Hardening Persona: Improving Federated Login on the Web

Michael Dietz and Dan S. Wallach

Existing federated login protocols

- SAML
- OpenID
- Persona (Browserld)
- OAuth
- OAuth2 / OpenIdConnect
- Kerberos

Relying Party

Two areas for attack

- MITM the connection between user and RP
 - -Replay identity assertions
- · Steal relying party cookie after login

Identity assertion theft

Identity assertion theft

Identity assertion theft

Two areas for attack

- MITM the connection between user and RP
 - -Replay identity assertions
- · Steal relying party cookie after login

RP cookie theft

RP cookie theft

RP cookie theft

Extensions to Persona

Design Goals

 Strengthen identity assertions against MITM theft

 Allow relying parties to establish a key for communication with the user

Relying Party

Relying Party

Relying Party

Persona-OBC-Central

- Uses the Persona underpinnings, works more like OAuth2
 - IDP sees RP's public key
 - Can track user logins to RPs
 - Simple to implement

Goal

• Goal: Convince IDP that browser controls two OBCs used on two different domains

• Goal: Convince IDP that browser controls two OBCs used on two different domains

 Creates cross certification between two origin bound certificate keys

• Goal: Convince IDP that browser controls two OBCs used on two different domains

- Creates cross certification between two origin bound certificate keys
- API exposed as browser extension

• Goal: Convince IDP that browser controls two OBCs used on two different domains

- Creates cross certification between two origin bound certificate keys
- API exposed as browser extension
 - Similar to postMessage() call

- Assumptions
 - -IDP received cross cert on TLS channel associated with K_A
 - -IDP knows K_A is a key Alice's browser controls
Post Key API

- Assumptions
 - -IDP received cross cert on TLS channel associated with K_A
 - -IDP knows K_A is a key Alice's browser controls

$[K_{A}, A.com]_{KB}, [K_{B}, B.com]_{KA}$

Post Key API

- Assumptions
 - -IDP received cross cert on TLS channel associated with K_A
 - -IDP knows K_A is a key Alice's browser controls

Alice's browser says $K_{\mbox{\scriptsize B}}$

 $[K_A, A.com]_{KB}, [K_B, B.com]_{KA}$

Post Key API

- Assumptions
 - -IDP received cross cert on TLS channel associated with K_A
 - -IDP knows K_A is a key Alice's browser controls

Goal

Persona-OBC-Local: Preserve Persona semantics

Persona Specifics

- IDP cannot track where the user logs in
- Uses public key crypto (in the browser)
 - -IDP signs short lived browser key
 - -Browser creates identity assertion with browser key
 - -RP can verify assertions without an online IDP

Persona-OBC-Local

- IDP signs browser controlled key K_B and user identity with its well known key K_I
- \cdot Browser creates identity assertions on the fly by signing new TLS-OBC key for RP with K_B

1. Browser sends cross certification and channel bound cookie to IDP

1. Browser sends cross certification and channel bound cookie to IDP

2. IDP creates identity certificate

3. IDP sends identity certificate to browser for storage

3. IDP sends identity certificate to browser for storage

4. User wants to log into RP, Browser creates identity assertion

4. User wants to log into RP, Browser creates identity assertion

5. RP mints (channel-bound) cookie for user

5. RP mints (channel-bound) cookie for user

Attacker between browser and IDP

Attacker between browser and IDP

Attacker between browser and RP

Attacker between browser and RP

- Attacker between browser and RP
- Attacker impersonates browser

- Attacker between browser and RP
- Attacker impersonates browser

- Attacker between browser and RP
- Attacker impersonates browser

Protocol implementation

- Proof of concept IDP and RP implementations for Persona-OBC-Local
- Both written in Python
 - -Use Nexus Authorization Logic proof checker to verify assertions
- BAN logic formalization of both protocols
 - Local and Central variants

Conclusion

- Two persona extensions
 - Better MITM protection for identity assertions
 - Leverage channel between IDP and user to create channel between user and RP
 - RP uses a different key than IDP to communicate with the user (for privacy)
Questions? mdietz@gmail.com