PlaceAvoider Steering First-Person Cameras away from Sensitive Spaces

Robert Templeman, Mohammed Korayem, David Crandall, Apu Kapadia Indiana University Bloomington

Center for Security Informatics Bloomington

Cameras are commonplace in our computing landscape

http://www.steves-digicams.com/New-pope.jpg

Mobile cameras are not limited to smartphones

http://www.getnarrative.com

http://www.google.com/glass

http://www.vuzix.com

http://www.autographer.com

http://bits.blogs.nytimes.com/2014/02/23/ samsung-introduces-two-new-smart-watches/

Wearable cameras have many interesting uses

http://blog.autographer.com/2013/05/the-future-oflifelogging-interview-with-gordon-bell/ Gordon Bell logging his life since 2001

 $oldsymbol{\Psi}$ indiana university

Wearable cameras have many interesting uses

http://www.nydailynews.com
Saving precious moments

http://www.digitalavmagazine.com

Assisting with surgery

http://blog.autographer.com/2013/05/the-future-oflifelogging-interview-with-gordon-bell/ Gordon Bell

logging his life since 2001

http://www.siliconbeat.com

http://blog.memoto.com

Therapeutic use **U** INDIANA UNIVERSITY

What about privacy?

On These Premises

http://www.bangkokpost.com

What about the device owner's privacy?

What about the device owner's privacy?

Controlling the collection of images CRePE - Conti et al.

Controlling access to images after collection DARKLY - Jana et al.

What makes images sensitive?

We seek to control images based on scene location

Share

Don't Share

student lounge

conference room

Don't Share

bathroom

Existing localization has too much error

GPS accuracy ~ 5m Network-based accuracy > 30m

Camera location may significantly differ from image scene location

PlaceAvoider concept

PlaceAvoider concept

PlaceAvoider concept

PlaceAvoider within the OS

PlaceAvoider in the cloud

lifelogging appliance

PlaceAvoider in the cloud

PlaceAvoider classifier

Two types of image features

Local image features describe a sub-region of a spatial image

- key point detector SIFT

Global image features describe an entire image

- sparse SIFT
- dense grid SIFT
- grid HOG

http://www.vlfeat.org/overview/sift.html

http://www.vlfeat.org/overview/sift.htm

bathroom

lab

bathroom

lab

SIFT feature detector identifies interesting features

bathroom

lab

similar features across spaces offer no discriminative value

bathroom

lab

represent scenes via discriminating features

Color histograms

Original image

Red, green, and blue color channels

original image

original image

partitioned in 8x8 windows

original image

partitioned in 8x8 windows

compute distribution of edge orientations in each window

histogram over edge orientation patterns

Bathroom:	0.931	0.023	0.002	0.007	0.009	0.018	0.016	0.073
Bedroom:	0.006	0.734	0.461	0.120	0.082	0.002	0.885	0.018
Garage:	0.006	0.192	0.117	0.744	0.746	0.168	0.059	0.003
Living:	0.014	0.020	0.420	0.127	0.162	0.811	0.023	0.005
Office:	0.042	0.031	0.001	0.001	0.001	0.001	0.018	0.901

Bathroom:	0.931	0.023	0.002	0.007	0.009	0.018	0.016	0.073
Bedroom:	0.006	0.734	0.461	0.120	0.082	0.002	0.885	0.018
Garage:	0.006	0.192	0.117	0.744	0.746	0.168	0.059	0.003
Living:	0.014	0.020	0.420	0.127	0.162	0.811	0.023	0.005
Office:	0.042	0.031	0.001	0.001	0.001	0.001	0.018	0.901

Bathroom:	0.931	0.023	0.002	0.007	0.009	0.018	0.016	0.073
Bedroom:	0.006	0.734	0.461	0.120	0.082	0.002	0.885	0.018
Garage:	0.006	0.192	0.117	0.744	0.746	0.168	0.059	0.003
Living:	0.014	0.020	0.420	0.127	0.162	0.811	0.023	0.005
Office:	0.042	0.031	0.001	0.001	0.001	0.001	0.018	0.901

