

Practical Dynamic Searchable
Encryption with Small Leakage

Charalampos (Babis) Papamanthou
University of Maryland

cpap@umd.edu

joint work with Emil Stefanov (UC Berkeley) and Elaine Shi (University of Maryland)

Storing private files in the cloud

§  How can you search your encrypted files?
§  Not feasible with a widely-used encryption algorithm (e.g., AES)
§  Encrypt with fully-homomorphic encryption (FHE)?

§  Not very practical
§  Access with an ORAM scheme?

§  Not very practical

search for w

encryption
ciphertexts containing w

Searchable encryption (SE)

§  Lots of work since [SPW00]
§  Static schemes (setup, search)

§  e.g., [CGKO06], [KO12], [CJJKRS13]

§  Dynamic schemes (setup, search, add, delete)
§  e.g., [SPW00], [G03], [vSDHJ10], [KPR12], [KP13], [CJJJKRS14],

[NPG14]

search token for w

index
ciphertexts containing w

this talk

Some leakage
§  All existing (dynamic) SE schemes leak

§  search pattern
§ hashes of keywords I am searching for

§  access pattern
§ matching document identifiers

§  size pattern
§  the current size of the index

More leakage
§  Some dynamic SE schemes also leak

§  forward pattern
§ Newly-added documents can be searched with old

tokens
§  update pattern

§ hashes of keywords in the updated documents

But, linear search or
update time: O(N)

Our contribution
§  The first dynamic SE scheme

§  Supports searches, insertions, deletions
§  No forward pattern leakage
§  No update pattern leakage

§  Sublinear search time: O(m log3N)
§ m is the number of documents matching the search

§  Sublinear update time: O(k log2N)
§ k is the number of unique keywords contained in the document

§  Provably secure
§  System implementation

§  100,000 queries per second for 100 search results

Simple SE scheme: Token
§  Client has secret key K
§  Definition of token for word w

PRF

w K

tw
Tokens are deterministic!

Simple SE scheme: Construction

(w, d)

KEY = HASH(tw||count)
VALUE = d ⊕ HASH(tw||count)

encoded hash table T

initial index D

(w, dꞌ)

Searching for keyword w

§  Client: Sends tw
§  Server: Looks up the entries mapping to tw

§  Learns nothing about keyword W

tw

Adding (wꞌ, dꞌ)

§  Client: Sends new (KEY,VALUE)for (wꞌ, dꞌ)

(KEY,VALUE)

Adding (wꞌ, dꞌ)

§  Client: Sends new (KEY,VALUE)for (wꞌ, dꞌ)
§  Server: Updates the hash table
§  But…

§  Tokens are deterministic
§  No forward privacy L

(KEY,VALUE)

How about re-encrypting with a different key?
Linear time: O(N)

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Levelled data structure
§  l = log N +1 levels

Time per operation:
O(log N)

Our scheme: Search

§  Maintain on key per level
§  Client: Sends tokens t1 t2,…,tl for w
§  Server: For each level i, unmasks entries for w

t1

t2

t4

t3

Our scheme: Add
§  Try level 1: It does not fit

t1

t2

t4

t3

Our scheme: Add
§  Try level 1. It does not fit.
§  Client downloads consecutive-filled levels (levels 1 and 2)

t1

t2

t4

t3

Our scheme: Add
§  Try level 1. It does not fit.
§  Client downloads consecutive-filled levels (levels 1 and 2)

§  Client reencrypts with new secret keys and uploads to level 3

§  Only O(log2N) per operation

t1

t2

t4

t3

Forward privacy:
Old tokens are no good

How about deletes?

§  Treat them as special “add” entries
§  Can create problems

§  5 addition entries for word w at level 4
§  4 deletion entries for word w at level 3

O(N) time for retrieving one document

t4
add

t3

add add add add

del del del del

We show in the paper how to do that in O(log3 N)

Implementation
§  Implementation in C#
§  Experiments were run on Amazon EC2
§  244 GB of memory

Query throughput

Update throughput

Bandwidth utilization

Thanks!

Updates: Data structure

Updates: Encrypted data structure
§  l hash tables

Updates: Data structure
§  l = log N +1 levels

Updates: Data structure
§  l = log N +1 levels

Updates: Data structure
§  l = log N +1 levels

Updates: Data structure
§  l = log N +1 levels

Searchable encryption

§  Lots of work since 2000
§  Static constructions

§  [][CGKO06], [KO12], [CJJKRS13]

§  Dynammic constructions

§  My work: First dynamic efficient scheme, [CCS12]
§  Privately indexes keywords, not only files
§  Efficient system implementation

§  My work: First parallel scheme, [FC13]
§  Uses a tree-based approach

search token

index

Verifiable Computing

F:
circuit

RAM program

input u

output F(u)
proof π

§  π should be O(|F(u)|)
§  Cloud should not be able to cheat
§  Many works in the literature

Recent breakthroughs
§  In theory

§  Give me any circuit C, I can create a VC protocol for
you
§  E.g., Quadratic Span Programs (EUROCTYPT 13)

§  In practice

§  Many systems have been developed to implement VC
§  E.g., Pinocchio (SSP 13), Pantry (SOSP 13)

§  Immense improvement in the practical landscape of
VC since 2010…
§  …when the only way to do general VC was FHE and PCPs

§  Still not practical for real-life applications
§  E.g, a SELECT query over a database of one billion records?

My approach: Focus on popular
applications

expressiveness

practicality

any circuit
any RAM program

my
approach

popular cloud applications

Some numbers
§  Intersection of two sets of 10,000 entries each where

the output is 200 elements:
§  ~2 seconds (proof computation)

§  Shortest path over a planar graph of 10,000 nodes
§  ~3 seconds (proof computation)

§  Pattern matching of a 10-character pattern (match/
mismatch) over a text of 100,000 characters
§  ~25 µs (proof computation)

§  Verification is always fast

Grand challenges ahead
§  Still we are not practical enough
§  Normal conjunctive keyword search takes order

of microseconds
§  The added verifiability guarantee takes order of

seconds
§  Same with shortest paths

§  Plenty of room for improvement
§  Expertise from crypto and systems and algorithms

required
§  Grand challenge: Build a verifiable DBMS with

reduced overhead

