DISCOVRE

Efficient Cross-Architecture Identification of Bugs in Binary Code

Cyber Analysis & Defense

© Sebastian Eschweiler, Cyber Analysis and Defense Department, Fraunhofer FKIE

OUTLINE

- 1. Motivation
- 2. Baseline
- 3. Derivation of discovRE's Key Properties
- 4. Cross-Architecture Bug Search

Motivation – Finding Firmware Bugs

Backdoor LISTENING ON THE INTERNET confirmed in :

- Linksys WAG120N (@p_w999)
- Netgear DG834B V5.01.14 (@domainzero)
- Netgear DGN2000 1.1.1, 1.1.11.0, 1.3.10.0, 1.3.11.0, 1.3.12.0 (iss
- Netgear WPNT834 (issue 79)
- OpenWAG200 maybe a little bit TOO open ;) (issue 49)

Backdoor confirmed in:

- Cisco RVS4000 fwv 2.0.3.2 & 1.3.0.5 (issue 57)
- Cisco WAP4410N (issue 11)
- Cisco WRVS4400N
- Cisco WRVS4400N (issue 36)
- Diamond DSL642WLG / SerComm IP806Gx v2 TI (https://news.yc

DGN1000B Firmware Version 1.1.00.

Note: We recommend you to update your wireless drivers to the latest version a

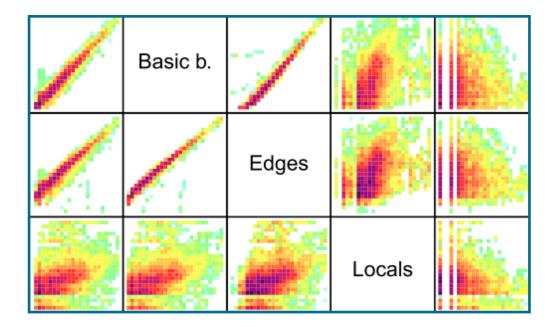
Bug Fixes

Fixed 32764 port issue

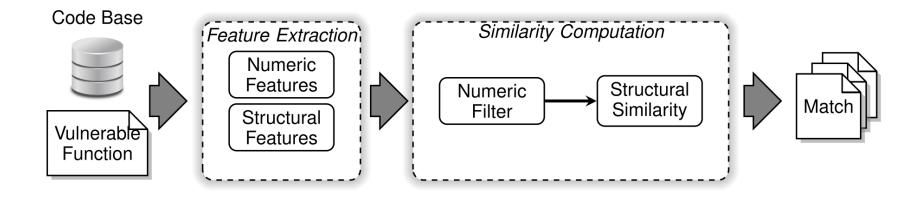
Image source: https://github.com/elvanderb/TCP-32764 © Sebastian Eschweiler, Cyber Analysis and Defense Department, Fraunhofer FKIE

Baseline

Image source: https://www.vectorstock.com/royalty-free-vector/1068869 © Sebastian Eschweiler, Cyber Analysis and Defense Department, Fraunhofer FKIE



Generation of a Ground Truth



Derivation of discovRE's Key Properties

discovRE

Cross-Architecture Bug Search

	Heartbleed (TLS)			
		Query Time (ms)		
From \rightarrow To	Rank (discovRE)	Multi-MH	Multi-k-MH	discovRE
$ARM \rightarrow \text{DD-WRT}$	1;2	$1.3\cdot 10^5$	$4.3\cdot 10^5$	43.8
$\text{ARM} \rightarrow \text{Android}$	1;2	$5.7\cdot 10^5$	$1.9\cdot 10^6$	49.5
$ARM \rightarrow \texttt{ReadyNAS}$	1;2	$1.1\cdot 10^6$	$3.8\cdot 10^6$	66.5
$MIPS \rightarrow \text{DD-WRT}$	1;2	see above		47.2
$\text{MIPS} \rightarrow \text{Android}$	1;2			55.2
$MIPS \rightarrow \texttt{ReadyNAS}$	1;2			65.7
$x86 \rightarrow \text{DD-WRT}$	1;4			43.0
$x86 \rightarrow Android$	1;2	see above		58.7
$x86 \rightarrow \texttt{ReadyNAS}$	1;5			69.8

Conclusion

- Systematic analysis of a wide collection of function-level features
- Multi-staged approach to find similar functions in large code bases
- discovRE is able to discover vulnerable functions in complete firmware images fast:
 - < 1 hour preparation time
 - < 100 ms query time

THANK YOU FOR YOUR ATTENTION.

Cyber Analysis & Defense

© Sebastian Eschweiler, Cyber Analysis and Defense Department, Fraunhofer FKIE