

Low-Observable Physical Host Instrumentation
for Malware Analysis

Chad Spensky †, Hongyi Hu § and Kevin Leach ‡

cspensky@cs.ucsb.edu hongyihu@alum.mit.edu kjl2y@virginia.edu
lophi@mit.edu

The Network and Distributed System Security Symposium 2016

LO-PH

MIT Lincoln Laboratory †University of California, Santa Barbara §Dropbox ‡University of Virginia
This work was sponsored by the Assistance Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002. Opinions,

interpretations, conclusions and recommendations are those of the authors and are not necessarily endorsed by the United States Government.
 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited.

LO-PHI / NDSS- 2
CSS 02/24/16

LO-PHOutline

•! Overview of LO-PHI
•! Instrumentation
•! Semantic Gap Reconstruction

•! Automated Binary Analysis
•! Evaluation (Windows Malware)
•! Summary
•! Demo (Time Permitting)

LO-PHI / NDSS- 3
CSS 02/24/16

LO-PHThe Problem

•! Binary dynamic analysis is becoming increasingly difficult in
security-critical scenarios

–! Environment-aware malware can detect various artifacts exposed by
most existing dynamic analysis frameworks and leverage them to avoid
detection, or subvert the analysis all together

–! The observer effect, i.e. the effects of the measurement itself, can
interfere with the analysis, making the results untrustworthy
•! E.g., software-based instrumentation may result in a different memory layout

LO-PHI / NDSS- 4
CSS 02/24/16

LO-PHThe Problem

•! Introspection techniques offer solutions that have fewer artifacts,
but must also bridge the semantic gap
–! i.e., translate low-level data to semantically rich output for analysis

LO-PHI / NDSS- 5
CSS 02/24/16

LO-PHIntrospection Options

•! Software
–! Pros: cheap, easy to implement
–! Cons: OS dependent, can affect analysis, easily subverted

•! Virtual machines
–! Pros: development in software, scalable
–! Cons: easily detectable artifacts (E.g. Redpill)

•! Hardware
–! Pros: potentially very few artifacts, better ground truth
–! Cons: difficult to implement, expensive

• Software
– Pros: cheap, easy to implement
– Cons: OS dependent, can affect analysis, easily subverted

LO-PHI / NDSS- 6
CSS 02/24/16

LO-PHGoals

•! Primary goal
–! Low-Observable Physical Host Instrumentation (LO-PHI) aims to

obtain ground truth information about a system under test (SUT) while
introducing as few artifacts as possible

Data Collection Sensors

Data Processing

Semantic Output

System Under Test

LO-PHI

LO-PHI / NDSS- 7
CSS 02/24/16

LO-PHOverview

•! Zero software-based artifacts

•! Simple Python APIs to interact with a system under test
–! Same code for either physical or virtual machines

•! A suite of both sensors and actuators

•! A suite of semantic-gap reconstruction tools

•! Python-based framework for automated binary analysis
–! Analysis “scripts” can be submitted and executed on automatically

provisioned machines

LO-PHI / NDSS- 8
CSS 02/24/16

LO-PHVirtual Instrumentation

UNIX Socket

block.c

LO-PH

Semantic Analysis

UNIX Socket

Disk Introspection Server

LO-PH
Memory Introspection Server

cpu_physical_memory_map cpu_physical_memory_map

LO-PHI / NDSS- 9
CSS 02/24/16

LO-PHPhysical Instrumentation

Power, Keyboard, Mouse (USB/GPIO)

Memory Introspection (PCIe)

Network Tap (Ethernet)

Disk Introspection (SATA)

Semantic Analysis

LO-PHI / NDSS- 10
CSS 02/24/16

LO-PH

•! Fictional Hollywood example: The Matrix

Semantic Gap

1. Input Raw Data 2. Parse Data Structures 3. Extract Features

• Memory (Volatility)
–! Reader raw memory to extract attributes of the system

–! E.g., running processes, kernel modules, descriptor tables

• Hard Disk (Sleuthkit)
–! Translate low-level disk activity into file system activities

–! E.g., file creation, deletion, read, write

LO-PHI / NDSS- 11
CSS 02/24/16

LO-PHStream-based Disk Forensics
Bare Metal

•! Multiple layers of abstraction that we must bridge
–! Analog Signal ! Digital bits
–! Digital bits ! SATA Frames

–! SATA Frames ! Sector manipulation

–! Sector manipulation ! File System Manipulation

2. Semantic
Reconstruction 1. Data Collection 3. Analysis

SATA
Reconstruction

File System
Reconstruction

Sleuthkit (TSK)
analyzeMFT –

}
Multiple layers of abstraction that we must bridge
– Analog Signal Analog Signal
–

Analog Signal
Xilinx ML507 FPGA

– SATA Frames SATA Reconstruction

LO-PHI / NDSS- 12
CSS 02/24/16

LO-PHSATA Reconstruction
A Brief Primer on SATA

•! Serial ATA – bus interface that replaces older IDE/ATA
standards

•! SATA uses frames (FIS) to communicate between host and
device

FIS – Frame Information Structure

LO-PHI / NDSS- 13
CSS 02/24/16

LO-PHSATA Reconstruction
A Brief Primer on SATA

Data A

Data B

Example – DMA Write

Data C

HOST DEVICE

Contains logical
block address (LBA/
sector), number of
sectors, operation,

etc.

