
Privacy-Preserving Shortest 
Path Computa6on

David	J.	Wu,	Joe	Zimmerman,	Jérémy	Planul,	and	
John	C.	Mitchell	

	
Stanford	University	



Naviga6on

current	
posi@on	

desired	
des@na@on	



Naviga6on: A Solved Problem?

direc@ons	to	the	
Catamaran	Resort	

Issue:	cloud	learns	where	you	are	
and	where	you	are	going!	



“Trivial” Solu6on

Give	me	the	en@re	
map!	



“Trivial” Solu6on

Give	me	the	en@re	map!	

Pros:	lots	of	privacy	(for	the	client)	

Cons:	
•  rou@ng	informa@on	

constantly	changing	
•  map	provider	doesn’t	

want	to	give	away	map	
for	“free”	



Private Shortest Paths

San	Diego	Airport	
to	Catamaran	

Resort	

protocol	

Client	Privacy:	server	does	not	
learn	source	or	des@na@on		

Server	Privacy:	client	only	learns	
route	from	source	to	des@na@on	



Private Shortest Paths

Model:	assume	client	knows	topology	of	the	network	(e.g.,	road	
network	from	OpenStreetMap)	
	
Weights	on	edges	(e.g.,	travel	@mes)	are	hidden	
	
Client	Privacy:	Server	does	not	learn	client’s	source	𝑠	or	
des@na@on	𝑡	
	
Server	Privacy:	Client	only	learns	𝑠→𝑡	shortest	path	and	nothing	
about	weights	of	other	edges	not	in	shortest	path	



Straw Man Solu6on

Suppose	road	network	has	𝑛	nodes	
	
Construct	𝑛×𝑛	database:	
	
[█𝑟↓11 &𝑟↓12 &⋯&𝑟↓1𝑛 @𝑟↓21 &𝑟↓22 &⋯&𝑟↓2𝑛 @⋮&⋮&⋱&⋮@𝑟↓𝑛1 &𝑟↓𝑛2 &⋯&𝑟↓𝑛𝑛  ]	

record	𝑟↓𝑠𝑡 :	shortest	path	
from	node	𝑠	to	node	𝑡	
(e.g.,	𝑠→𝑣↓1 →𝑣↓2 →𝑡)	

Shortest	Path	Protocol:	
privately	retrieve	record	

𝑟↓𝑠𝑡 	from	database	



Symmetric Private Informa6on Retrieval (SPIR)

cloud	database	

record	𝑖	

SPIR	
protocol	

???	

Client	Privacy:	server	does	
not	learn	𝑖	

Server	Privacy:	client	only	
learns	record	𝑖	



Finding Structure

Straw	man	solu@on	requires	SPIR	on	databases	with	𝒏↑𝟐 	records	–	
quadra@c	in	number	of	nodes	in	the	graph	–	rather	imprac@cal!	

Observa8on	1:	Nodes	in	road	
networks	tend	to	have	low	

(constant)	degree	



Finding Structure

Typically,	an	intersec@on	has	up	to	four	neighbors	(for	the	four	
cardinal	direc@ons)	

For	each	node	in	the	
network,	associate	each	
neighbor	with	a	direc@on	

(unique	index)	



Finding Structure

Next-hop	rou@ng	matrix	for	graph	with	𝑛	nodes:	
	
[█𝑟↓11 &𝑟↓12 &⋯&𝑟↓1𝑛 @𝑟↓21 &𝑟↓22 &⋯&𝑟↓2𝑛 @⋮&⋮&⋱&⋮@𝑟↓𝑛1 &𝑟↓𝑛2 &⋯&𝑟↓𝑛𝑛  ]	

𝑟↓𝑠𝑡 :	index	of	neighbor	to	take	
on	first	hop	on	shortest	path	

from	node	𝑠	to	node	𝑡	

shortest	path	protocol:	
itera@vely	retrieve	the	next	hop	

in	shortest	path	



Finding Structure

0

4

1

2 3

Rou@ng	from	0	to	4:	
1.  Query	𝑟↓04 :	North	
2.  Query	𝑟↓14 :	North	
3.  Query	𝑟↓24 :	East	
4.  Query	𝑟↓34 :	East	

