

Measuring and Mitigating AS-level Adversaries Against Tor

Oleksii Starov

Adva Zair

Phillipa Gill

Michael Schapira

Rishab Nithyanand

Network-level Traffic Correlation Attacks

Internet routing is asymmetric. Source -> Entry != Entry -> Source

RAPTOR (USENIX Security 2015): Any AS on (Source \rightarrow Entry OR Entry \rightarrow Source) AND (Exit \rightarrow Dest OR Dest \rightarrow Exit) is in a position to launch a traffic correlation attack

Goal: Quantify the threat from network-level adversaries

Approach: Identify ASes on A, B, C, and D

• ADV = $\{(A \cup B) \cap (C \cup D)\}$

Challenge: Traceroutes only let us obtain A

bastard theoretical physicists How do you sleep at night?

Our Approach: Spherical cows!

- Make assumptions about Internet routing.
- Obtain approximate AS-level paths.

Approximating ASes on a path (offline):

- AS Topology: **36K** ASes + **126K** relationships
- Use inter-AS relationships (customer, peer, provider) to decide whether an AS will route via another
 - Routing through customers > peers > providers, then prefer shortest paths
 - If there are multiple options, we consider all of them
- (see paper for validation)

10 Countries: BR, CN, DE, ES, FR, GB, IR, IT, RU, US **200 websites/country:** Local Alexa T-100 + 100 Citizen Lab sensitive pages

Adversaries: Network-level, colluding network-level (see paper), and state-level

How vulnerable is vanilla Tor?

Main Circuit: Circuit carrying first "GET" request is vulnerable Any Circuit: Circuit carrying any request is vulnerable

Can AS-aware relay selection help?

YES!

- > 20000 (source, destination) AS pairs in each country
- Consider 1000 * 1000 available (entry, exit) pairs
- What fraction of the 20000 (source, destination) pairs have at most x% of their 1 million (entry, exit) pairs safe from network-level threats?

Astoria: This AS-aware Tor client is alright

What if there are no safe options?

Astoria uses an LP to minimize number of circuits that are vulnerable to any single adversary. (see paper)

Astoria: Security Evaluation

Astoria: Performance Evaluation

Conclusions

- Offline path-prediction toolkit to measure Tor vulnerability
- Significantly better security against network-level adversaries
 - Cuts number of vulnerable websites to less than 1/4th
 - Effectively deals with worst-case situations
- Load balancing: Similar to Tor
- Page-load times: Better than uniform, worse than Tor
 - Main problem: Cannot pre-build circuits like Tor
- Arguably weaker against relay-level adversaries (see paper)