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Abstract—Federated login protocols for the Web are intended
to increase user security by reducing the proliferation of pass-
words that users are expected to remember and use on a day to
day basis, however these protocols are vulnerable to recent attacks
against TLS that allow attackers to extract session cookies and
other such authentication tokens from within TLS sessions. A
recent technique, TLS-OBC (origin bound certificates), allows
these tokens to be hardened against extraction. This paper
describes the design and engineering of OBC-based extensions to
federated login protocols. We present two OBC-based variants
on the popular Persona federated login protocol, formalizing
them with BAN logic and using the automated proof checker
from the related Nexus Authentication Logic. We also present a
proof of concept implementation, exploring the necessary browser
extensions and server support.

I. Introduction

The humble username and password remain the most
common mechanism for users to login to a website. While
their ease of use and implementation have kept them as the
de facto web login standard for years, there are a number of
serious problems with them that have lead to weaknesses in
the security ecosystem as a whole.

First, users reuse passwords—an inevitable consequence
of the requirement to memorize credentials across multiple
sites [24], [14]. Consequently, one compromised password
allows for a broader impact [49], [17]. Likewise, users are
still vulnerable to phishing [2], [15] attacks where an impostor
website or email entices them into giving up their credentials.
Finally, attackers that can compromise a root certificate au-
thority can inject themselves as a man-in-the-middle (MITM)
in a TLS connection to observe sensitive user credentials [28],
[43]. Such attacks lead to account compromises, with all the
attendant costs.

Federated login systems like SAML [30], OpenID [44],
OpenID Connect [47], and Persona [39], were meant to solve
these password management problems. Users log in once to an
identity provider (IDP) and thereafter see nothing other than
okay/cancel dialogs when connecting to relying party (RP)
web sites. Federated login systems eliminate the need for a

separate username and password at each RP. Unfortunately,
these systems have seen relatively limited real-world adoption.

Federated login systems, like regular web login systems,
typically store security-sensitive authentication state in HTTP
cookies. A variety of attacks against TLS have, unfortunately,
been able to extract these cookies (see, e.g., BEAST [46],
CRIME [26], Lucky Thirteen [7], and BREACH [42]). Further-
more, attackers who can procure a fraudulent certificate, and
thus conduct MITM attacks against the TLS protocol, will have
access to cookies without any additional e↵ort (see, e.g., the
Diginotar debacle [6], [43]). These attacks are not theoretical;
they are being employed by adversaries in the wild [51] and,
as a consequence, federated login protocols that rely on TLS
are vulnerable.

There have been several recent advances towards elimi-
nating TLS MITM attacks against authentication credentials
for initial and session based authentication using a technique
called TLS origin-bound certificates (OBC) [21], [8], [20], but
we are unaware of any work to address this threat in federated
login protocols. This oversight presents a weak link in the web
identity ecosystem where a user’s identity at their IDP is well
protected, but their identity at any RP is not.

One does not simply flip a switch, turn on TLS-OBC,
and solve the MITM problem. OBCs are a cross-layer solu-
tion, using digital signatures from the TLS layer to enhance
authorization cookies at the HTTP layer. As such, using
OBC’s facilities to improve the security of federated login
will require some design and engineering. We decided to
start with Persona, a recent federated login system designed
at Mozilla, as a jumping o↵ point, hardening its underlying
BrowserID protocol. We want to consider how TLS-OBC’s
use of client-side public key certificates can be extended from
its initial client-server login origins to also support the IDP/RP
distinction in federated login systems. This requires extending
the Persona protocol as well as creating new JavaScript API
visibility to allow for the IDP and RP to communicate by
proxy in the browser without compromising the underlying
key material.

The key contributions of this work are:

• We formalize and analyze Persona’s existing BrowserID
protocol.
• We present two variants on Persona, hardening the

BrowserID protocol against MITM attackers using TLS-
OBC to bind identity assertions to specific TLC channels.
• We formalize and analyze our extensions to BrowserID

using BAN Logic and the Nexus Authorization Logic.
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• We use the Nexus mechanized proof checker to verify our
proofs.
• We discuss a proof of concept implementation of one of

our Persona variants.
• We give some insight into how this work can be used

to harden other existing federation protocols and discuss
potential directions for future work.

II. Background

In traditional Unix clusters, the problems surrounding user
authentication were simple. As user need merely present their
username and password credentials to the local machine, which
might then fetch hashed passwords and related credentials from
a trusted directory service. When a user from one machine
needed to get a resource from another, such as a file from
an NFS file server, the local machine was trusted to enforce
the access control rules. Obviously, this can’t work in an
environment when computers might be untrusted.

Kerberos [53] and related systems like Windows Active
Directory approached this problem by having a user to au-
thenticate to a central authority, allowing this central authority
to speak for the user’s identity to other services within the
network, and giving the user’s computer suitable credentials
to access only the resources to which the user is authorized.
Kerberos is an e↵ective solution for access to services with
dedicated applications and within a single intranet, but it was
designed well before the web and was never meant to support
Internet-scale authentication and authorization.

On the web, the problem of federated login, also sometimes
called digital identity management, must necessarily scale
to handle large numbers of users, and cannot assume any
centrally trusted servers. Consequently, a variety of protocols
have been developed that have the necessary scalability and
that integrate cleanly with web browsers and servers (e.g.,
SAML [30], OpenID [44], OAuth [23], OAuth2 [31], and
OpenID Connect [47]).

Terminology. Each of these protocols shares a common
language for discussing the actors that take an active role
during a run of the protocol. We assume that there are many
users that wish to authenticate to an identity provider (IDP).
The user and IDP are assumed to have apriori agreed upon
a set of authentication credentials that the user will need to
present in order to authenticate with their IDP. As we’ll be
focusing on federated login for the web, we assume that each
user is using a browser, or user-agent, to communicate with
their IDP.

After IDP authentication, users can then authenticate them-
selves to a relying party (RP). Relying parties are websites that
wish to learn the user’s identity, to create a local account for
the user or to authenticate them on a returning visit, all without
establishing another new username and password for the user
to remember. In these systems, the RP must necessarily trust
the IDP to vouch for a user’s identity.

The message sent from an IDP to RP that establishes
the user’s identity is called an identity assertion. OAuth and
OpenID Connect take this a step further and allow users to
delegate rights from the IDP to the RP. For example, a user

might grant access to their online calendar to a third-party
service. All the user sees is an okay/cancel dialog, and the RP
is given a credential that allows it access to the user’s account
on the IDP. In this paper, we’re only concerned with third-party
login, not with rights delegation, although our techniques could
apply to both cases.

A. Persona

Mozilla’s Persona [40], [1] is a successor to many existing
federated login protocols. Persona’s design goals are:

• Eliminate site-specific passwords.
• Use asymmetric key cryptography to link identity asser-

tions to a private key controlled by a user’s browser.
• Prevent the IDP from tracking the user’s logins at RPs (i.e.,

while an IDP can potentially impersonate a user, it cannot
simply record every site the user visits).
• Allow for simple implementation and deployment to the

user’s browser and RPs.
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Fig. 1: Persona Login Flow.

Persona login flow. When a user wishes to login with
Persona they must first login to their IDP as shown in step 1 of
Figure 1. If this is the first login on a new device, the user’s
browser then generates a new device key-pair and transmits
the public key to the IDP in step 2. The IDP then generates
a signed identity certificate, linking the user’s email address
to the device key, then sends it to the browser for storage in
step 3. The device key and identity certificate are good for
twenty-four hours and can be reused with multiple RPs within
that validity period.

