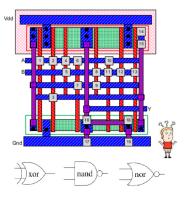

Integrated Circuit (IC) Decamouflaging: Reverse Engineering Camouflaged ICs within Minutes

Mohamed El Massad[†]

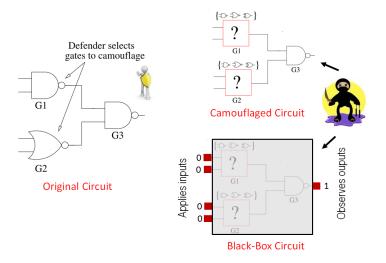
with Siddharth Garg^\dagger and Mahesh Tripunitara ‡

[†]New York University, [‡]University of Waterloo

Threat: IC Circuit Extraction



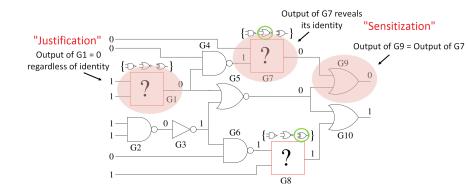
"Extracted an IC with embedded encryption hardware and 12K gates of digital logic....Now we *understood the encryption*, had the keys and full chip simulations running" — [Torrance+, CHES'09]


Proposed Solution: IC Camouflaging

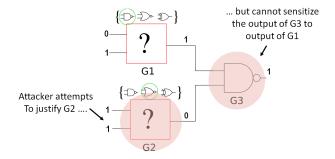
- Use of dummy contacts to camouflage a gate. [US6791191]
- Identity of camouflaged gate cannot be determined by attacker. [R+,CCS'13]
 - Ex: {XOR, NAND, NOR} look identical to attacker

[R+, CCS'13] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri. ACM CCS'13. (Best Student Paper)

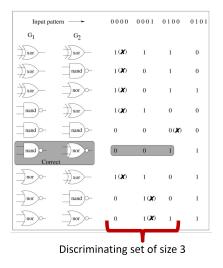
Defender vs. Attacker


- Camouflaging has a per-gate cost (area/delay/power).
- Claim [R+, CCS'13]: if a small number of judiciously selected gates (> 140) are camouflaged ⇒ attacker would need "1000's of years" to decamouflage.

[R+,CCS'13] seemingly resolves cost vs. security trade-off.


Credit: partypeopleinc.com

Which gates...? — mindset from [R+, CCS'13]


Polynomial-time attack strategy if gates can be simultaneously justified and sensitized.

Non-Resolvable Gates

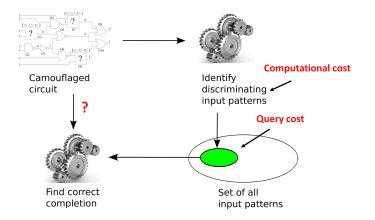
Claim [R+, CCS'13]: If gates *cannot* be simultaneously justified and sensitized, attacker must resort to brute-force attack \rightarrow exponential complexity in number of camouflaged gates.

Procedure to camouflage gates such that this property is satisfied.

- Each input eliminates a subset of solutions (aka *completions*).
- A set of inputs sufficient to eliminate all but the right completion → discriminating set.

C is the camouflaged circuit.

X is a completion, i.e., assignment to camouflaged gates.


 C_X is the camouflaged circuit with completion X.

 $\ensuremath{\mathcal{C}}$ is the blackbox circuit.

Definition

I, a set of input patterns, is discriminating if:

for every incorrect completion X, $\exists i \in I \text{ s.t. } C_X(i) \neq \mathcal{C}(i)$

This Paper: In practice, both query cost and computational cost of attack are low \longrightarrow IC decamouflaging in minutes.

Credit: liv9.ca

Devising the Two Procedures

DISC-SET-DEC, Inputs: C, I, C(I). Is I NOT a discriminating set?

