Differentially Private Password Frequency Lists

Jeremiah Blocki MSR/Purdue

Joseph Bonneau Stanford/EFF

Differentially Private Password Frequency Lists

Or, How to release statistics from 70 million passwords (on purpose)

Jeremiah Blocki MSR/Purdue

Anupam Datta CMU

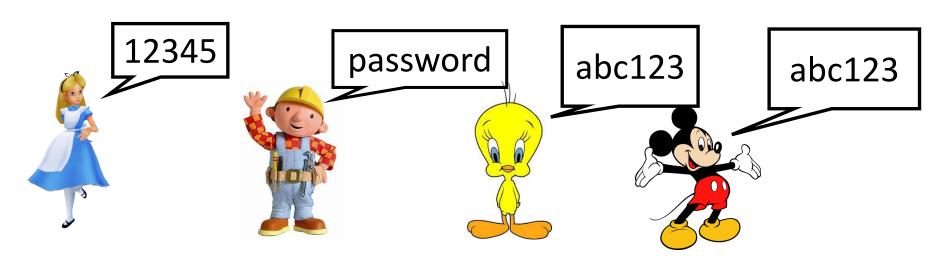
Joseph Bonneau Stanford/EFF

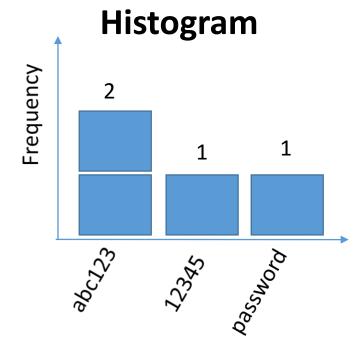
Outline

- Password Frequency List
- Potential Security Concerns
- Differential Privacy
- A DP Algorithm with Minimal Distortion
- Released Yahoo! Frequency List

What is a Password Frequency List?

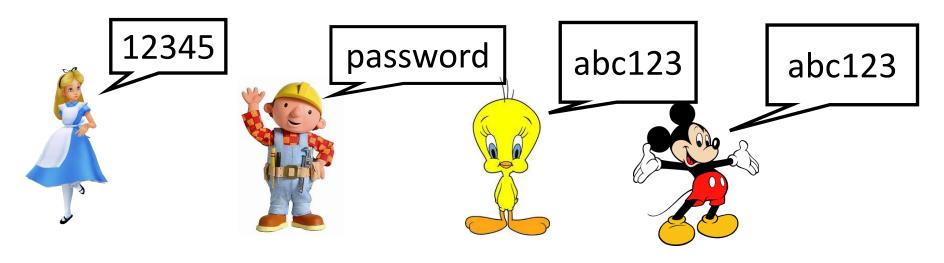
Password Dataset: (N users)

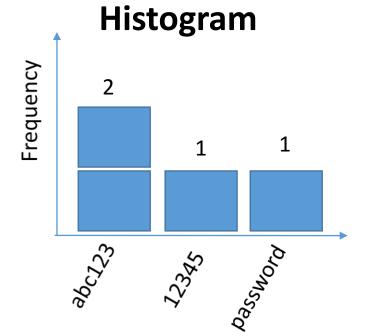


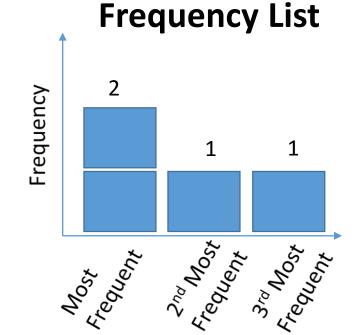


What is a Password Frequency List?