When the user wishes to login to an RP that supports
Persona, the user’s browser generates a user certificate: a
signature with the device key over the web origin of the RP.
This RP-specific user certificate and the identity certificate are
then transmitted to the RP for verification in step 4. User
certificates have a validity period of five minutes or less, and
as such are only used for initial login. Finally, the RP verifies
the user certificate and identity certificate and, if everything
checks out, issues a traditional session cookie to the user’s
browser in step 5.

Note that the same identity certificate is used for all
RP interactions over the next 24 hours without any other
interaction with the IDP whatsoever. This places less load on
the IDP and ensures that it learns nothing of the specific RPs
who rely on it. The only RP-IDP interaction necessary is for
the RP to learn the IDP’s public key, used to sign the identity
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certificates. (We note that colluding RPs would observe the
same identity certificate if the same user connects to both
within the same 24 hour period. This could allow RPs to do
some tracking of their own.)

The current implementation of Persona is implemented as
a JavaScript shim that performs the device key generation and
user certificate generation within the browser. At some point in
the future, it is assumed that this functionality will be provided
by the browser runtime or a browser extension rather than a
JavaScript library.

B. TLS man-in-the-middle attacks

Persona improves upon existing federated login protocols
in its ability to resist user tracking by the IDP. The binding
of identity assertions to the user’s device key also improves
Persona’s resistance to attacks that might try to impersonate the
user. Unfortunately, Persona relies heavily on the protection of
TLS in the initial establishment of the user’s device key and to
prevent attackers from stealing and reusing identity assertions.

It’s commonly assumed that any communication through
a TLS channel is safe from leaking information to an ad-
versary. However, recent attacks [43], [6], [32] against the
TLS certificate authorities, that serve as the root of trust
for TLS authentication, have given adversaries a man-in-
the-middle (MITM) attack, presenting a forged TLS server
certificate to their victim while simultaneously establishing a
connection to the server. More recent work [46], [26], [7], [42]
has shown that an attacker doesn’t even need a forged TLS
certificate to extract sensitive data flowing over a TLS channel.
These attacks exploit the compression and padding within TLS
(or HTTP), using the server as an oracle to reveal specific
values (e.g., authentication cookies/tokens). Once extracted,
an attacker can then connect to the server as if it were the
returning user.

Origin bound certificates (OBCs) counter these attacks by
having the browser generate asymmetric key pairs for every
web origin, established during the initial handshake between
a new browser client and a server. Even if an attacker could
extract the session cookies, the attacker could not forge the
client’s cryptographic authentication. The server will reject
cookies that come over a channel without this authentication.
As such, oracle attacks against TLS-OBC have no value for
an attacker; they may still learn a cookie value, but they can’t
use it. Even MITM attacks against TLS-OBC fail, because
the attacker cannot impersonate the client’s OBC certificate.
(Securing the initial login phase against an active adversary is
an additional challenge, discussed in Czeskis et al. [20].)

In contrast to the reliance of Persona and OAuth2 on TLS
to provide security, the OAuth1.0 [23] protocol instead requires
applications to sign their requests using a secret key. This
approach avoids the problems introduced by a TLS MITM but
the tradeo↵ is that applications must be trusted to protect key
material, which is di�cult for javascript or mobile applications,
and correctly implement the OAuth1.0 signing process.

MITM attacks against Persona. We will focus on two lo-
cations where Persona is vulnerable to attack by a TLS MITM.
In order to reason about this attacker model, we first formalized
the Persona protocol into the Security Protocol Notation [53]

as shown in Figure 2. This formalization specifies the flow of
messages between the principals participating in the protocol
where the notation X ! Y means X sends a message to Y .
We use B to denote the user’s browser, U is the user’s email
address, I is the identity provider, and R is the relying party
(note that when I and R are used in a message they represent
the name of the principal, in this case the web origin of the IDP
and RP respectively). Key pairs take the form of

D
KX ,KX

�1
E

for the public and private keys, respectively, for principal X.
Timestamps T indicate when they are minted and by whom.

B! I : U,KB (1)
I ! B : {U, I,TI ,KB}K�1

I
(2)

B! R : {R,TB}K�1
B
, {U, I,TI ,KB}K�1

I
(3)

I ! R : KI (cached) (4)

Fig. 2: Persona Protocol

We first consider a MITM attacker who can manipulate the
first message in Figure 2. This message establishes the device
key that the user’s browser will use to generate future user
certificates and in Persona is assumed to be sent over a TLS
channel. The Persona protocol makes the assumption that TLS
will prevent an attacker from manipulating, or stealing and
replaying, this message. In the presence of a TLS MITM this
assumption is invalid and an attacker can follow the protocol
with their own device key, causing the identity provider to mint
an identity certificate that links the attacker’s device key to
the user’s email address U in the second message of Figure 2.
The MITM attacker can now authenticate directly with the any
RP, based on its new identity certificate, until that certificate
expires (typically in 24 hours). We note that this attack requires
that the attacker act both as MITM and have the ability to
authenticate to the IDP as the user (via a stolen authentication
cookie or phished credentials).

There are several existing techniques that could be used to
prevent this attack. The secure remote password protocol [56]
would allow the browser to establish ownership of the device
key in message (1) while preventing a MITM attacker from
injecting their own device key. TLS certificate pinning as
implemented by Google’s Chrome browser [35] or the Trusted
Assertion for Certificate Keys [37] internet draft could also
be used to allow the browser to detect the presence of a
MITM attacker and abort the connection to the attacker. While
there are known solutions for preventing this attack against
message (1), it’s important to note that a mechanism for the
secure establishment of the device key is not specified in the
current Persona protocol nor is it reasonable to assume that all
IDPs will be able or willing to support strong authentication
techniques.

The second attack we’ll focus on revolves around mes-
sage (3). In this message, a browser-generated user certificate
and IDP-generated identity certificate are delivered to the RP
for verification. In the current Persona protocol, there is no
challenge-response to verify that the principal that delivers
message (3) to the RP is really in possession of the device key
KB. Rather the timestamp TB included with the message is used
to determine the freshness of the user certificate. This design
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decision allows a TLS MITM attacker to intercept message (3)
in flight and use it to login to the RP, potentially triggering
the RP into minting a session cookie that the attacker can use
to subsequently login as the victim.

Persona makes no requirement on how the RP should
authenticate the user for subsequent requests after the initial
Persona login, where the user certificate and identity certificate
are verified, so it’s easy to imagine that many RPs will fall back
to HTTP cookie-based authentication tokens. A clever attacker
therefore need not even replay message (3), but could just
MITM the user’s subsequent connection, stealing the HTTP
cookie for subsequent logins.

C. Threat model

The threat model that we will use for the remainder of this
work is informed by the discussion of Persona and TLS MITM
attackers above.

We assume that clients and servers do not have malware
on their devices. The presence of malware implies that the
device cannot be trusted to protect a private key and therefore
any protocol that depends on the ability of a client to keep
the private key secret will fail. We note that Trusted Platform
Modules (TPMs) can potentially be used to ensure a private
key stays secret in the presence of malware, although malware
in control of the host might still be able to use the TPM
hardware as a signing oracle.

We also assume that web apps are free from cross-site
scripting (XSS) exploits. An attacker that can mount an XSS
attack can easily impersonate the user, as the browser has no
concept of protection domains beyond the same-origin policy
and cannot di↵erentiate legitimate JavaScript sent by the web
server from XSS-injected JavaScript employed by an attacker.
Many di↵erent web technologies are meant to mitigate against
XSS attacks (e.g., content-security policies [52]), but for our
work we consider XSS attackers to be out of scope.

Note that we do allow the attacker to eavesdrop on all
tra�c, act as a man-in-the-middle on all tra�c, and we
allow the attacker to present forged TLS server certificates,
impersonating a legitimate server to any client, although we
generally assume that such an attacker is not present for the
initial connection between a browser and the IDP. (In this way,
our threat model resembles that of the ssh secure shell, where
the ssh client will store each server’s public key material before
facing possible attackers.)

