
Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Going Native: Using a Large-Scale Analysis
of Android Apps to Create a Practical

Native-Code Sandboxing Policy

Vitor Monte Afonso 1, Antonio Bianchi 2,
Yanick Fratantonio 2, Adam Doupé 3, Mario Polino 4,

Paulo Lı́cio de Geus 1, Christopher Kruegel 2,
and Giovanni Vigna 2

1 University of Campinas
2 UC Santa Barbara

3 Arizona State University
4 Politecnico di Milano

NDSS 2016

1/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction

2/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction

3/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction

4/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction

5/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction

6/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction

Most analysis tools miss these attacks

7/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction - Sandboxing

8/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction

Motivation
Lack of data regarding native code usage
No research on how to generate a general, practical and
useful policy to enforce

Large-scale analysis
How many apps actually use native code?
What is the behavior of native code?
What permissions do native code use?
How does native code interact with the app and the
framework?
Which shared libraries are used in native code?

9/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Introduction

Motivation
Lack of data regarding native code usage
No research on how to generate a general, practical and
useful policy to enforce

Large-scale analysis
How many apps actually use native code?
What is the behavior of native code?
What permissions do native code use?
How does native code interact with the app and the
framework?
Which shared libraries are used in native code?

9/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Background

Native code
Executable file

Exec methods (Runtime.exec or ProcessBuilder.start)
Shared library (.so)

Load methods (e.g., System.loadLibrary)
Native methods
Native activity

10/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Applications Used

Dataset
1,208,476 distinct free apps
Crawled from Google Play - May 2012 and August 2014

Static prefiltering
Filtered apps that have the potential to use native code

Native method: Java method with “native” modifier
Native activity: declared in manifest or class that extends
NativeActivity
Call to Exec or Load methods
ELF file inside APK

37.0% (446,562) have the potential to use native code

11/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Dynamic Analysis

Information to track
System calls of native code
Interactions of native code with other components

12/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Dynamic Analysis

Our system
App’s system calls traced with strace

Instrumented libraries
Flag third-party libraries (based on file path)
Record all transitions between Java and app’s native code

Post-processing - separate behavior of app’s native code

13/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Research Question

How many apps actually use
native code?

14/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Dynamic Analysis

33.6% (149,949) of dynamically analyzed apps executed
native code
12.4% of all apps in our dataset - other work identified
around 5%
It’s only a lower bound: it could be more

Apps Type
72,768 Native method
19,164 Native activity

132,843 Load library

27,701
Call executable file (27,599 standard,

148 custom and 46 both)
149,949 At least one of the above

15/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Native Code Not Reached

Small experiment
Manual analysis
20 random apps
Static analysis

40% (8) deadcode - native code unreachable from Java
code

Other apps were very complex
Dynamically analyzed those and interacted manually
Still did not reach native code

Why deadcode
Third-party libraries - include a lot of code but only part of it
is used

16/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Research Question

What is the behavior of native
code?

17/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Native Code Behavior - Overview

Common actions in shared libraries
94.2% (125,192) of apps that used custom shared libs only
performed subset of common actions
Such as memory management system calls, calling JNI
functions, writing log messages and creating directories

Other actions in shared libs and custom executable files
Most common are: ioctl calls, writing file in app’s
directory, operations on sockets

Standard executable files
Most common are: read system information, write file in
app’s dir or sdcard, read logcat

18/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Research Question

What permissions do native code
use?

19/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Top 5 Permissions Used in Native Code

Apps Permission Description

1,818 INTERNET Open network socket or call method
java.net.URL.openConnection

1,211 WRITE EXTERNAL STORAGE Write files to the sdcard
1,211 READ EXTERNAL STORAGE Read files from the sdcard

132 READ PHONE STATE

Call methods getSubscriberId,
getDeviceSoftwareVersion,

getSimSerialNumber or
getDeviceId from class

android.telephony.TelephonyManager
or Binder transaction to call

com.android.internal.telephony
.IPhoneSubInfo.getDeviceId

79 ACCESS NETWORK STATE Call method android.net.
ConnectivityManager.getNetworkInfo

20/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Research Question

How does native code interact
with the app and the framework?

21/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

JNI Calls

How native code interact with the app and the framework

Most common groups of JNI calls used

Apps Description
94,543 Get class or method identifier and class reference
71,470 Get or destroy JavaVM, and Get JNIEnv
53,219 Manipulation of String objects

... ...
35,231 Call Java method (in app or framework)

Most common groups of methods from the Android framework called

Apps Description

7,423 Get path to the Android
package associated with the context of the caller

6,896 Get class name
5,499 Manipulate data structures
4,082 Methods related to cryptography

22/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Research Question

Which shared libraries are used
in native code?