Password Dataset: (N users)

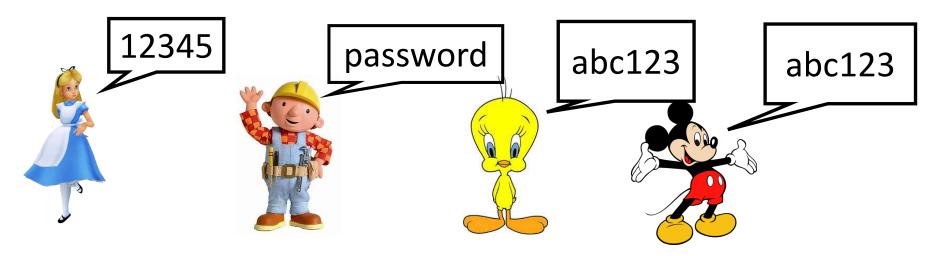


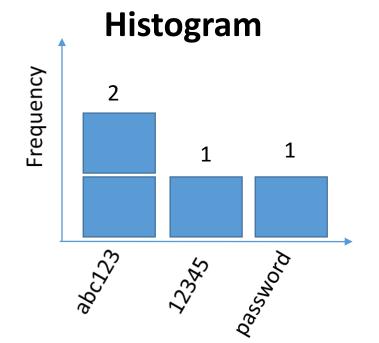


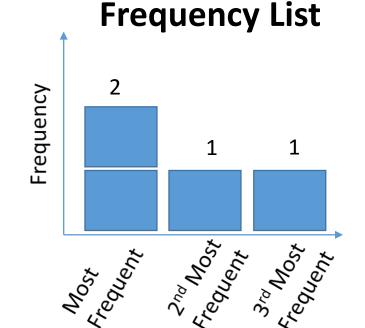


What is a Password Frequency List?

Password Dataset: (N users)







Formal Notation:

$$\mathbf{f} = (f_1, ..., f_N)$$
 such that

•
$$f_1 \ge f_2 \ge \cdots \ge f_N \ge 0$$

•
$$N = \sum_{i=1}^{N} f_i$$

Password Frequency List (Application 1)

Estimate #accounts compromised by attacker with β guesses per user

- Online Attacker (β small)
- Offline Attacker (β large)

$$\lambda_{\beta} = \sum_{i=1}^{\beta} f_i$$

Password Frequency List (Application 2)

Quantify Benefits from Key-Stretching

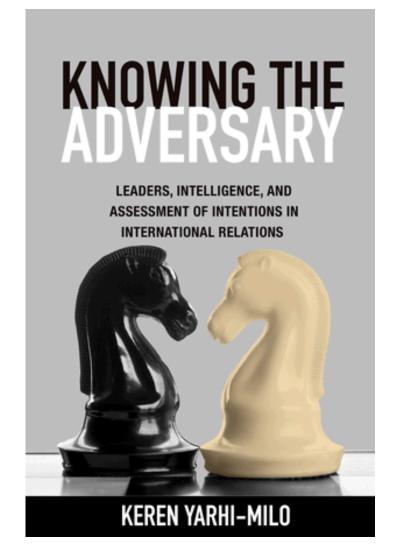
Halting Condition (Rational Offline Adversary):

Marginal Guessing Cost ≥ Marginal Benefit

Password Frequency Lists allow us to estimate

- Marginal Guessing Cost (MGC)
- Marginal Benefit (MB)
- Rational Adversary: MGC = MB

Can estimate when the offline adversary will give up.



Available Password Frequency Lists

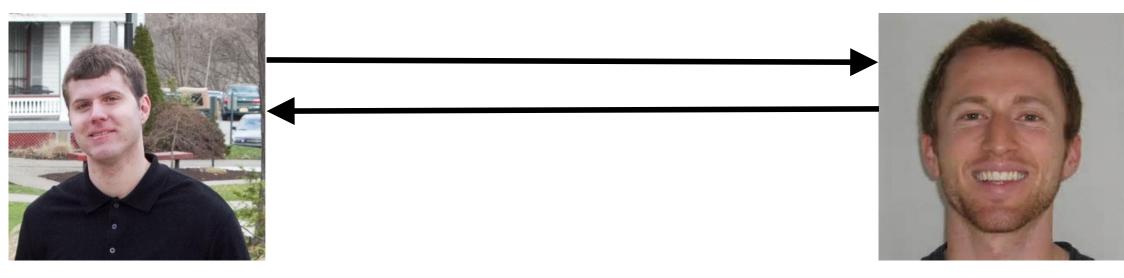
Site	#User Accounts (N)	How Released
RockYou	32.6 Million	Data Breach*
LinkedIn	6	Data Breach*
••••	•••	•••

