
ProTracer: Towards Prac-cal Provenance Tracing by
Alterna-ng Between Logging and Tain-ng

Shiqing	Ma,	Xiangyu	Zhang,	Dongyan	Xu	

Provenance Collec-on

• Provenance,	a.k.a.	lineage	of	data	
•  Data’s	life	cycle	

•  Origins		
•  Accesses	
•  Dele<on	

•  Exis<ng	Approaches	
•  Tain<ng	
•  Audit	Logging	

Example:

1.  ….......	
2.  PID=1224,	Receives	from	socket0	
3.  PID=1224,	Writes	to	File	Taskman	
4.  ….......	
5.  PID=4893,	Starts	from	File	Taskman	
6.  PID=4893,	Reads	file	FD	
7.  PID=4893,	Sends	data	to	socket1	
8.  ….......	

PID=1224	 PID=4893	File:	Taskman	

Logging	

socket1	

4893	

Taskman	FD	

1224	socket0	

Example:

PID=1224	 PID=4893	File:	Taskman	

1.  ….......	
2.  T[Browser]	=	T[Browser]	V	{	socket0	}	=	{	socket0	}	
3.  T[File:Taskman]	=	T[Browser]	=	{	socket0	}	
4.  ….......	
5.  T[Taskman]	=	T[File:Taskman]	=	{	socket0	}	
6.  T[Taskman]	=	T[Taskman}	V	{	FD	}	=	{	socket0,	FD	}	
7.  T[Data	sent]	=	T[Taskman]	=	{	socket0,	FD	}	
8.  ….......	

Tain<ng	

Data	Leaked	(taint	FD)	
==	Taint	set	contains	{	FD	}	
==	T[Taskman],	T[Data	sent]	

Affected	by	phishing	website	(ta<ng	socket0)	
==	Taint	set	contains	{	socket0	}	
==	T[Browser],	T[File:Taskman],		
T[Taskman],	T[Data	sent]	

Limita-ons of Audit Logging

• Overhead	[LogGC]	
•  Linux	Audit	Framework:	~40%	run	<me	slow	down	

•  Some	low	overhead	system:	Hi-Fi	etc.	
•  Storage:	~2G	per	day	

• Dependency	Explosion	Problem	

����

"���

�����

�"���

�����

�"���

�
��� �
��� �
� � �
�!� �
�"� �
�#�

��
��
��
�
���

��
�
��

���������������

	�������

����
��������

7.19 GByte
(1.2GB/Day)

19.1 GByte
(3.18GB/Day)

Process	

Limita-ons of Tain.ng

•  Overhead	
•  Most	of	exis<ng	approaches	are	instruc8on	level	tain<ng	
•  Run	<me:	mul<ple	<mes	slow	down	without	hardware	support	[libbdf]	

•  Implicit	flow	
•  Informa<on	flow	through	control	dependencies	[DTA++]	

•  Implementa<on	Complicity	
•  Instrumenta<on	for	each	instruc<on	
•  Libraries	and	VMs	
•  Different	PLs	and	their	run	<me	

Our Idea
	

• A	combina<on	of	Audi8ng	Logging	and	Tain8ng	

•  Taints:	objects	(file,	socket	etc.)	or	subjects	(process	etc.)	
•  NOT	tradi<onal	instruc8on	level	tain<ng	
•  Coarse	grained,	accurate	taint	tracing	

Background: BEEP [NDSS’13]

5 (I)

1 read(I)

2 read(I)

3 (I) 6 (I)

4 (I) 7 (O)
9 (O)

10 (O) 12 (O)

13 (O)

5 (I)

1 read(I)

2 read(I)

3 (I) 6 (I)

4 (I) 7 (O)
9 (O)

8 (I) 11 (I)

13 (O)
12 (O)10 (O)

8 (I) 11 (I)

Unit1 U2 U3 U4

• Why	using	BEEP?	
•  To	solve	the	dependency	explosion	problem	
•  Coarse	grained,	accurate	taint	tracing	made	possible	

System Architecture

Memory	Ring	Buffer	 User	Space	
Kernel	Space	

System		
Calls	

Syscall	Tracepoint	

Only	capture	events	

Efficiently	transfer	data	

Event	Consuming	threads	
Log	

Buffer	

Concurrent	event	processing	
Lazy	flushing	

Design: Kernel Space

•  System	call	based	approach	
•  Linux	system	call	table	is	rela<ve	stable	

•  System	calls	(can	be	easily	extended)	:	
•  Process	related	opera<ons:	crea<on,	and	termina<on	etc.	
•  File	descriptors	opera<ons:	crea<on,	and	close	etc.	
•  For	certain	objects:	socket	bind	(sys_bind)	etc.	
•  Inter-process	communica8on	related	system	calls:	pipe	(sys_pipe)	etc.	
•  BEEP	instrumented	system	calls:	unit	enter,	unit	end	etc.	

Design: User Space

• We	consume	events	in	user	space	by	alterna<ng	between	tain8ng	
and	logging.	
• Principle:	

• When	the	effects	of	events	are	permanent,	we	log.	
•  Permanent:	wri<ng	to	the	disk.	