This work focuses on the TLS and application layers of
the protocol stack. However, as the security of browser-based
federated login is contingent on the security of the user’s HTTP
session cookie and password authentication credentials, we
therefore assume that techniques similar to TLS-OBC channel
bound cookies [21] and opportunistic cryptographic identity
assertions [20] are used to secure the initial authentication
requests leading up to the user’s federated login request. This
means that we assume that any authentication between the
client and IDP leading up to the federated login transaction has
been free from MITM attackers and therefore any established
key material between the client and IDP represents the correct
keys for the secure channel between those two principals.

III. Design

Persona’s approach to strengthening federated login meshes
with several other recently developed techniques for strength-
ening the initial and session phases of login against MITM
attackers. In this section we will discuss how Persona can be
extended and augmented to make use of these techniques in
order to defeat TLS MITM attackers.

A. Persona-OBC-Local

Our first approach, called Persona-OBC-Local, aims to
harden Persona against MITM attackers while still preserving
Persona’s goal of preventing the IDP from tracking the user’s
authentications to RPs. The high level approach is to use
PhoneAuth and Origin Bound Certificates to establish an
MITM-free channel between the user’s browser and the IDP
that the IDP can verify by comparing the observed OBC with
the set of known OBCs for this user (i.e., verifying that the
same browser associated with the given user is on the other
end of a TLS channel). With this mutually authenticated TLS
channel, the IDP can then endorse a device key, as in the
existing Persona protocol. The user’s browser can then present
an identity assertion, signed with the device key, that includes
a new OBC for use only with the RP.

Design. Our design goals for Persona-OBC-Local naturally
fall out of this high level design. First, we want Persona-OBC-
Local to feel like Persona. This means that the user experience
should be entirely unchanged. There should also still be a
device key, controlled by the browser, that signs new identity
assertions. The device key is critical to the current operation
of Persona as it cuts the IDP out of the loop during the user’s
logins to their RPs and protects the user’s privacy; the IDP
never learns the RPs to which the user connects.

At this point our goals diverge somewhat from present-day
Persona. Ideally, we’d like to prevent a MITM attacker from
stealing the identity and user certificates and later replaying
them to the RP to login as the victim. We’d also like to
secure subsequent connections between the user and the RP by
presenting the RP with an OBC key that it can use to channel
bind cookies to the user’s browser. In our approach:

• The IDP learns the user’s identity certificate, but not the
OBC key used between the browser and the RP.
• Each RP receives a unique OBC key, signed by the user’s

device key. This enables RPs to detect a TLS MITM
attacker, which cannot forge signatures by demonstrating
ownership of these keys.
• This per-RP OBC key can be used by the RP to channel-

bind authentication cookies, making them useless to a third
party who can intercept them [21].
• We can also leverage the OBC between the user and the

IDP to prevent an attacker from impersonating the user to
get the IDP to endorse a false identity certificate, and thus
allow the attacker to impersonate the user.

In order to reason about this extension to the Persona
protocol, we formalized the Persona-OBC-Local protocol into
security protocol notation as shown in Figure 3. The di↵er-
ences from the existing Persona design are evident in messages
(5) and (7), message (6) is unchanged from the existing
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B! I : {Emailuser, {KBI ,KB}K�1
B
}K�1

BI
(5)

I ! B : {Emailuser, I,TI ,KB}K�1
I

(6)
B! R : {{R,TB,KBR}K�1

B
, {Emailuser, I,TI ,KB}K�1

I
}K�1

BR
(7)

Fig. 3: Persona-OBC-Local Protocol

Persona protocol in Figure 2. We also elide message (4) from
Figure 2 as the communication of the IDP’s public key to the
RP is unchanged.

There are two major changes to message (5) relative to the
original (1). First, the entire message is signed by K�1

BI . We
assume that KBI is the public half of an apriori established OBC
key pair, and that message (5) is presented on the TLS channel
established using KBI . This demonstrates that the browser is in
possession of the private key K�1

BI and we can therefore assume
that any messages presented over that TLS channel originated
from the owner of K�1

BI and cannot be forged, even by a TLS
MITM.

The second change to message (5) is the inclusion of
{KBI ,KB}K�1

B
. KB and K�1

B are the public and private keys,
respectively, for the browser-generated device key. This new
element is therefore a signature binding the public device key
to the public OBC key. The message is e↵ectively signed
twice (once with the device key and once with the OBC key),
creating a cross-certification of sorts, that demonstrates to the
IDP that the two private keys are present on the same browser.
This ultimately gives the RP a stronger assurance that the IDP-
endorsed device key KB truly belongs to the correct user and
was not compromised by a TLS MITM.

The final change required for Persona-OBC-Local is the
inclusion of the KBR element in the user certificate of message
(7) and the communication of the identity assertion over the
a TLS-OBC channel that proves the browser’s ownership of
K�1

BR. The RP therefore expects a user certificate, signed by
the Persona device key KB that includes the OBC public
key KBR. The RP will reject any mismatching keys, defeating
TLS MITM attacks. We note that, while Persona-OBC-Local
assumes a pre-existing relationship between the browser and
the IDP, no such relationship is assumed between the browser
and the RP. Instead, we leverage the Persona key to endorse
the fresh OBC key, KBR.

Security claims. These modifications to the Persona proto-
col are meant to support two new security claims: a MITM
attacker cannot influence the establishment of the device key
KB or the origin bound certificate key KBR used between
the browser and the RP. To address how Persona-OBC-Local
enables these security claims, we’ll first consider how an
attacker might attempt to disrupt the protocol then formalize
the protocol to prove the security claims.

Attacker models against Persona-OBC-Local. There are
three locations for MITM attack in this protocol. The first, the
connection between the RP and IDP has been well explored
and we as well as the Persona authors [1] believe that this risk
can be mitigated through the use of certificate pinning [41] as

there are relatively few large IDPs so requiring RPs to maintain
a list of certificate pins for the IDPs would not be di�cult.

The more attractive connections for the attacker to intercept
are the ones between the browser and the IDP or RP. As
we assume that the IDP and browser have apriori established
a known good TLS-OBC key, the IDP should be able to
detect the presence of a MITM attacker using the techniques
previously developed for TLS-OBC [21].

We need now focus on the final exchange of the identity
assertion between the browser and RP. In the original Persona,
this identity assertion is essentially a short lived bearer token.
Persona-OBC-Local’s modifications to message (7) make use
of the Persona device key, that already exists in present
day Persona, to communicate a new browser-controlled OBC
public key to the RP. The resulting identity assertion must
therefore be presented over a TLS channel with the same
public key as is included in the identity assertion. This means
that a MITM attacker that observes the unencrypted identity
assertion cannot export and replay the identity assertion on a
di↵erent TLS channel to impersonate the user. Therefore an
attacker who cannot establish a TLS channel to the relying
party using private key K�1

BR cannot make use of this identity
assertion.

BAN-Logic formalization of Persona-OBC-Local. In addi-
tion to reasoning about attackers abstractly, we also formalized
the initial assumptions and security claims of Persona-OBC-
Local into the BAN belief logic [13]. Later, in section IV, we
will translate this BAN logic formalization of Persona-OBC-
Local into Nexus Authorization Logic (NAL) and use the NAL
proofchecker to reason about the correctness of the security
claims presented in this section. The BAN logic formalization
presented here will help us to understand the protocol as well
as to reason about how the security claims are arrived at by
deriving the security goals from the initial assumptions before
moving to the more complicated NAL.