^{*} entire frequency list available due to improper password storage

How the project started

Would it be possible to access the Yahoo! data? I am working on a cool new research project and the password frequency data would be very useful.

How the project started



I would love to make the data public, but Yahoo! Legal has concerns about security and privacy. They won't let me release it.

How the project started



I would love to make the data public, but Yahoo! Legal has concerns about security and privacy. They won't let me release it.

Available Password Frequency Lists

Site	#User Accounts (N)	How Released
RockYou	32.6 Million	Data Breach*
LinkedIn	6	Data Breach*
••••	•••	•••
Yahoo! [B12]	70 Million	With Permission**

^{*} entire frequency list available due to improper password storage

Yahoo! Frequency data is now available online at:

https://figshare.com/articles/Yahoo Password Frequency Corpus/2057937

^{**} frequency list perturbed slightly to preserve differential privacy.

Why not just publish the original frequency lists?

- Heuristic Approaches to Data Privacy often break down when the adversary has background knowledge
 - Massachusetts Group Insurance Medical Encounter Database [SS98]
 - Background Knowledge: Voter Registration Record

Why not just publish the original frequency lists?

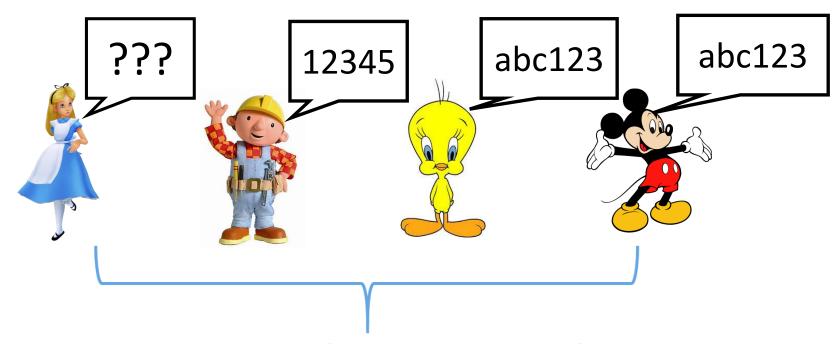
- Heuristic Approaches to Data Privacy often break down when the adversary has background knowledge
 - Massachusetts Group Insurance Medical Encounter Database [SS98]
 - Background Knowledge: Voter Registration Record
 - Netflix Prize Dataset[NS08]
 - Background Knowledge: IMDB

Why not just publish the original frequency lists?

- Heuristic Approaches to Data Privacy often break down when the adversary has background knowledge
 - Netflix Prize Dataset[NS08]
 - Background Knowledge: IMDB
 - Massachusetts Group Insurance Medical Encounter Database [SS98]
 - Background Knowledge: Voter Registration Record
 - Many other attacks [BDK07,...]