• When	the	effects	of	events	are	temporary,	we	taint	(to	avoid	unnecessary	
logging	=>	less	storage,	less	I/O,	simpler	graph).	
•  Temporary:	IPC	channel	

• Propaga<on:	
•  Follow	the	informa<on	flow	

Example: Avoid Redundant Events
1. # vim opening a large file
2.  ...
3.   while((size = read(fd, buf)) > 0):
4.  add_node(root, buf)
5.  ...
6.  exit();

…	
T[PID=1483]	=	{	vim	}	
T[PID=1483]	=	T[PID=1483]	V		{	fd	}		=	{	vim,	fd	}	
T[PID=1483]	=	T[PID=1483]	V		{	fd	}		=	{	vim,	fd	}	
T[PID=1483]	=	T[PID=1483]	V		{	fd	}		=	{	vim,	fd	}	
T[PID=1483]	=	T[PID=1483]	V		{	fd	}		=	{	vim,	fd	}	
T[PID=1483]	=	T[PID=1483]	V		{	fd	}		=	{	vim,	fd	}	
T[PID=1483]	=	T[PID=1483]	V		{	fd	}		=	{	vim,	fd	}	
…		
LogBuffer:	T[PID=1483]	=	{	vim,	fd	}		

…	
PID	=	1483,	TYPE	=	SYSCALL:	Syscall	=	read		
PID	=	1483,	TYPE	=	SYSCALL:	Syscall	=	read	
PID	=	1483,	TYPE	=	SYSCALL:	Syscall	=	read		
PID	=	1483,	TYPE	=	SYSCALL:	Syscall	=	read		
PID	=	1483,	TYPE	=	SYSCALL:	Syscall	=	read	
PID	=	1483,	TYPE	=	SYSCALL:	Syscall	=	read	
…		
PID	=	1483,	TYPE	=	SYSCALL:	Syscall	=	exit	

Logging	
ProTracer	

…	
T[FD=8]	=	{		}	
T[FD=8]	=	{	vim	}	
LogBuffer:	T[FD=8]	=	{	vim	}	
T[FD=8]	=	T[FD=8]	V	{	vim	}	=	{	vim	}	
LogBuffer:	T[FD=8]	=	{	vim	}	
DEL:	T[FD=8]	
…		

1. # temporary files
2.  f = open(fname, create | write)
3. # File manipulation on the file
4.  while (not done)
5.  edit(f)
6. # delete temporary file
7.  delete(f)

Example: Lazy Flushing

…	
TYPE	=	SYSCALL:	Syscall	=	open,	FD	=	8	
TYPE	=	SYSCALL:	Syscall	=	write,	FD	=	8	
…...	
TYPE	=	SYSCALL:	Syscall	=	write,	FD	=	8	
…...	
TYPE	=	SYSCALL:	Syscall	=	unlink	,	FD	=	8	
…		

Logging	 ProTracer	

T[FD=8]	=	{	vim	}	
T[FD=8]	=	{	vim	}	

LogBuffer	

Evalua-on

•  Storage	Efficiency	

• Run-<me	Efficiency	

• Aqack	Inves<ga<on	Cases	

Evalua-on: Storage Efficiency (3 months, client)

BEEP	
[NDSS’13]	

168,269,688	KB		

The	 area	 of	 these	 circles	 (roughly)	 represent	
the	 log	 sizes	 generated	 by	 BEEP,	 LogGC	 and	
our	approach	(ProTracer).	

Results	 of	 monthly	 usage	 for	 server/client,	
daily	 usage	 of	 different	 users,	 and	 different	
applica<ons	can	be	found	in	the	paper.	

ProTracer	
2,437,010	KB	

LogGC	[CCS’13]	
10,037,472	KB	

Evalua-on: Run -me Efficiency (Individual Servers)

4.0%	
v.s.	

27.7%	

Evalua-on: Run -me Efficiency (Client Programs)

1.9%	
v.s.	

16.5%	

Whole	system:	7%	v.s.	40%	

Evalua-on: AVack Inves-ga-on Case - BEEP

1.  FTP	server	starts.	
2.  Aqacker	gets	connect	with	the	server	
3.  Aqacker	issues	backdoor	command	to	open	the	backdoor	
4.  Aqacker	gets	a	bash	

Evalua-on: AVack Inves-ga-on Case - ProTracer

a.a.a.a	

FTP	
main	

FTP	
listener	 Queue	 FTP	

worker	
FTP	

worker	

bash	 Others	

a.a.a.a	 FTP	 bash	 Others	

More	Cases	in	our	paper.	

Related Work

•  Low	Overhead	System	Logging	
•  Butler	[Security	’15,	ACSAC	’12],	Lee	[ACSAC	‘15,	NDSS	’13],	Xu	[ICDCS	’06],	
Lara	[SOSP	’05],	King	[NDSS	’05,	SOSP	’03]	

•  Tain<ng	
•  Keromy<s	[NSDI	’12,	VEE	’12],	Smogor	[USENIX	’09],	Song	[NDSS	’07],	
Mazieres	[OSDI	’06],	Kaashoek	[SOSP	’05]	

•  Log	storage	and	representa<on	
•  Lee	[ACSAC	’15,	CCS	’13],	Butler	[ACSAC	’12],	Zhou	[SOSP	’11]	

•  Log	integrity:	
•  Moyer	[Security	’15],	Sion	[ICDCS	’08]	

Conclusion

• We	developed	ProTracer:	
•  A	provenance	tracing	system	

• Key	Components	
•  A	combina<on	of	logging	and	tain8ng	
•  A	lightweight	kernel	module	
•  Concurrent	user	space	event	processing	

• Our	evalua<on	
•  0.84G	server	side	log	data	for	3	months	
•  2.32G	client	side	log	data	for	3	months	
•  ~7%	run	<me	overhead	on	average	