Certificate for $\overline{\text{DISC-SET-DEC}}$:

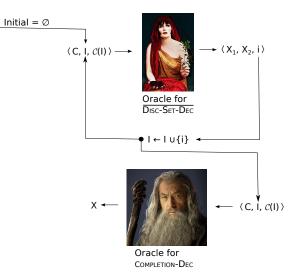
Distinct completions X_1 and X_2 that agree on all inputs in I but not on new input $i \notin I$. $\Longrightarrow \in \mathbf{NP}$

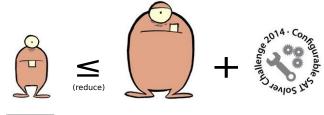
 $\frac{\text{Oracle for}}{\text{D}_{\text{ISC}}\text{-}\text{S}_{\text{ET}}\text{-}\text{D}_{\text{EC}}}$ Outputs $\langle X_1, X_2, i \rangle$

COMPLETION-DEC, Inputs: C, I, C(I). \exists a completion X such that $C_X(I) = C(I)$?

Certificate for COMPLETION-DEC:

A valid completion X.


$$\Longrightarrow \in \mathbf{NP}$$

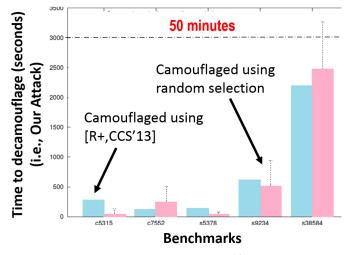

Oracle for COMPLETION-DEC Outputs X

Credit: squarespace.com, redbubble.net

Attack Procedure

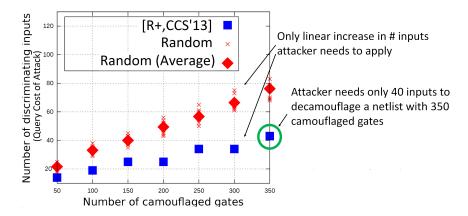
Building the Oracles

Disc-Set-Dec/ Completion-Dec CNF-SAT

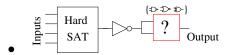

SAT Solver (e.g., MiniSat)

Credit: bigcommerce.com, aclib.net

B'mark	Inputs	Outputs	Gates	Camouflaged
c432	36	7	160	10
s298	3	6	133	6
s400	3	6	164	7
s444	3	6	181	7
s713	35	23	393	9
c5315	178	123	2406	63
c7552	207	108	3512	65
s5378	35	49	2779	56
s9234	19	22	5597	79
s38584	38	304	19234	128


Same number of gates camouflaged as in [R+,CCS'13].

Time to Decamouflage


Brute-force \rightarrow Our Attack : 10¹³ Years \rightarrow 50 Minutes.

Discriminating sets (i.e., query costs) are small, in practice.

Camouflaging insecure even with $> 5 \times$ increase in cost.

• Increase attacker's query-complexity.

• Increase # possible gate-types.

Strong caution for IC designers.

Appealing claims on secure IC camouflaging with low cost need to be vetted carefully.

Mindset rooted in foundations is helpful.

Credit: pluspack.com

Related Work

Chipworks.

Inside the Apple Lightning Cable.

http://www.chipworks.com/en/technical-competitive-analysis/resources/blog/ inside-the-apple-lightning-cable/, Oct. 2012.

Degate.

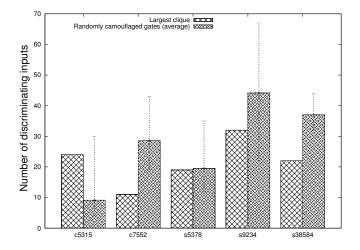
Reverse engineering integrated circuits with degate. http://www.degate.org/documentation/

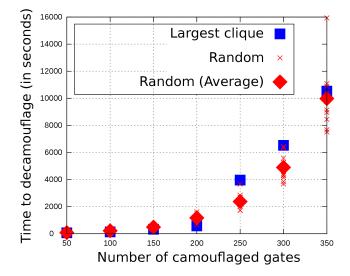
Integrated circuits protected against reverse engineering and method for fabricating the same using vias without metal terminations.

US Patent 6,791,191, Sept. 2004.

J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri.

Security Analysis of Integrated Circuit Camouflaging. ACM SIGSAC Conference on Computer and Communications Security, CCS, 2013.


SypherMedia.


Syphermedia library circuit camouflage technology. http://www.smi.tv/solutions.htm

A. Baumgarten, A. Tyagi and J. Zambreno.

Preventing IC piracy using reconfigurable logic barriers. IEEE Design and Test of Computers, 27(1):6675, 2010.