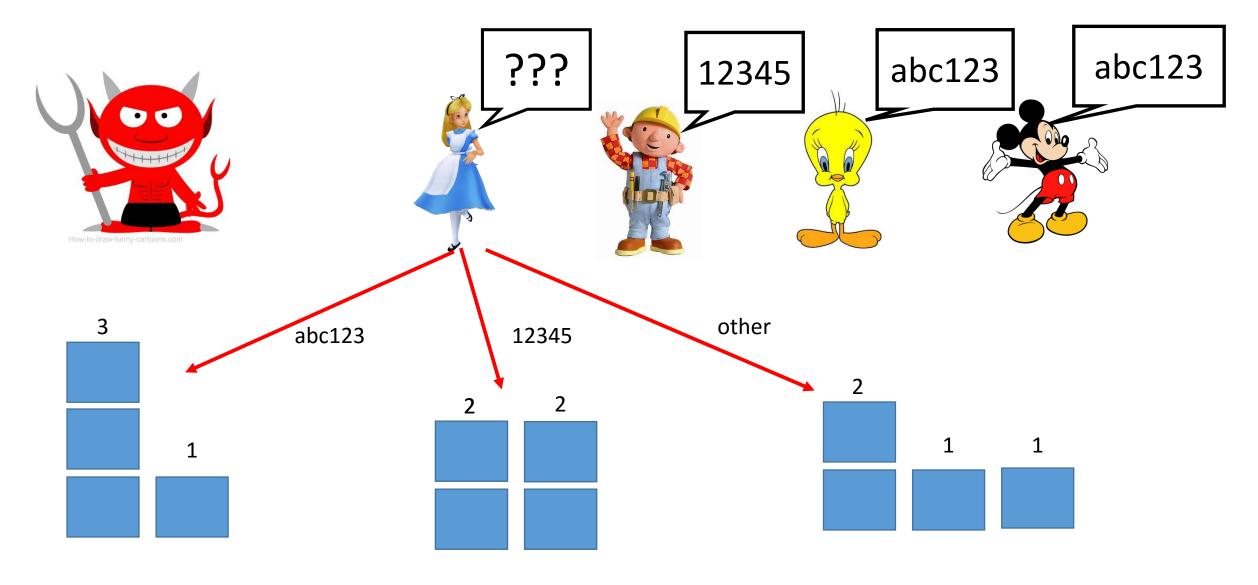
• In the absence of provable privacy guarantees Yahoo! was understandably reluctant to release these password frequency lists.

Security Risks (Example)



Adversary Background Knowledge

Security Risks (Example)



Definition: An (randomized) algorithm A preserves (ε, δ) -differential privacy if for *any* subset $S \subseteq Range(A)$ of possible outcomes and *any* we have

$$\Pr[A(f) \in S] \le e^{\varepsilon} \Pr[A(f') \in S] + \delta$$

for any pair of adjacent password frequency lists f and f',

$$||f - f'||_1 = 1.$$

$$||f - f'||_1 \stackrel{\text{def}}{=} \sum_i |f_i - f_i'|$$

Definition: An (randomized) algorithm A preserves (ε, δ) -differential privacy if for *any* subset $S \subseteq Range(A)$ of possible outcomes and *any* we have

$$\Pr[A(f) \in S] \le e^{\varepsilon} \Pr[A(f') \in S] + \delta$$

for any pair of adjacent password frequency lists f and f',

$$||f - f_1'||_1 = 1.$$

f – original password frequency listf' – remove Alice's password from dataset

Definition: An (randomized) algorithm A preserves (ε, δ) -differential privacy if for *any* subset $S \subseteq Range(A)$ of possible outcomes and *any* we have

$$\Pr[A(f) \in S] \le e^{\varepsilon} \Pr[A(f') \in S] + \delta$$

for any pair of adjacent password frequency lists f and f',

$$||f - f_1'||_1 = 1.$$

Small Constant (e.g., $\varepsilon = 0.5$)

f – original password frequency list f' – remove Alice's password from dataset

Definition: An (randomized) algorithm A preserves (ε, δ) -differential privacy if for *any* subset $S \subseteq Range(A)$ of possible outcomes and *any* we have