Register - Host to Device (HTD)

Direct Memory Access (DMA) -
Activate

Register – Device to Host (DtH)

LO-PHI / NDSS- 14
CSS 02/24/16

LO-PHSATA Reconstruction
Native Command Queuing

•! Native Command Queuing (NCQ) complicates reconstruction
•! NCQ allows for up to 32 separate, concurrent, asynchronous

disk transactions
–! Many SATA devices implement NCQ

•! NCQ identifies transactions by 5-bit TAG field (0-31)

LO-PHI / NDSS- 15
CSS 02/24/16

LO-PHSATA Reconstruction

•! Wrote a Python module to handle all of these transactions
–! Consumes raw SATA frames
–! Supports all of the existing SATA versions
–! Outputs stream of logical sector operations

•! Traditional SATA analyzers are expensive and don’t provide
analysis-friendly interfaces

LO-PHI / NDSS- 16
CSS 02/24/16

LO-PHFile System Reconstruction

•! Current Solution
–! Uses PyTSK to keep a unified codebase in Python
–! Naïve approach requires analyzing the entire image at every interval

•! Optimization: Uses AnalyzeMFT for NTFS optimization

0 t+1 t

Extract file system
state using TSK from

initial clean image

Check previous state

 if known sector: Update structures

 else: report as UNKNOWN

LO-PHI / NDSS- 17
CSS 02/24/16

LO-PH

Controller(s)

Controller(s)

Automated Binary Analysis

Master

FTP Server

Database

Scheduler

Controller(s)

Physical Machine Pool Virtual Machine Pool Virtual Machine Pool

FTP Server

Semantic Gap

Memory
(Volatility)

Disk
(Sleuthkit)

Network

File Corpus

Sensors &
Actuators

Sensors &
Actuators

Network Services

Submission Client

Scheduler

Analysis Script

Analysis

Filtering

Anomaly
Detection

Output

LO-PHI / NDSS- 18
CSS 02/24/16

LO-PHAutomated Binary Analysis
Physical Machines

•! Machine/hard disk reset

Controller System Under Test

1. Power down machine

2. Re-image disk with selected OS (CloneZilla)

DHCP/PXE

TFTP

DNS

LO-PHI Network Services

LO-PHI / NDSS- 19
CSS 02/24/16

LO-PHAutomated Binary Analysis
Physical Machines

•! Download binary onto SUT

Controller System Under Test

3. Wait for OS to appear on the network (ping)

4. Download binary from controller using ftp (key presses)

DHCP/PXE

FTP

LO-PHI Network Services

LO-PHI / NDSS- 20
CSS 02/24/16

LO-PHAutomated Binary Analysis
Physical Machines

•! Execute binary

Controller System Under Test

5. Dump clean state of memory
6. Start capturing network and disk activity

7. Run Binary (Start moving mouse)

8. Dump dirty state of memory

Memory Sensor

Disk Sensor

Actuator

8. Dump interim state of memory

7. Identify and click all buttons (Volatility)

Network Tap

LO-PHI / NDSS- 21
CSS 02/24/16

LO-PHEvaluation: Semantic Output
(on WinXPSP3)

•! Homemade Rootkit
–! Comparison: Anubis failed to execute the binary, and Cuckoo sandbox

failed to detect/execute our ftp server

•! Labeled Malware (213 well-labeled samples)
–! Blind analysis identified various behaviors, all of which were confirmed by

ground truth

•! Unlabeled Malware (1091 samples)

–! Similar findings

LO-PHI / NDSS- 22
CSS 02/24/16

LO-PHEvaluation: Evasive Malware
(on Windows 7)

•! Paranoid Fish (Evasive malware proof-of-concept)
–! Failed to detect LO-PHI
–! Comparison: Anubis and Cuckoo sandbox were both detected due to

virtualization artifacts

•! Labeled Malware (429 coarsely-labeled samples)
–! LO-PHI detected suspicious activity in almost every sample

•! Some appeared to be targeting a different OS version

LO-PHI / NDSS- 23
CSS 02/24/16

LO-PHSummary

•! Deployed and tested LO-PHI an extremely low-artifact, hardware
and VM-based, dynamic-analysis environment

•! Developed hardware, and supporting tools, for stream-based
disk forensics on SATA-based physical machines1

•! Constructed a framework, and accompanying infrastructure, for
automating analysis of binaries on both physical and virtual
machines
–! Open Source (BSD License): http://github.com/mit-ll/LO-PHI

•! Demonstrated the scalability and fidelity of LO-PHI by analyzing
thousands of labeled and unlabeled malware samples

1http://www.osdfcon.org/presentations/2014/Hu-Spensky-OSDFCon2014.pdf

LO-PHI / NDSS- 24
CSS 02/24/16

LO-PHDemo

Demonstration of VM-based binary analysis.