In this section I’ll use BAN logic notation to express the
beliefs of each principal in the protocol. A statement that A|⌘ X
simply means that A believes the statement X. A statement of
the form A) X means A has the authority to make statements
about X, e.g., some principal that believes A ) X will trust
the statement X if it was asserted by A.

We arrive at the initial assumptions each principal believes
before a run of Persona-OBC-Local begins by first idealizing
the Persona-OBC-Local protocol as shown in Figure 4.

B! I : { KB��! U}K�1
BI

I ! B : {TI ,
KB��! U}K�1

I

B! R : {{TB,
KBR���! U}K�1

B
, {TI ,

KB��! U}K�1
I
}K�1

BR

Fig. 4: Idealized Persona-OBC-Local Protocol

The idealization of the first message replaces the user’s
E-Mail address at the IDP, Emailuser, with the principal U
that represents the user interacting with the browser during
the login process. The statement

KB��! U included in this and
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subsequent messages is a BAN logic shorthand expressing that
the key KB speaks for the principal U.

The second message once again converts the Emailuser
element into the principal U that represents the user operating
the browser (as identified by E-Mail address Emailuser at the
IDP). The I element is also removed as it only serves to
identify the particular IDP that minted this user certificate and
in the initial assumptions below we assume that the RP has
already obtained and cached the public key KI used by I.
Therefore the inclusion of the I element of message two is
redundant in this idealized protocol.

In the final message, the principal names I and R are
removed from this idealized version as they only serve to
clutter the messages1. One potentially confusing bit of this
idealization is that the {R,TB,KBR}K�1

B
element is converted to

{TB,
KBR���! U}K�1

B
when the original message doesn’t contain the

user’s email address Emailuser. This conversion makes more
sense when considering the initial assumptions from figure 5
where:

R|⌘ I ) KB��! U

meaning R believes I has authority to claim that KB speaks
for U. This means that the only method for R to establish
trust in the key KB is through the satisfaction of this initial
assumption. Put another way, before R can verify that any
incoming messages originated from U it must first establish
belief in an assertion by I claiming that the key KB speaks for
U. Therefore the message {R,TB,KBR}K�1

B
is only meaningful to

R after it verifies an IDP signed user certificate and establishes
that R believes KB speaks for U, at which point R will associate
any subsequent messages signed by K�1

B with the user principal
U.

The initial assumptions we’ll be using are shown in Fig-
ure 5. As in the earlier discussion of Persona, B, I, and
R are the principals representing the browser, IDP, and RP
respectively. U is a principal named by the user’s email address
at the IDP but represents the real world user that is using the
browser as a proxy for communication. Finally, TI and TB
are timestamps that are used to determine the validity period
for the messages they are included in, and are converted to
freshness assumptions (using the BAN logic notation where
#(X) means X is fresh) in the initial assumptions.

We assume the IDP has established an OBC, KBI , for
communication with the user’s browser. The IDP therefore
believes that the browser principal B has the authority to speak
for the user’s persona device key KB. Since B and I will be
communicating via a TLS-OBC channel, I gets a freshness
guarantee for messages sent over the channel as the TLS
protocol prevents replay attacks on the established channel and
OBC prevents a MITM attacker from replaying a message on
a di↵erent TLS channel of her own choosing.

For the RP, we assume the RP has already established that
the IDP will communicate with the key pair defined by the
public key KI . Additionally, the RP believes that the IDP is
an authority for the user’s Persona device key KB and that the
device key KB, speaking for the user U, is an authority on the

1Here I’m assuming that a signature with some private key K�1
A also

identifies the signer as principal A

I |⌘ KBI��! B

I |⌘ B) KB��! U

I |⌘ #(
KB��! U)

R |⌘ KI��! I

R |⌘ I ) KB��! U

R |⌘ U ) KBR���! U
R |⌘ #(TI)
R |⌘ #(TB)

Fig. 5: Persona-OBC-Local initial assumptions

OBC key KBR. Finally, the RP believes that the timestamps in
each message are fresh.

Defining the Persona-OBC-Local security goals. There
are many possible conclusions that we could derive from the
application of the BAN logic inference rules to the initial as-
sumptions in figure 5. When analyzing existing authentication
protocols like Kerberos [53] the usual goal is to reach the
following conclusions:

A|⌘ A
Kab �! B B|⌘ A

Kab �! B

A|⌘ B|⌘ A
Kab �! B B|⌘ A|⌘ A

Kab �! B

meaning that A and B both believe the key Kab and each
believes the other believes the key Kab. These conclusions can
be broken into two parts. First:

A|⌘ A
Kab �! B B|⌘ A

Kab �! B

meaning that the principals A and B both believe that they
should use the key Kab for communication with the other. This
establishment of a key for communication is the most basic
requirement that must be satisfied for authentication to occur.
The second part:

A|⌘ B|⌘ A
Kab �! B B|⌘ A|⌘ A

Kab �! B

establishes that each principal believes the other will be using
Kab for communication with the other party e.g., A will use
Kab for communication with B and A believes that messages
encrypted with Kab originated from B.

The security goals for Persona-OBC-Local are similar to
those of Kerberos. At the end of a run of Persona-OBC-Local
we would like to know the following:

R |⌘ KBR���! U (8)

R |⌘ U |⌘ KBR���! U (9)

R |⌘ I |⌘ KB��! U (10)

The first goal captures the end result of a run of the Persona-
OBC-Local protocol where the relying party believes that the
TLS-OBC channel defined by KBR, and used for communica-
tion from the user’s browser to the RP, speaks on behalf of the
user U that is identified by Emailuser at the IDP.
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The next two goals are beliefs that fall out of the derivation
from initial assumptions to the first goal as shown in figure 12.
The goal in equation (10) establishes that RP believes that the
IDP has vouched that the user key KB speaks for the user.
This is a necessary belief as the RP trusts only the IDP to
speak for the user’s identity and device key. Note that because
the RP believes that the IDP has sole authority over

KB��! U,
it’s entirely possible for an IDP to act as the user U during
the Persona-OBC-Local protocol. The prevention of potential
IDP impersonation of the user is a non-goal for Persona-OBC-
Local as any federated login protocol necessitates that the IDP
to be trusted to speak for the user’s identity.

The goal in equation (9) establishes that the RP believes
that U believes in key KBR. This belief allows the RP to believe
that both U and R have a common belief of correctness in KBR.
It’s important to note that the beliefs:

U |⌘ KBR���! U (11)

U |⌘ R|⌘ KBR���! U (12)

are not listed in these final security goals for Persona-OBC-
Local. We exclude equation (11) from the final security goals
as the user’s browser invents KBR locally and therefore implic-
itly believes that KBR speaks for U. Likewise, equation (12)
is implicitly true upon a successful run of Persona-OBC-
Local when R logs the user in and grants her access to
her data stored at R. This goal is also not all that useful
here as R will not be using key KBR to communicate with
U, but rather a di↵erent public key (or TLS session key)
that establishes the authenticity of the RP during the TLS
handshake, using traditional means like a certificate signed by
a trusted certificate authority.

We chose to use these security goals as they capture
what should be the end result of a federated login transaction
between the user (and their browser), the IDP, and a RP. The
first requirement upon the successful completion of federated
login is that the RP can establish the user’s identity at the
IDP. In Persona-OBC-Local, this requirement is captured by
the presentation of the user certificate

KB��! U that is signed by
the IDP I. This user certificate establishes both user’s email,
Emailuser, at the IDP as well as a key that speaks for the user,
KB, and must be signed by the IDP’s private key so the RP
can verify that the user certificate was issued by the IDP. The
verification of the user certificate is shown in equation (18) of
figure 12.