$$\Pr[A(f) \in S] \le e^{\varepsilon} \Pr[A(f') \in S] + \delta$$

for any pair of adjacent password frequency lists f and f',

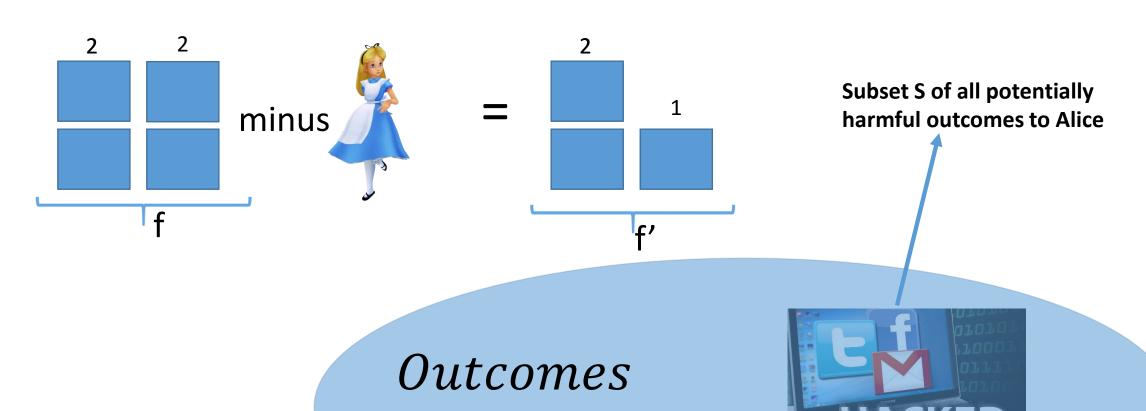
$$||f - f_1'||_1 = 1.$$

Small Constant (e.g., $\varepsilon = 0.5$)

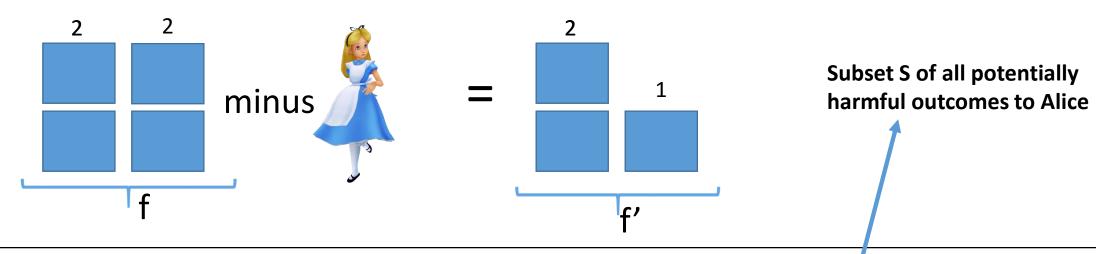
Negligibly Small Value (e.g., $\delta = 2^{-100}$)

f – original password frequency list f' – remove Alice's password from dataset

Differential Privacy (Example)



Differential Privacy (Example)



$$\Pr\left[A(f) \in \text{FACKED}\right] \leq e^{\varepsilon} \Pr\left[A(f') \in \text{FACKED}\right] + \delta$$

Differential Privacy (Example)

Intuition: Alice will not harmed because her password was included in the dataset.

$$\Pr\left[A(f) \in \mathsf{Pr}\left[A(f') \in \mathsf{Pr}\left[A($$

Main Technical Result

Theorem: There is a computationally efficient algorithm $\tilde{f} \leftarrow A(f)$ such that A preserves (ε, δ) -differential privacy and, except with probability δ , outputs \tilde{f} s.t.

$$\frac{\left\|f - \tilde{f}\right\|_{1}}{N} \le O\left(\frac{1}{\varepsilon\sqrt{N}} + \frac{\ln(1/\delta)}{\varepsilon N}\right).$$

Main Tool: Exponential Mechanism [MT07]

Input: f

Output:
$$\Pr[\mathcal{E}^{\varepsilon}(f) = \tilde{f}] \propto e^{\frac{\|f - \tilde{f}\|_1}{2\varepsilon}}$$

Assigns very small probability to inaccurate outcomes.

