
Execute This!
A n a l y z i n g u n s a f e a n d

m a l i c i o u s d y n a m i c c o d e l o a d i n g
i n A n d r o i d a p p l i c a t i o n s

S e b a s t i a n P o e p l a u ,
Y a n i c k F r a t a n t o n i o , A n t o n i o B i a n c h i ,
C h r i s t o p h e r K r u e g e l , G i o v a n n i V i g n a

Code loading in
Android

Apps can load code
dynamically at runtime

E.g., download code from
the Internet

Various ways
(DexClassLoader,
CreatePackageContext,
etc.)

Good news: Permissions
enforced on external code

Bad news: No additional
checks

2

Implications
1. Malicious apps

Download arbitrary additional code to circumvent offline
analysis

Reminder: Checks run at the store

Conceptual flaw in the stores‘ vetting process

2. Benign apps

...use code-loading techniques as well (details later)

Must implement custom security mechanisms

Dangerous vulnerabilities

3

Proof-of-concept
exploits

Bypassing Google
Bouncer

Simple downloader app

Connects to our server

Downloads a payload

Executes the payload

Submitted to Google Play in April 2013, accepted
within 90 minutes

Allows to run arbitrary code on users‘ devices

Even targeted payloads possible

Remark: we refrained from using it on other
people‘s devices...

5

Gunzombie exploit
Benign app, among top 50 in November 2012, millions of users

Includes advertisement framework AppLovin

Framework tries to download updates...

...on every app launch...

...via HTTP!

No real integrity/authenticity checks

App is vulnerable to code injection (by hijacking the HTTP connection)

6

Attacking a shared
framework

Popular framework for app development (not named here)

Installed as a stand-alone app

Loaded via app identifier

App identifiers are not globally unique!

We inject code by installing an app with the same identifier
first

7

Large-scale
study

How prevalent is the
problem?

Goal: assess percentage of apps vulnerable to
code injection due to dynamic loading

Test set: 1,632 apps from Google Play, each
with 1,000,000+ installations

Secondary test sets: top 50 free apps as of
November 2012 and August 2013, respectively

Technique: static analysis, heuristics to detect
code-loading techniques (more later)

9

Loading techniques
Various ways to load external code

Load JARs, APKs, DEX files (compiled Java code)

Linux shared objects (native code)

Load code from other apps

Install APKs (requires user approval)

Various pitfalls...

Insecure downloads using HTTP

Download to world-writable storage locations

Assumption of package name uniqueness

Detection approach
Goal: find code loading and detect vulnerable implementations

Construct CFG with the help of Androguard

Transformation into SSA

Context-insensitive call graph construction based on class hierarchy
analysis

Heuristics based on backward slicing

Determine value of sensitive API parameters

Example createPackageContext(name, flags): check that flags cause
runtime environment to load code

Classification step based on heuristics

Heuristics for all previously mentioned loading techniques

11

Analysis results
9.25% out of 1,632 apps vulnerable

Similar situation among top apps

Alarming tendency: more vulnerable apps in top 50 in August
2013 than November 2012

Different motivations for use of code loading

Updates (e.g., AppLovin)

Shared components

A/B and beta testing

Loading add-ons

12

Our Protection
Mechanism

Whitelisting scheme

Trusted entities (e.g. app stores) publish whitelists

Comparable to code signatures

Users can choose from different whitelist providers

Code is checked against whitelist before execution

Prevents all exploits mentioned before

14

Implementation

Based on standard Android 4.3

Modification of DVM

Reminder: DVM executes Java code for apps

Apps have to ask DVM to load external code

DVM processes keep shared whitelist in memory

Negligible performance penalty

Problem: native code (more later)

15

Limitations and
Future Work

Native code
Cannot control loading in native code

Prohibiting native code entirely is not an option

Idea: adapt Google Native Client

Sandbox for running native code in browsers

Available for ARM architecture

Restrict native code, so that malicious external
native code is not a problem

Subject to ongoing research...

17

Practicality

Modification of the Android system

Requires update or reinstallation

Realistically only deployable to new devices

For ideal distribution Google has to approve

Verification providers

Stores already check every single app

Adding checks of external code is feasible

18

Conclusion

Conclusion

Large-scale study on external code-loading
in benign and malicious Android apps

9.25% of popular benign apps are
vulnerable, millions of users at risk

Malicious apps can evade detection

Proposed a flexible protection scheme

20

Thank You!
Questions?