23/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Most Used Shared Libraries

Most used standard libraries

Apps Name Description
24,942 libjnigraphics.so Manipulate Java bitmap objects
2,646 libOpenSLES.so Audio input and output
2,645 libwilhelm.so Multimedia output and audio input
349 libpixelflinger.so Graphics rendering
347 libGLES android.so Graphics rendering

Most used custom libraries

Apps Name Description
19,158 libopenal.so Rendering audio
17,343 libCore.so Used by Adobe AIR
16,450 libmain.so Common name
13,556 libstlport shared.so C++ standard libraries

11,486 libcorona.so Part of the Corona SDK, a development
platform for mobile apps

24/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Sandboxing

Now we can create the rules

25/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Security Policy

Goal
Reduce attack surface available for native code
Generate security policy from data obtained

Trade-off
Why not allowing everything?
Overlap between benign and malicious behavior
Tunable threshold: we selected 99%

26/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Security Policy

Modes of operation
Reporting or enforcing
Not implemented

Process - system call policy
Normalize arguments of system calls (e.g., file paths are
replaced by “USER-PATH” or “SYS-PATH”)
Iterate over syscalls
Select the one used by most apps
Repeat until allow certain percentage of apps to run

27/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Root Exploits

Effects of policy with 99% threshold on root exploits

Name / CVE Description Blocked
Exploid

(CVE-2009-1185)
Needs a NETLINK socket with

NETLINK KOBJECT UEVENT protocol Yes

GingerBreak
(CVE-2011-1823)

Needs a NETLINK socket with
NETLINK KOBJECT UEVENT protocol Yes

CVE-2013-2094 Uses perf event open system call Yes
Vold/ASEC Creates symbolic link to a system directory Yes

CVE-2013-6124 Creates symbolic links to system files Yes
CVE-2011-1350 ioctl call used violates our rules Yes
CVE-2011-1352 ioctl call used violates our rules Yes
CVE-2012-4220 ioctl call used violates our rules Yes
CVE-2012-4221 ioctl call used violates our rules Yes
CVE-2012-4222 ioctl call used violates our rules Yes

RATC (CVE-2010-EASY) Relies on invoking many times
the fork syscall No

Zimperlinch Relies on invoking many times
the fork syscall No

CVE-2011-1149 It relies on the mprotect syscall No

Collateral damage: 1,483 apps would be blocked

28/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Root Exploits

Effects of policy with 99% threshold on root exploits

Name / CVE Description Blocked
Exploid

(CVE-2009-1185)
Needs a NETLINK socket with

NETLINK KOBJECT UEVENT protocol Yes

GingerBreak
(CVE-2011-1823)

Needs a NETLINK socket with
NETLINK KOBJECT UEVENT protocol Yes

CVE-2013-2094 Uses perf event open system call Yes
Vold/ASEC Creates symbolic link to a system directory Yes

CVE-2013-6124 Creates symbolic links to system files Yes
CVE-2011-1350 ioctl call used violates our rules Yes
CVE-2011-1352 ioctl call used violates our rules Yes
CVE-2012-4220 ioctl call used violates our rules Yes
CVE-2012-4221 ioctl call used violates our rules Yes
CVE-2012-4222 ioctl call used violates our rules Yes

RATC (CVE-2010-EASY) Relies on invoking many times
the fork syscall No

Zimperlinch Relies on invoking many times
the fork syscall No

CVE-2011-1149 It relies on the mprotect syscall No

Collateral damage: 1,483 apps would be blocked 28/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Java Method Security Policy

Java methods policy
Performed same process to generate policy
99% threshold: 1,414 apps would be blocked
Example of dangerous method that would be blocked if
called from native code:
android.telephony.SmsManager.sendTextMessage

29/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Limitations

Dynamic analysis limitations
Not all native code is executed
In the real world apps might execute more than we
observed in our experiments
If our policy is adopted, it might block more apps

Possible improvements
Use a more sophisticated tool to interact with the apps
Track behavior in real devices

30/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

Summary

Advantage of large-scale experiments
Since we analyzed a great amount of apps, we believe we
observed most relevant behaviors

Security policies
Based on behavior of many apps - first step to create
usable policies

31/32



Introduction Background Analysis infrastructure Evaluation Policy generation Limitations

End

Questions ?

Vitor Monte Afonso - vitor@lasca.ic.unicamp.br

32/32


	Introduction
	Background
	Analysis infrastructure
	Evaluation
	Policy generation
	Limitations