Bathroom [.]	0.931	0 023	0 002	0.007	0 009	0.018	0.016	0.073
Bedroom:	0.006	0.734	0.461	0.120	0.082	0.002	0.885	0.018
Garage:	0.006	0.192	0.117	0.744	0.746	0.168	0.059	0.003
Living:	0.014	0.020	0.420	0.127	0.162	0.811	0.023	0.005
Office:	0.042	0.031	0.001	0.001	0.001	0.001	0.018	0.901
	\checkmark	*	*	*	*		*	- ~
Probabilities	s after app	plying HMM	1:					
Bathroom:	0.896	0.436	0.060	0.015	0.010	0.006	0.002	0.000
Bedroom:	0.010	0.052	0.026	0.004	0.002	0.002	0.002	0.000
Garage:	0.009	0.045	0.024	0.004	0.002	0.002	0.006	0.001
Living:	0.079	0.441	0.881	0.968	0.975	0.873	0.125	0.005
Office:	0.006	0.027	0.009	0.009	0.012	0.116	0.865	0.994

Bathroom:	0.931	0.023	0.002	0.007	0.009	0.018	0.016	0.073
Bedroom:	0.006	0.734	0.461	0.120	0.082	0.002	0.885	0.018
Garage:	0.006	0.192	0.117	0.744	0.746	0.168	0.059	0.003
Living:	0.014	0.020	0.420	0.127	0.162	0.811	0.023	0.005
Office:	0.042	0.031	0.001	0.001	0.001	0.001	0.018	0.901
	\checkmark		*			~		\sim
Probabilities	s after ap	plying HMM	l:					
Bathroom:	0.896	0.436	0.060	0.015	0.010	0.006	0.002	0.000
Bedroom:	0.010	0.052	0.026	0.004	0.002	0.002	0.002	0.000
Garage:	0.009	0.045	0.024	0.004	0.002	0.002	0.006	0.001
Living:	0.079	0.441	0.881	0.968	0.975	0.873	0.125	0.005
Office:	0.006	0.027	0.009	0.009	0.012	0.116	0.865	0.994
	\checkmark	- -						

Evaluation

We evaluated PlaceAvoider in 5 settings

2 office buildings and 3 homes (authors')5 rooms evaluated at each location

Enrollment imagesets

deliberately captured not structured (cover a space) average of 70 images per space

Test imagesets opportunistically captured, ~3s frequency temporally ordered (stream) 323 to 629 images per location

Local features perform better at classifying single images

Dataset	Baseline	Local features	Global features
House 1	29.8%	52.9%	48.3%
House 2	31.0%	41.8%	49.1%
House 3	20.9%	81.5%	80.0%
Workplace 1	32.1%	75.9%	74.6%
Workplace 2	28.9%	71.6%	69.4%
Average	28.5%	64.7%	64.3%

Joint classifier with HMM provides much higher accuracy

Dataset	Baseline	Local features + HMM	Global features + HMM	Local+global features + HMM	
House 1	29.8%	89.2%	64.0%	89.2%	
House 2	31.0%	55.0%	56.4%	74.6%	
House 3	20.9%	97.4%	86.9%	98.7%	
Workplace 1	32.1%	75.5%	89.2%	87.7%	
Workplace 2	28.9%	92.3%	81.2%	98.7%	
Average	28.5%	81.9%	74.8%	89.8%	

PlaceAvoider is robust in the presence of scene occlusion

PlaceAvoider is robust in the presence of scene occlusion

apply 30% mask to a randomfraction of images in the workplace 2 stream

% of occluded images in stream	Local classifier accuracy	Global classifier accuracy	HMM accuracy
0	71.6%	69.4%	100%
100	68.0%	69.8%	100%

Running time for prototype system

Feature extraction and classification: 18.421 seconds.

Classifier framework: R SIFT feature extraction: Lowe's binary Classifier components: C++, Python, R

Hardware: 2.6 GHz Xeon workstation (one thread)

Running time for prototype system

INDIANA UNIVER

Discussion

System improvements more usable enrollment topological mapping

Other sensitive content types policies that control imaging of sensitive objects

Protecting the privacy of bystanders making *others* enforce *your* policies

In conclusion...

Modern camera devices make it too easy to collect and share images

PlaceAvoider explores imposing boundaries on where cameras can be used

Much work remains to be done to explore other attempts to classify sensitive images

INDIANA UNIVERSITY

SCHOOL OF INFORMATICS AND COMPUTING

Center for Security Informatics Bloomington

Questions?

Mohammed Korayem

David Crandall

Apu Kapadia

This material is based upon work supported by the National Science Foundation (NSF) under grants CNS-1016603, CNS-1252697, and IIS-1253549. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Center for Security Informatics Bloomington