But	same	problem	as	
before:	SPIR	on	database	

with	 𝑛↑2 	elements	



Finding Structure

Observa8on	2:	Road	
networks	have	geometric	

structure	

Nodes	above	hyperplane:	
first	hop	is	north	or	east	

	
Nodes	below	hyperplane:	
first	hop	is	south	or	west	



Finding Structure

If	each	node	has	four	neighbors,	
can	specify	neighbors	with	two	
bits:	
•  1st	bit:	encode	direc@on	

along	NW/SE	axis	
•  2nd	bit:	encode	direc@on	

along	NE/SW	axis	



A Compressible Structure

Let	 𝑀↑(NE) 	and	 𝑀↑(NW) 	be	next-hop	matrices	along	NE	and	NW	axis	
(entries	in	𝑀↑(NE) 	and	 𝑀↑(NW) 	are	bits)	
	
Objec8ve:	for	𝑖∈{NE,NW},	find	matrices	𝐴↑(𝑖) , 𝐵↑(𝑖) 	such	that	
𝑀↑(𝑖) =sign(𝐴↑(𝑖) ⋅ (𝐵↑(𝑖) )↑𝑇 )	



A Compressible Structure

Objec8ve:	for	𝑖∈{NE,NW},	find	matrices	𝐴↑(𝑖) , 𝐵↑(𝑖) 	such	that	
𝑀↑(𝑖) =sign(𝐴↑(𝑖) ⋅ (𝐵↑(𝑖) )↑𝑇 )	

𝐴	

𝐵↑𝑇 	

𝑀	

𝑀↓𝑠𝑡 :	direc@on	
from	𝑠	on	𝑠→𝑡	
shortest	path		

𝐴↓𝑠 :	 𝑠↑th 	row	of	
“source	matrix”	

𝐵↓𝑡 :	 𝑡↑th 	row	of	
“des@na@on	matrix”	 Compu@ng	next-hop	

reduces	to	compu@ng	inner	
products	

Index	of	row	in	𝐴	only	
depend	on	source,	index	of	
row	in	𝐵	only	depend	on	

des(na(on	



A Compressible Structure

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

0	 1000	 2000	 3000	 4000	 5000	 6000	 7000	 8000	

Si
ze
	o
f	R

ep
re
se
nt
a@

on
	(K

B)
	

Nodes	in	Graph	

Original	Representa@on	 Compressed	Representa@on	

Over	10x	
compression!	



An Itera6ve Shortest-Path Protocol

SPIR	queries	on	databases	
with	𝒏	records	

Problem:	rows	and	columns	
of	𝐴,𝐵	reveal	more	informa@on	

than	desired	

To	learn	next-hop	on	𝑠→𝑡	shortest	path:	
1.  Use	SPIR	to	obtain	𝑠↑th 	row	of	 𝐴↑(NE) 	and	 𝐴↑(NW) 	
2.  Use	SPIR	to	obtain	𝑡↑th 	row	of	 𝐵↑(NE) 	and	 𝐵↑(NW) 	
3.  Compute	

𝑀↓𝑠𝑡↑(NE) =sign⟨𝐴↓𝑠↑(NE) , 𝐵↓𝑡↑(NE) ⟩	and	 𝑀↓𝑠𝑡↑(NW) =sign⟨𝐴↓𝑠↑(NW) , 𝐵↓𝑡↑(NW) ⟩	



Affine Encodings and Arithme6c Circuits

Goal:	Reveal	inner	product	without	revealing	vectors	
	
Idea:	Use	a	“garbled”	arithme@c	circuit	(affine	encodings)	[AIK14]	
•  Encodings	reveal	output	of	computa@on	(inner	product)	and	

nothing	more	
	
Solu8on:	SPIR	on	arithme@c	circuit	encodings	



An Itera6ve Shortest-Path Protocol
To	learn	next-hop	on	𝑠→𝑡	shortest	path:	