Main Tool: Exponential Mechanism [MT07]

Input: f

Output:
$$\Pr[\mathcal{E}^{\varepsilon}(f) = \tilde{f}] \propto e^{\frac{\|f - \tilde{f}\|_{1}}{2\varepsilon}}$$

Assigns very small probability to inaccurate outcomes.

Theorem [MT07]: The exponential mechanism preserves $(\varepsilon, 0)$ -differential privacy.

Analysis: Exponential Mechanism

Input: f

Output:
$$\Pr[\mathcal{E}^{\varepsilon}(f) = \tilde{f}] \propto e^{-\frac{\|f - \tilde{f}\|_{1}}{2\varepsilon}}$$

Assigns very small probability to inaccurate outcomes.

Theorem [HR18]: There are $e^{O(\sqrt{N})}$ partitions of the integer N.

Analysis: Exponential Mechanism

Input: f

Output:
$$\Pr[\mathcal{E}^{\varepsilon}(f) = \tilde{f}] \propto e^{-\frac{\|f - \tilde{f}\|_{1}}{2\varepsilon}}$$

Assigns very small probability to inaccurate outcomes.

Theorem [HR18]: There are $e^{O(\sqrt{N})}$ partitions of the integer N.

Union Bound
$$\rightarrow \|f - \tilde{f}\|_1 \le O\left(\frac{\sqrt{N}}{\varepsilon}\right)$$
 with high probability.

Analysis: Exponential Mechanism

Input: f

Output:
$$\Pr[\mathcal{E}^{\varepsilon}(f) = \tilde{f}] \propto e^{-\frac{\|f - \tilde{f}\|_1}{2\varepsilon}}$$

Assigns very small probability to inaccurate outcomes.

Theorem:
$$\frac{\|f - \tilde{f}\|_1}{N} \le O\left(\frac{1}{\varepsilon\sqrt{N}}\right)$$
 with high probability.

Theorem [MT07]: The exponential mechanism preserves $(\varepsilon, 0)$ -differential privacy.

The Challenge --- Efficiency

Naïve Implementation: Exponential time (distribution assigns weights to infinitely many integer partitions)

Strong Evidence: Sampling from the exponential mechanism is computationally intractable in general (e.g., [U13]).

Good News

Theorem: There is an efficient algorithm A to sample from a distribution that is δ -close to the exponential mechanism ϵ over integer partitions. The algorithm uses time and space

$$O\left(\frac{N\sqrt{N} + N\ln\left(\frac{1}{\delta}\right)}{\varepsilon}\right)$$

Good News

Theorem: There is an efficient algorithm A to sample from a distribution that is δ -close to the exponential mechanism ϵ over integer partitions. The algorithm uses time and space

$$O\left(\frac{N\sqrt{N} + N\ln\left(\frac{1}{\delta}\right)}{\varepsilon}\right)$$

Key Idea 1: Novel dynamic programming algorithm to compute weights W_{i,k} such that

$$\mathbf{Pr}\left[\tilde{f}_{i} = k \middle| \tilde{f}_{i-1}\right] = \frac{\mathsf{W}_{i,k}}{\sum_{\mathsf{t}=0}^{\tilde{f}_{i-1}} \mathsf{W}_{i,\mathsf{t}}}$$