The second requirement that we added in the design of
Persona-OBC-Local is that the RP also obtains a secure
channel between itself and the user. Note that the Persona
device key KB could serve this purpose as R also establishes
that it speaks for the user U. However there are implementation
issues with this approach, e.g., using KB requires the use of a
javascript cryptography library, as well as privacy issues, e.g.,
the IDP knows KB uniquely identifies the user and could track
which RPs the user logs into. This requirement is captured
by the main security goal of Persona-OBC-Local as shown in
equation (8). This establishment of a secure channel between
the user and the RP is a non-goal for existing federated
protocols, but the establishment of this distinct channel per
user is good practice and enables better security for both the
user and RP.

The RP arrives at these final security goal by first establish-
ing the validity of the IDP signed user certificate, establishing
the belief R|⌘ KB��! U. This belief that KB is a key that speaks
for U allows the RP believe that U |⌘ KBR���! U as shown in the
second to last equation of figure 12. As an initial assumption
held by R is that U ) KBR���! U, this allows R to establish its
belief that KBR is a key that has been endorsed by the user U.
This means that subsequent requests sent over the TLS-OBC
channel defined by KBR can also be associated with the user
principal U.

Figure 12 in the appendix shows the derivations from these
initial assumptions and observed messages to the security goals
we’ve set out for the protocol.

Discussion. The design of Persona-OBC-Local is intended
to be very similar to Persona as it exists today. These changes
to the protocol preserve user privacy by keeping the IDP out
of the federated login process after the initial endorsement of
the device key and identity certificate. Even though the IDP
is not an online actor during the federated login process, the
RP still receives the IDP-endorsed identity certificate and uses
that endorsement to establish the RP specific OBC key.

It’s important to point out that the MITM protection be-
tween browser and RP is contingent on the OBC key, endorsed
by the device key, being delivered to the RP over a TLS
channel established with the same client side OBC key that’s
endorsed by the IDP. It is the potential mismatch of these keys
that allows the RP to detect the presence of a MITM attacker.

B. Persona-OBC-Central

Our second approach, called Persona-OBC-Central, dis-
cards the Persona ideal of disallowing the IDP from tracking
user logins and presents a protocol that more closely captures
existing federated login protocols, like OAuth2, OpenID and
OpenID Connect, while still providing the same channel-
binding MITM protections we introduced in Persona-OBC-
Local. This approach requires the IDP to be an online actor
during the user’s initial login to a RP. While this has a negative
impact on user privacy with respect to the IDP, it enables
the IDP to apply a variety of anti-fraud techniques, such as
machine learning to distinguish the behaviors of bad actors,
tracking of malware-infected IP addresses, and so forth. While
the application of these techniques is beyond the scope of the
paper, we suggest that many users would find the tradeo↵ of
decreased privacy in favor of better protection from adversaries
to be worthwhile. In short, Persona-OBC-Central creates the
possibility for rapid server-side responses to systematic attacks,
without waiting for the 24-hour expiration in Personal-OBC-
Local.

B! I : {Emailuser,KBR, {KBI ,KBR}K�1
BR
}K�1

BI

I ! B : {Emailuser, I,TI ,KBR}K�1
I

B! R : {R,TB, {Emailuser, I,TI ,KBR}K�1
I
}K�1

BR

Fig. 6: Persona-OBC-Central Protocol
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The protocol description of Persona-OBC-Central in Fig-
ure 6 is similar to Persona-OBC-Local, but the first message
between the browser and IDP is modified. Rather than estab-
lishing a device key, as in Persona or Persona-OBC-Local, this
first message establishes that the browser controls two TLS-
OBC keys, one for use with the IDP and one for use with the
RP. This modification does away with the need for a 24 hour
device key; instead we use the cross-certification of the two
OBCs to replace this functionality. This change brings the IDP
online for every RP to which the browser wishes to connect
(thus, the “central” name).

B! I : { KBR���! U}K�1
BI

I ! B : {TI ,
KBR���! U}K�1

I

B! R : {TB, {TI ,
KBR���! U}K�1

I
}KBR�1

Fig. 7: Idealized Persona-OBC-Central Protocol.

As in Persona-OBC-Local, we idealized the Persona-OBC-
Central protocol, as shown in Figure 7, established the initial
assumptions of the protocol, and created a proof that derives
our goal state from the initial assumptions. The full analysis
is available in our forthcoming tech report.

The protocol is very similar to Persona-OBC-Local, the
main di↵erence being that there is no device key included in
the identity certificate. Rather the IDP endorses the relying
party’s OBC key directly in the identity certificate instead of
delegating the endorsement of this key to the browser as in
Persona-OBC-Local.

Discussion. The obvious tradeo↵ between the Local and
Central protocol implementations is the ability for the IDP to
track where the user logs in. Since the Central approach does
away with the 24 hour device key and browser endorsement
of the OBC key in favor of having the IDP endorse the RP’s
OBC key directly, the IDP has the capability to track the user
as they login to di↵erent relying parties.

The potential benefits of the Central approach over the
Local approach are:

• The IDP can use machine learning techniques to correlate
authentication requests and potential identify when a user
is under attack. The centralized approach allows the IDP
to respond to attacks quickly by disabling the creation of
new identity certificates if a user’s account is assumed to
be under attack or compromised.
• The relying parties do not learn the 24 hour device key

(which is a unique identifier for the user). This allows for
a user to present IDP endorsed pseudonymous usernames
to each RP they login to and prevent colluding RPs from
tracking the user.

IV. Formalization of Protocols

There are a number of ways to model and evaluate pro-
tocols like Persona-OBC. The Border Gateway Protocol [45]
and Byzantine fault tolerant systems [18] are specified by finite

state machines that, when the software correctly implements
the state transitions, allows us to reason about the state of each
actor in the system. Formal verification tools like SPIN [12]
can then be used to reason about the protocol state machine
and prove that the protocol cannot enter an incorrect state.
The reduction to a finite state machine is useful when each
principal in the system is running the same state machine and
performing the same transitions, but what about in protocols
and systems where each principal is operating independently
and with imperfect knowledge? These systems are more easily
modeled by a belief logic.

Some of the earliest logics used for reasoning about belief
in distributed protocols are the ABLP logic introduced in the
TAOS [55] operating system, BAN logic [13], and Gong et
al.’s work [25].

Each of these logics build from the notion of an atomic
principal that is represented by a public key or messages sent
over a channel associated with a public key. From a set of
initial assumptions that represent the beliefs of each of the
principals in the system, axioms are applied to the initial
beliefs to derive a goal state that must be satisfied before a
principal may take an action.

The Nexus Authentication Logic [48], a successor to the
ABLP [55] and CCS [5] logics, further refines this idea by
defining a world view for each principal in the system that
is defined by the set of beliefs local to that principal. This
modification has the desired properties that a fallacious belief
held by one principal does not propagate into the world view of
another, making it well suited for modeling distributed systems
with multiple actors. Additionally, the Nexus operating system
built on top of the NAL contains a stack machine-based
proof checker that can be used to verify proofs presented
by a principal. This proof checker enables us to use NAL
proofs in our implementation to verify its correctness (see
Section V) similar to the approach in Bauer’s [11] proof
carrying authentication.

Nexus Authorization Logic semantics and axioms. A NAL
proof is based on a few core concepts: principal, statements,
world views, and guards.

