decoder retransforms these words through XORs hinted by Korean characters.

 Merits
 Shellcode can be easily embedded within Korean text and reconstructed by a simple decoder.
 Shellcode hidden in text may not be detected by automatic and even manual payload inspection.
 It could be extended to East Asian languages that use Chinese characters (e.g., Chinese and Japanese).

1) Hiding Shellcode in Korean Text
 Some 2-byte codes already will appear to be Chinese characters and the others can be easily transformed
into Chinese characters through XORs.
 These Chinese characters are grouped into pseudo-Chinese words based on reconstruction operations
(XOR masks in the figure).
 Each pseudo-Chinese word is placed within text.
 Some ‘real’ Chinese words can be placed to make text difficult to be distinguished from ‘real’ text.

2) Data for ROP Based Decoding
 Korean shellcode is reconstructed through chaining ‘gadgets.’
 Gadgets are consist of instructions existing in the target program and end with a ret instruction.
 A payload contains: ① Korean shellcode, ② starting addresses of gadgets, and ③ starting address of
reconstructed shellcode.
 Each Chinese word is retransformed through an XOR with a ‘hint’ in text.
 Any real Chinese words can be ignored based on hints.

3) Shellcode Reconstruction
① Injecting Korean shellcode

Through the buffer overflow vulnerability of the target program, the stack is overwritten by a payload that
includes Korean shellcode and data for ROP based decoding.

② Diverting Control Flow
The first encounter with a ret instruction diverts the control flow of the program to the first gadget.

③ Reconstructing Shellcode by Gadget Chaining
The other gadgets are executed by gadget chaining, so that shellcode is reconstructed.

④ Executing Reconstructed Shellcode
The encounter with a ret instruction within the last gadget diverts the flow to the reconstructed shellcode,
so that it is finally executed.

Others

32.68%

Chinese

character

39.89%

Korean

17.04%

ASCII &

Symbols

10.39%

Portion of

Unicode characters