Good News

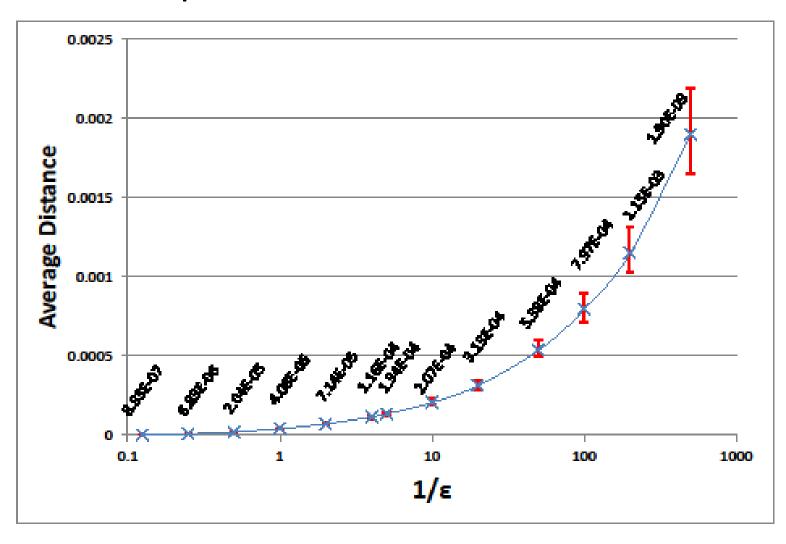
Theorem: There is an efficient algorithm A to sample from a distribution that is δ -close to the exponential mechanism $\mathcal E$ over integer partitions. The algorithm uses time and space

$$O\left(\frac{N\sqrt{N} + N\ln\left(\frac{1}{\delta}\right)}{\varepsilon}\right)$$

Key Idea 1: Novel dynamic programming algorithm to compute weights W_{i,t}

Key Idea 2: Allow A to ignore a partition \tilde{f} if $\|f - \tilde{f}\|_1$ very large.

RockYou Experiments



Yahoo! Results

	Original Data				Sanitized Data			
	N	$\log_2\left(\frac{N}{\lambda_1}\right)$	$\log_2\left(\frac{N}{\lambda_{100}}\right)$	$\log_2(G_{0.5})$	$\widetilde{\pmb{N}}$	$\log_2\left(\frac{\widetilde{N}}{\widetilde{\lambda}_1}\right)$	$\log_2\left(\frac{\widetilde{N}}{\widetilde{\lambda}_{100}}\right)$	$\log_2(G_{0.5})$
All	69,301,337	6.5	11.4	21.6	69,299,074	6.5	11.4	21.6
gender (self-reported)								
Female	30,545,765	6.9	11.5	21.1	30,545,765	6.9	11.5	21.1
Male	38,624,554	6.3	11.3	21.8	38,624,554	6.3	11.3	21.8
•••	•••		•••	•••		•••	•••	•••
language preference								
Chinese	1,564,364	6.5	11.1	22.0	1,571,348	6.5	11.1	21.8
•••	•••	•••	•••	•••	•••	•••	•••	•••

Yahoo! Results

	Original Data				Sanitized Data			
	N	$\log_2\left(\frac{N}{\lambda_1}\right)$	$\log_2\left(\frac{N}{\lambda_{100}}\right)$	$\log_2(G_{0.5})$	$\widetilde{\pmb{N}}$	$\log_2\left(\frac{\widetilde{N}}{\widetilde{\lambda}_1}\right)$	$\log_2\left(\frac{\widetilde{N}}{\widetilde{\lambda}_{100}}\right)$	$\log_2(G_{0.5})$
All	69,301,337	6.5	11.4	21.6	69,299,074	6.5	11.4	21.6
			gend	er (self-repor	ted)			
Female	30,545,765	6.9	11.5	21.1	30,545,765	6.9	11.5	21.1
Male	38,624,554	6.3	11.3	21.8	38,624,554	6.3	11.3	21.8
•••	•••	•••	•••	•••	•••	•••	•••	•••
language preference								
Chinese	1,564,364	6.5	11.1	22.0	1,571,348	6.5	11.1	21.8
•••	•••	•••	•••	•••	•••	•••	•••	