• A principal is an entity that may take or authorize actions.
Principals are usually defined by the public half of an
asymmetric key pair or the hash of a program. For our
system, the communicating public keys serve as names for
their principals.
• A statement is a message or utterance emitted by a prin-

cipal. A statement may be implicit (i.e., it’s only used as
an intermediate step to establish local belief) or explicit
(i.e., where the statement is passed in a message to another
principal). The statement that A says s implies that A
supports the statement s. For the purposes of this section,
we assume that the statement A says s implies that s
was received over a mutually authenticated TLS channel
associated with A or a signature over s with a fresh nonce
has been verified by the receiving principal.
• The set of statements uttered by a principal defines its

belief set or world view. Therefore a statement that A says s
adds the statement s to the belief set of A. This world view
is represented by the statement s 2 !(A). It is important to
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note that each principal begins with an empty belief set,
and adds to it over time. This means that an incorrect belief
by principal A cannot e↵ect principal B unless B is willing
to explicitly add the incorrect belief into it’s belief set.
• A guard is a statement that protects a privileged ac-

tion. For instance, a file system guard that protects ac-
cess to privileged files might require a guard of G =
FileS ys says read(foo) to be satisfied before allowing
access to the file f oo. The principal A that protects foo
would therefore require that the guard statement G be
derivable from the current set of statements in the belief
set !(A). The derivation of statements in !(A) to the
guard statement G are defined by the axiomatic reductions
defined in NAL as well as any reductions that already exist
in !(A).
• Another useful construct in NAL is the speaks for rela-

tionship, represented by the ! symbol. The statement that
A! B is shorthand for (8x : (A says x)) (B says x)) this
has the side e↵ect of unifying the principals worldviews’
such that !(A) ✓ !(B).

A. NAL Formalizations

Each of the NAL formulas to follow begins with a set
of initial beliefs that the principal either already believes or
has received from an untrusted source and must apply NAL
derivations to enter the untrusted beliefs into the principals
local world view. Finally, each formula set defines a goal
statement that must be derived from the initial assumptions
for the guard proof to be satisfied. These proofs are human
readable representations of the proofs that we used with the
Nexus mechanized proof checker, the mechanized proofs will
be included in a forthcoming technical report.

Our use of NAL also makes use of some axiomatic rules
from BAN-Logic. Specifically, we adapt the message meaning,
nonce verification, freshness, and jurisdiction rules from BAN-
Logic to NAL as shown in Figure 8.

KA says X B says KA ! A
Message Meaning

A says X

A says {X,Y} A says fresh(X)
FreshnessA says fresh(X,Y)

A says X B says fresh(X)
Nonce VerificationB says A says X

B says A says X
B says A says X

B says X
JurisdictionB says X

Fig. 8: NAL version of BAN-Logic rules for Message Mean-
ing, Nonce Verification, and Jurisdiction.

The first proof we’ll consider is that of the identity provider
attempting to guard the generation of an identity certificate.
Our initial assumptions, shown in Figure 9, are that the browser
and IDP have apriori established that the browser controls KBI
that it uses for communication with the IDP. We also assume
that the browser has generated a device key pair KB for the

I says KBI ! B
I says fresh(TI)

KBI says {KB ! U,TI}
I says B says KB ! U

I says KB ! U

Fig. 9: NAL Initial Assumptions for Identity Provider.

KBI says {KB ! U,TI} I says KBI ! B
B says {KB ! U,TI}

KBI says {KB ! U,TI} I says fresh(TI)
I says fresh(KB ! U)

B says KB ! U I says fresh(KB ! U)
I says B says KB ! U

I says B says KB ! U
I says B says KB ! U

I says KB ! U
I says KB ! U

Fig. 10: Guard proof derivation for Persona-OBC-Local IDP

user and that the IDP believes that the browser is an authority
on KB ! U.

Figure 10 shows the IDP’s guard proof derivations that
result in the satisfaction of the goal statement of:

I says KB ! U

This goal protects the creation of an identity certificate by the
IDP and its satisfaction therefore allows for the creation of an
assertion that the user is logged in at the IDP. We additionally
want the IDP to believe that the key KB is also in the possession
of user’s browser as the IDP will be including a statement that
KB ! U in the identity certificate it generates and signs. The
satisfaction of the guard proof will result in the IDP creating
an identity assertion of the form {U,KB,TI}K�1

I
that allows it

to assert its local beliefs to any recipient that believes KI ! I.

R says KI ! I
R says fresh(TI)
R says fresh(TB)

KI says {KB ! U,TI}
KB says {KBR ! U,TB}

KBR says {OR}
R says I says KB ! U

R says KB ! U

R says U says KBR ! U
R says KBR ! U

Fig. 11: Initial assumptions for identity assertion verification
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The second proof we’ll consider is the RP attempting to
check the validity of the browser generated user certificate and
an IDP’s identity assertion that has been relayed through the
user’s browser. Our initial assumptions – shown in Figure 11
are that the RP knows the IDP’s public key KI , the RP believes
the IDP is an authority on U and KB ! U, and that the user’s
browser is an authority on KBR ! U.

Figure 13, in the appendix, shows the guard proof deriva-
tions that result in the derivation of the goal statement of:

R says KBR ! U ^ U says OR

This goal statement is equivalent to the BAN logic goal
in equation (8) in section III. The goals from equation (9)
and (10) are excluded here they are arrived at and placed onto
the stack during the proof derivation that leads to the goal state
and every belief placed on the stack during the derivation of
the goal proof is present in R’s belief set.

This proof allows the RP to believe that it is communicating
with the a browser controlled by the user. The RP arrives
at the goal state by transforming its initial assumptions into
a local belief that the user’s browser controls the key KB
asserted by the IDP. This local belief that KB ! U allows
the RP to believe that the user’s browser also controls KBR.
Finally, the presentation of these messages over the TLS-OBC
channel associated with KBR allows the RP to verify that it is
communicating with the correct browser2. Since the RP also
implicitly trusts the IDP to speak about the logged in user’s
identity U, the satisfaction of the guard proof will allow the RP
to associate the TLS channel defined by the TLS-OBC KBR to
the user identity U or, optionally, mint a channel-bound cookie
that is bound to the key KBR.

V. Implementation

In order to demonstrate the feasibility of our approach,
we built a proof of concept implementation of Persona-OBC-
Central. The goal of this implementation is to help establish
the correctness of the design previously discussed as well as
to identify the engineering (on both the browser and server)
required to put our design into practice. The implementation
consists of four separate elements:

• A Linux port of the Nexus [50] OS proof checker
• A browser extension that provides a virtual TPM and

cryptographic operations
• A identity provider server/client side implementation
• A relying party server/client side implementation

A. Nexus Proof Checker

We use a Linux port of the Nexus proof checker to verify
the satisfaction of our guard proofs from the initial assumptions
of the IDP and RP server side implementations. We also
created a python wrapper that handles the setup of the proofs
by managing the mapping of principal names to public key

2This requirement is captured with the U says OR clause in the goal
statement, showing that the user’s browser can sign the RP’s web origin with
KBR. The presentation of the identity and user certificates over the TLS-OBC
channel with key KBR is actually su�cient to prove this but di�cult to show
in NAL.

fingerprints and verification of message signatures. This python
wrapper consists of approximately 203 lines of code and
interacts with the Nexus proof checker binary using the python
subprocess package.

The proofs used with the Nexus proof checker were first
written by hand with the help of the interactive mode of the
Nexus proof checker, then formalized in the proof checker’s
language. This language allows us to define the initial as-
sumptions as well as the derivations applied to the stack of
assumptions that eventually result, in a successful run of the
proof, with only the goal statement left on the proof checker’s
stack.

B. Virtual TPM

As the only web server that currently supports TLS-OBC
(or rather its successor project called TLS-ChannelID [9])
is Google’s internal web server, we chose instead to extend
the browser to support something that looks and feels like
TLS-OBC without actually hooking into the TLS layer. We
developed an API called PostKey that would ideally be linked
to the navigator.id namespace within the browser. This
PostKey API is similar to the PostMessage API that allows for
cross origin communication between iframes with the addition
of a browser-generated cross certification of TLS-OBC keys.