1.  Use	SPIR	to	obtain	encodings	of	 𝑠↑th 	row	of	 𝐴↑(NE) 	and	 𝐴↑(NW) 	
2.  Use	SPIR	to	obtain	encodings	of	 𝑡↑th 	row	of	 𝐵↑(NE) 	and	 𝐵↑(NW) 	
3.  Evaluate	inner	products	⟨𝐴↓𝑠↑(NE) , 𝐵↓𝑡↑(NE) ⟩	and	⟨𝐴↓𝑠↑(NW) , 𝐵↓𝑡↑(NW) ⟩		
4.  Compute	 𝑀↓𝑠𝑡↑(NE) 	and	 𝑀↓𝑠𝑡↑(NW) 	(signs	of	inner	products)	

Affine	encodings	hide	source	and	
des@na@on	matrices,	but	inner	

products	reveal	too	much	informa@on	



Thresholding via Garbled Circuits

Goal:	Reveal	only	the	sign	of	the	inner	product	
	
Solu8on:	Blind	inner	product	and	evaluate	the	sign	func@on	using	
a	garbled	circuit	[Yao86,	BHR12]	
•  Instead	of	⟨𝑥,𝑦⟩,	compute	𝛼⟨𝑥,𝑦⟩+𝛽	for	random	𝛼,𝛽∈ 𝔽↓𝑝 	
•  Use	garbled	circuit	to	unblind	and	compu@ng	the	sign	



An Itera6ve Shortest-Path Protocol

To	learn	next-hop	on	𝑠→𝑡	shortest	path:	
1.  Use	SPIR	to	obtain	encodings	of	 𝑠↑th 	row	of	 𝐴↑(NE) 	and	 𝐴↑(NW) 	
2.  Use	SPIR	to	obtain	encodings	of	 𝑡↑th 	row	of	 𝐵↑(NE) 	and	 𝐵↑(NW) 	
3.  Evaluate	to	obtain	blinded	inner	products	𝑧↑(NE) and	 𝑧↑(NW) 	
4.  Use	garbled	circuit	to	compute	𝑀↓𝑠𝑡↑(NE) 	and	 𝑀↓𝑠𝑡↑(NW) 	

Semi-honest	secure!	 See	paper	for	protec@on	
against	malicious	par@es	



Benchmarks

Preprocessed	city	maps	from	OpenStreetMap	



Online Benchmarks

City	 Number	of	
Nodes	 Time	per	Round	(s)	 Bandwidth	(KB)	

San	Francisco	 1830	 1.44±0.16	 88.24	
Washington	D.C.	 2490	 1.64±0.13	 90.00	

Dallas	 4993	 2.91±0.19	 95.02	
Los	Angeles	 7010	 4.75±0.22	 100.54	

Timing	and	bandwidth	for	each	round	of	the	online	
protocol	(with	protec@on	against	malicious	clients)	



End-to-End Benchmarks

City	 Number	of	
Rounds	

Total	
Online	Time	

(s)	

Online	
Bandwidth	

(MB)	
San	Francisco	 97	 140.39	 8.38	
Washington	

D.C.	 120	 197.48	 10.57	

Dallas	 126	 371.44	 11.72	
Los	Angeles	 165	 784.34	 16.23	

End-to-end	performance	of	private	shortest	paths	protocol	(aper	padding	
number	of	rounds	to	maximum	length	of	shortest	path	for	each	network)	



Conclusions
Problem:	privacy-preserving	naviga@on	
	
Rou@ng	informa@on	for	road	networks	are	compressible!	
•  Op@miza@on-based	compression	technique	achieves	over	10x	

compression	of	next-hop	matrices	

Compressed	rou@ng	matrix	lends	itself	to	itera@ve	shortest-path	protocol	
•  Compu@ng	the	shortest	path	reduces	to	compu@ng	sign	of	inner	

product	
•  Leverage	combina@on	of	arithme@c	circuits	+	Boolean	circuits	



Ques6ons?