		Origir	nal Data		Sanitized Data				
	N	$\log_2\left(\frac{N}{-1}\right)$	$\log_2\left(\frac{N}{N}\right)$	log (C)	Ñ	$100 \left(\widetilde{N}\right)$	$\begin{pmatrix} \widetilde{N} \\ \end{pmatrix}$	$\log_2(G_{0.5})$	
All 🛑	60,301,337						11.4	21.6	
			Any indivi	dual par	ticipates i	n at mo	st 23		
Female	30,545,765		^{11.5} gro	ups (incl	uding All)		11.5	21.1	
Male	38,624,554	6.3	11.3				11.3	21.8	
•••		.						•••	
language preference									
Chinese	2,564,364	6.5	11.1	22.0	1,571,348	6.5	11.1	21.8	
		•••	•••	•••	•••	•••	•••	•••	

$$\varepsilon = \varepsilon_{all} + 22\varepsilon'$$

		Origin	al Data		Sanitized Data			
	N	$\log_2\left(\frac{N}{N}\right)$	$\log_2\left(\frac{N}{N}\right)$		Ñ	$I_{\alpha\alpha}$ \widetilde{N}	$\left(\widetilde{N}\right)$	$\log_2(G_{0.5})$
All 🖊	60,301,337			$\varepsilon_{all} =$	0.25		11.4	21.6
Female	30,545,765				E n 145 765		11 5	21.1
remaie			11.5		ε_{all} 5.765		11.5	21.1
Male	38,624,554	6.3		26 =				21.8
•••		J			22			•••
			lang	uage preferer	ice			
Chinese	1 ,564,364	6.5	11.1	22.0	1,571,348	6.5	11.1	21.8
		•••	•••	•••	•••	•••	•••	•••

$$\varepsilon = \varepsilon_{all} + 22\varepsilon'$$

	Original Data				Sanitized Data			
	N	$\log_2\left(\frac{N}{\lambda_1}\right)$	$\log_2\left(\frac{N}{\lambda_{100}}\right)$	$\log_2(G_{0.5})$	$\widetilde{\pmb{N}}$	$\log_2\left(\frac{\widetilde{N}}{\widetilde{\lambda}_1}\right)$	$\log_2\left(\frac{\widetilde{N}}{\widetilde{\lambda}_{100}}\right)$	$\log_2(G_{0.5})$
All	69,301,337	6.5	11.4	21.6	69,299,074	6.5	11.4	21.6
			gend	er (self-repor	ted)			
Female	30,545,765	6.9	11.5	21.1	30,545,765	6.9	11.5	21.1
Male	38,624,554	6.3	11.3	21.8	38,624,554	6.3	11.3	21.8
•••	•••	•••	•••	•••	•••	•••	•••	•••
language preference								
Chinese	1,564,364	6.5	11.1	22.0	1,571,348	6.5	11.1	21.8
•••	•••	•••				•••		

$$\varepsilon = 0.5$$

	Original Data				Sanitized Data			
	N	$\log_2\left(\frac{N}{\lambda_1}\right)$	$\log_2\left(\frac{N}{\lambda_{100}}\right)$	$\log_2(G_{0.5})$	$\widetilde{\pmb{N}}$	$\log_2\left(\frac{\widetilde{N}}{\widetilde{\lambda}_1}\right)$	$\log_2\left(\frac{\widetilde{N}}{\widetilde{\lambda}_{100}}\right)$	$\log_2(G_{0.5})$
All	69,301,337	6.5	11.4	21.6	69,299,074	6.5	11.4	21.6
			gend	er (self-repor	ted)			
Female	30,545,765	6.9	11.5	21.1	30,545,765	6.9	11.5	21.1
Male	38,624,554	6.3	11.3	21.8	38,624,554	6.3	11.3	21.8
•••	•••	•••	•••	•••	•••	•••	•••	•••
language preference								
Chinese	1,564,364	6.5	11.1	22.0	1,571,348	6.5	11.1	21.8
•••	•••	•••				•••		

$$\varepsilon = 0.5, \qquad \delta = 2^{-100}$$

Conclusions

- Novel differentially private algorithm for integer partitions
 - Password Frequency Lists
 - Degree Distribution in a Social Network?
 - Other applications?
- The Yahoo! Frequency data is now available
 - Search: "Yahoo! Password Frequency Corpus"
 - What exciting things can we do with it?
- Hope for other organizations to imitate Yahoo!