We modified the HTML5-Crypto-API [27] in order to
support this new PostKey operation and additionally expose a
NodeJS wrapper around the cryptographic operations provided
by the API to server side code. The HTML5-Crypto-API
works well for our needs since, like TLS-OBC, it supports the
concept of performing crypto operations where the actual keys
are never exposed to javascript code, rather they are stored by
the HTML5-Crypto-API and javascript performs actions with
the stored keys via PostMessage calls, lessening the risk of
their exfiltration. Likewise, the HTML5-Crypto-API supports
the idea of crypto keys visibility being linked to the web same-
origin policy. In order to retain these properties we modified
the HTML5-Crypto-API to operate as a browser extension and
expose PostKey API functionality.

This allows us to use the browser same origin policy and
extension policies to protect private key material from XSS
attacks by using browser IPC to call into the extension. The
virtual TPM this we expose is conceptually similar to the
separation between the TLS and HTTP application layers in
that the TLS key material used to established a channel is
never exposed up to the HTTP layer. The PostKey operations
performed by the virtual TPM can be trivially replaced by
browser-provided JavaScript bindings that perform the same
operations with TLS Origin-Bound Certificates, TLS Chan-
nelIDs, or keys created by the HTML5 keygen tag as the
keying material.

C. Identity Provider Implementation

Our IDP is implemented in approximately 280 lines of
client side JavaScript and 1073 lines of server side Python.
Additionally, 70 lines of JavaScript are used on the server side
via IPC calls from the python IDP binary to a NodeJS port of
the HTML5-Crypto-API in order to unify the client and server
side cryptographic libraries that handle the asymmetric elliptic
curve crypto for message encryption and signing.
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Our IDP allows users to login with a traditional user-
name/password verification, then issues a channel bound
cookie [21] to the client.

After the initial login, the IDP is responsible for creating
the identity certificate that we discussed in Section III. It
does this by exposing an authorize API (similar to the
authorization endpoint exposed by a web server that supports
OAuth2) that expects to receive a channel bound cookie and
PostKey cross certification.

Upon receipt of this data, it uses the Nexus proof checker
to verify the authorization guard proof we discussed previously
using the observed channel-bound cookie and the PostKey
cross certification sent from the browser as well as the apriori
known public key associated with the user’s channel-bound
cookie. Assuming that the proof checker can successfully
derive the goal proof from the data received from the browser,
the IDP then mints an identity certificate that is transmitted
to the browser and forwarded to the relying party to complete
the federated login process.

D. Relying Party Implementation

The RP is implemented in approximately 300 lines of client
side JavaScript and 953 lines of server side Python. It shares
the same JavaScript cryptography library as the IDP. The RP
is responsible for using the Nexus proof checker to verify
that the user certificate generated by the browser and the IDP
generated signed identity assertion are correct. If the proof
checker successfully derives the federated login goal statement
from the RP’s belief set, then the RP will issue a channel
bound cookie to the client and complete the federated login
transaction.

We chose to use the Nexus proof checker in the imple-
mentations of the RP and IDP servers in order to establish the
correctness of our implementation when reasoning about the
validity of data received from potentially untrusted actors. In a
production implementation of the RP and IDP logic we believe
that this approach would be too complex and heavyweight, but
the creation of a production version of the RP and IDP would
be guided by the reference implementation we’ve constructed.

VI. Discussion

While we’ve primarily discussed the Persona federated
login system, there’s no reason why the techniques we’ve
presented cannot be applied to other existing federated login
protocols. We will now consider two of the most prevalent
federated login protocols deployed today and discuss how they
too can be hardened against man in the middle attackers.

OAuth2. OAuth2 [31] uses a two phase process to han-
dle the identity exchange between the IDP and RP. First
the user logs into the IDP and their browser receives a
authorization_code that is a one time use bearer token.
This authorization_code is then passed via a HTTP 301
redirect to the relying party where it is transmitted to the
IDP authorization endpoint and traded in for a short lived
access_token, the user’s identity at the IDP (in the form
of an email address or username), and optionally a long lived
refresh_token.

The techniques discussed in the previous sections can be
used to harden the OAuth2 authorization_code exchange
against man-in-the-middle attackers by encapsulating it in an
IDP minted identity certificate that includes the OBC key the
browser will use to transmit the authorization_code to
the relying party. This is very similar to the Persona-OBC-
Central approach that we discussed previously with the minor
change that the OAuth2 authorization_code is included
in the identity certificate, rather than the user’s email address
or username. An authorization_code delivered using this
method still allows the relying party to channel bind any
subsequently issued cookies or access tokens to the OBC key
included in the identity certificate. This technique can be used
to harden browser stored OAuth2 access_tokens but is not
useful for protecting access_tokens intended for use between
the RP and IDP servers.

OpenID. OpenID [44] providers are already aware of the
risks posed by MITM attackers and bearer tokens as some
make use of nonces to protect the final redirect phase of the
OpenID protocol from replay attacks [54]. However, this tech-
nique assumes that the attacker obtains the OpenID redirect
URL, which acts as a bearer token to log in with the user’s
account at the relying party, after the user has already passed it
on to the relying party. An active MITM attacker can observe
the redirect URL as it flows from IDP to the user’s browser
and disrupt the OpenID login flow, then use the stolen redirect
URL to login as the victim on a browser that the attacker
controls.

Our approach could prevent this type of attack. An ad-
ditional openid.rp_client_key attribute could be added to
the final authorization message of the OpenID protocol. The
relying party would then be responsible for validating the
openid.rp_client_key against the observed TLS-OBC key
for the connection to the client (as discussed in sections III
and IV).

Smartphones. We’ve discussed how to improve federated
login using origin bound certificates and cross certifications
to communicate key material between two parties by using
the browser as an intermediary for communication. We have
framed these techniques as a way to improve existing federated
login protocols, however these techniques can be applied to the
realm of smartphone security as well.

A fundamental di↵erence between the browser and mobile
phone environments is that applications running on a mobile
phone are not bound to anything like a web browser same-
origin policy. A web server that serves HTML and javascript
to a browser can have a reasonable expectation that code from
other domains cannot manipulate the client side javascript
running in the browser. Mobile phone operating systems, like
Android, were designed to facilitate inter-app communication
without the need to use the network and allow applications
to register for “intents” that can enable malicious apps to
intercept potentially sensitive URLs and data intended for
another application.

Therefore a common issue when designing applications
intended for mobile phones is that a server communicating
with an on-phone app has no insight into which application
on the phone it is communicating with or if the data it is
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providing is being delivered to the correct application on the
phone. It would be useful to enable the servers that provide
the backend for applications like mobile banking and secure
communication apps (e.g. RedPhone [3]) to know that they are
communicating with the correct application on a device rather
than an impostor application.

The Persona-OBC-Central protocol we’ve discussed can be
used to distribute keys to these application servers assuming
there is a trusted party, in the form of the device’s manufacturer
or carrier (e.g., Google or Verizon Wireless), that has a strong,
mutually authentication channel to the user’s device. The
Google Play Store already maintains a cryptographic channel
from the server to every phone as part of the application
installation process. This could be extended to allow the Play
Store to act as an identity provider proxy (IDP proxy) for
every app on the phone, under the assumption that Google has
confidence that the Play Store app on the phone can protect
its local key storage and communicate with the underlying
operating system to obtain the application signing key for an
app that calls it.

In this scenario, any on-phone app that wishes to communi-
cate to its home server would request that the local IDP proxy
generate a new key pair for the application. The IDP proxy can
then create a cross certification endorsed by its trusted key that
creates a mapping between an app identifier, package name
on Android or bundle id on iOS, and a local key-pair unique
to that device and app. When the IDP receives a new cross
certification from the IDP proxy on a users phone; the IDP
can then mint an assertion that demonstrates the IDP’s belief
that an app with package name P, on device D will use the
key KA to communicate with it’s home server. This assertion
can then be used by the app’s home server to bootstrap a
trusted channel, using the new local public key KA for future
communication between the on-phone app and home server.

This is similar to the secure RPC method discussed in
Quire [22]. While Quire was interested in having the phone
attests to the on-device call chain that led up to an RPC, the
design discussed here is interested only in bootstrapping a
trusted channel between a single on-phone app and its home
server that stores potentially sensitive information on behalf of
the on-phone app.

This approach could enable better RPC security on mobile
phones by using the phone’s OS provider (e.g., Google, Apple)
to establish a TLS-OBC like channel between and on phone
app and remote server. Quire [22] contemplates a variety
of applications that arise from the presence of a trusted
RPC attester/mediator on a device, including payment and
advertising services.

VII. RelatedWork

OAuth 1.0 [23] makes use of message level encryption
rather than encrypting the entire communication channel as
in TLS. This approach has some similarity to the approach
presented in this paper as OAuth 1.0 identity assertions are
not bearer tokens. Instead, OAuth 1.0 used digital signatures.
While this approach is commendable and provides many of the
same protections as presented in this paper, the requirement
for signatures at the application layer complicated things for
developers, leading to a complete redesign in OAuth2.

The SAML WS-Trust [4] specification outlines a proof key
technique for establishing a secure connection between a client
and relying party. The main di↵erence between the SAML
approach and our approach is that in a SAML key token
request the client is usually assumed to be a server rather
than a user-controlled device. With SAML, a portal server
is typically responsible for the creation and managements of
keys intended for consumers. SAML is also targeted at native
desktop application clients and server-to-server communication
rather than web browsers or smartphones.

The OAuth2.0 Holder-of-Key Token internet draft [16]
proposes binding tokens to ephemeral asymmetric credentials,
much like we proposed in Section III. However the Holder-of-
Key Token draft is concerned with binding the tokens used for
API access and does not consider the risk of MITM theft of
the OAuth2.0 access_code that could allow a MITM to trick a
relying party into minting new authentication tokens associated
with keys under the control of the MITM. It’s likely that
OBC techniques could be applied to address these concerns
for OAuth2.0 in much the same way we did for Persona.

The GSS-BrowserID internet draft [33] aims to allow
standalone applications to work with the existing BrowserID
protocol despite the lack of a browser or JavaScript shim
support. The authors also aim to support channel binding and
replay prevention techniques from SASL [38] and GSS [36]
at the application layer.

Kumar et al. recently formalized SAML single sign-on [34]
using a variant of BAN logic that takes into account the
use of server-authenticated TLS channels for encryption, and
discovered a vulnerability that allows an attacker to manipulate
cross-domain identity associations. They also advocate for a
hybrid approach to protocol analysis where a belief logic is
used to formalize the protocol before exploring attacker models
that aim to violate the assumptions established using the belief
logic formalizations.

Bauer et al. [10] consider the usability side of single-
sign-on (SSO) and survey user’s willingness to use the SSO
systems of Google, Google+, and Facebook. They find that
users perceive that SSO systems only perform authentication
when in fact many also authorize the IDP to communicate
additional information (like a Facebook friends list) to the
RP. This finding speaks to the need for secure, transparent,
authorization systems rather than SSO techniques that blur
the line between authentication and authorization.

Finally, Chew et al. [19] and Hackett et al. [29] both
discuss how an ideal federated identity system (and ecosystem)
should operate and provide insight into future directions for
this area. We believe that our work captures some of the
insights presented in these works and presents a more formal
approach to the abstract methods that have been explored by
these prior works.

VIII. Conclusion

In this work, we presented two new variants on the Persona
federated login protocol, leveraging TLS origin bound certifi-
cates to strengthen Persona in the face of recent attacks against
TLS that can extract cookies or other such tokens. One of our
variants follows Persona’s original structure, decoupling the
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identity provider from the user’s third-party logins. Our other
variant is closer to existing OpenID and OAuth systems, giving
the identity provider a more central role in the login process.

We formalized our two Persona variants using BAN logic
as well as Nexus Authorization Logic, the latter allowing us
to produce mechanized proofs of our design’s correctness. We
also built a proof-of-concept system using browser and server-
side extensions, to ensure that our system could operate prop-
erly in real browsers, and be a suitable real-world approach
for federated web login.
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Appendix

Figure 12 shows the BAN logic derivations that transform
our initial assumptions and messages (Figures 5 and 4 respec-
tively) to the security goals we’ve set out for Persona-OBC-
Local. Recall that our goal state is:

R|⌘ KBR���! U

To arrive at this goal, we first consider the communication
between the browser and the IDP. Equation (8) establishes that
the IDP has seen a message containing the user identifier U
and a new device key KB that was sent over a channel using
the apriori established TLS-OBC key KBI . The verification of
this information allows the derivation of equation (14) that
establishes the IDP’s belief that the device key KB speaks
for the user’s browser. This belief allows the IDP to mint
an identity certificate endorsing KB which will eventually be
communicated from the browser to the RP in equation (15).
After the verification of nonce freshness, the RP can use its
belief that the IDP is an authority on KB to establish its own
belief that

KB��! U in equation (16). Finally, the RP can use this
new belief to establish its own belief that

KBR���! U in equation
(18).
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I C { KB��! U}K�1
BI

I|⌘ KBI��! B
Message Meaning

I|⌘ B| ⇠ KB��! U
(13)

I|⌘ B| ⇠ KB��! U I|⌘ #(
KB��! U)

Nonce Verification
I|⌘ B|⌘ KB��! U

I|⌘ B|⌘ KB��! U I|⌘ B) KB��! U
Jurisdiction

I|⌘ KB��! U
(14)

R C {TI ,
KB��! U}K�1

I
R|⌘ KI��! I

Message Meaning
R|⌘ I| ⇠ TI ,

KB��! U
(15)

R C {TI ,
KB��! U}K�1

I
R|⌘ #(TI)

Freshness
R|⌘ #(

KB��! U)

R|⌘ I| ⇠ TI ,
KB��! U R|⌘ #(

KB��! U)
Nonce Verification

R|⌘ I|⌘ KB��! U

R|⌘ I|⌘ KB��! U R|⌘ I ) KB��! U
Jurisdiction

R|⌘ KB��! U
(16)

R C {TB,
KBR���! U}K�1

B
R|⌘ KB��! U

Message Meaning
R|⌘ U | ⇠ TB,

KBR���! U
(17)

R C {TB,
KBR���! U}K�1

B
R|⌘ #(TB)

Freshness
R|⌘ #(

KBR���! U)

R|⌘ U | ⇠ TB,
KBR���! U R|⌘ #(

KBR���! U)
Nonce Verification

R|⌘ U |⌘ KBR���! U

R|⌘ U |⌘ KBR���! U R|⌘ U ) KBR���! U
Jurisdiction

R|⌘ KBR���! U
(18)

Fig. 12: Pesona-OBC-Local derivations from initial assump-
tions to security goals

KI says {KB ! U,TI} R says KI ! I
I says {KB ! U,TI}

KI says {KB ! U,TI} R says fresh(TI)
R says fresh(KB ! U)

I says KB ! U R says fresh(KB ! U)
R says I says KB ! U

R says I says KB ! U
R says I says KB ! U

R says KB ! U
R says KB ! U

KB says {KBR ! U,TB} R says KB ! U
U says {KBR ! U,TB}

U says {KBR ! U,TB} R says fresh(TB)
R says U says KBR ! U

R says U says KBR ! U
R says U says KBR ! U

R says KBR ! U
R says KBR ! U

KBR says OR R says KBR ! U
U says OR

Fig. 13: Guard proof derivation for identity assertion verifica-
tion.
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