The Sniper Attack: Anonymously Deanonymizing and Disabling the Tor Network

> Network and Distributed System Security Symposium February 25th, 2014

Rob Jansen¹, Florian Tschorsch², Aaron Johnson¹, Björn Scheuermann²

¹U.S. Naval Research Laboratory ²Humboldt University of Berlin

The Tor Anonymity Network

Censorship Arms Race

The Tor Project - https://metrics.torproject.org/

Downturns	Upturns
55	69
53	50
47	33
28	46
27	42
20	26
14	7
12	17
11	14
11	5
	Downturns 55 53 47 28 27 20 14 12 11 11

Censorship Arms Race

Beyond the Finish Line

- As the cost to block access increases, a viable alternative is to degrade service
- Active attacks are increasingly pervasive
- Understanding the attack space and how to defend is vital to Tor's continued resilience:
 - As adversaries become increasingly sophisticated
 - When attacks subvert explicit security goals

Outline

- Background
- The Sniper DoS Attack Against Tor's Flow
 Control Protocol
- How DoS Leads to Hidden Service
 Deanonymization

Tor Background

Tor Background

Tor Background

Tor Flow Control

Tor Flow Control

Tor Flow Control

SENDME Signal Every 100 Cells

1000 Cell

Limit

Memory-based denial of service (DoS) attack

 Exploits vulnerabilities in Tor's flow control protocol

Can be used to disable arbitrary Tor relays

The Sniper Attack: Results

- Implemented Sniper Attack Prototype
 - Control Sybils via Tor Control Protocol
- Tested in Shadow (shadow.github.io)
- Measured:
 - Victim Memory Consumption Rate
 - Adversary Bandwidth Usage

Mean RAM Consumed at Victim

Mean BW Consumed at Adversary

		Direct		Anonymous	
Relay Groups	Select %	<u>1 GiB</u>	<u>8 GiB</u>	<u>1 GiB</u>	<u>8 GiB</u>
Top Guard	1.7				
Top 5 Guards	6.5				
Top 20 Guards	19				
Top Exit	3.2				
Top 5 Exits	13				
Top 20 Exits	35				

Path Selection Probability \approx Network Capacity

		Diı	rect	Anonymous		
Relay Groups	Select %	<u>1 GiB</u>	<u>8 GiB</u>	<u>1 GiB</u>	<u>8 GiB</u>	
Top Guard	1.7	0:01	0:18	0:02	0:14	
Top 5 Guards	6.5	0:08	1:03	0:12	1:37	
Top 20 Guards	19	0:45	5:58	1:07	8:56	
Top Exit	3.2	0:01	0:08	0:01	0:12	
Top 5 Exits	13	0:05	0:37	0:07	0:57	
Top 20 Exits	35	0:29	3:50	0:44	5:52	

		Dir	rect	Anonymous		
Relay Groups	Select %	<u>1 GiB</u>	<u>8 GiB</u>	<u>1 GiB</u>	<u>8 GiB</u>	
Top Guard	1.7	0:01	0:18	0:02	0:14	
Top 5 Guards	6.5	0:08	1:03	0:12	1:37	
Top 20 Guards	19	0:45	5:58	1:07	8:56	
Top Exit	3.2	0:01	0:08	0:01	0:12	
Top 5 Exits	13	0:05	0:37	0:07	0:57	
Top 20 Exits	35	0:29	3:50	0:44	5:52	

		Diı	rect	Anonymous		
<u>Relay Groups</u>	Select %	<u>1 GiB</u>	<u>8 GiB</u>	<u>1 GiB</u>	<u>8 GiB</u>	
Top Guard	1.7	0:01	0:18	0:02	0:14	
Top 5 Guards	6.5	0:08	1:03	0:12	1:37	
Top 20 Guards	19	0:45	5:58	1:07	8:56	
Top Exit	3.2	0:01	0:08	0:01	0:12	
Top 5 Exits	13	0:05	0:37	0:07	0:57	
Top 20 Exits	35	0:29	3:50	0:44	5:52	

		Dir	ect	Anonymous		
Relay Groups	Select %	<u>1 GiB</u>	<u>8 GiB</u>	<u>1 GiB</u>	<u>8 GiB</u>	
Top Guard	1.7	0:01	0:18	0:02	0:14	
Top 5 Guards	6.5	0:08	1:03	0:12	1:37	
Top 20 Guards	19	0:45	5:58	1:07	8:56	
Top Exit	3.2	0:01	0:08	0:01	0:12	
Top 5 Exits	13	0:05	0:37	0:07	0:57	
Top 20 Exits	35	0:29	3:50	0:44	5:52	

< 1 GiB RAM < 50 KiB/s Downstream BW < 100 KiB/s Upstream BW

- Cause HS to build new rendezvous circuits to learn its guard
- 2. Snipe HS guard to force reselection
- 3. Repeat until HS chooses adversarial guard

Speed of Deanonymization

Guard BW (MiB/s)	Guard Probability (%)	Average # Rounds	Average # Sniped	Average Time (h) 1 GiB	Average Time (h) 8 GiB
8.41	0.48				
16.65	0.97				
31.65	1.9				
66.04	3.8				
96.61	5.4				

Speed of Deanonymization

Guard BW (MiB/s)	Guard Probability (%)	Average # Rounds	Average # Sniped	Average Time (h) 1 GiB	Average Time (h) 8 GiB
8.41	0.48	66	133	46	279
16.65	0.97	39	79	23	149
31.65	1.9	24	48	13	84
66.04	3.8	13	26	6	44
96.61	5.4	9	19	5	31

Speed of Deanonymization

Guard BW (MiB/s)	Guard Probability (%)	Average # Rounds	Average # Sniped	Average Time (h) 1 GiB	Average Time (h) 8 GiB
8.41	0.48	66	133	46	279
16.65	0.97	39	79	23	149
31.65	1.9	24	48	13	84
66.04	3.8	13	26	6	44
96.61	5.4	9	19	5	31

1 GiB/s Relay Can Deanonymize HS in about a day

Countermeasures

- Sniper Attack Defenses
 - Authenticated SENDMEs
 - Queue Length Limit
 - Adaptive Circuit Killer -

Countermeasure deployed in Tor!

- Deanonymization Defenses
 - Entry-guard Rate-limiting
 - Middle Guards

cs.umn.edu/~jansen rob.g.jansen@nrl.navy.mil

think like an adversary

How Tor Works

Tor protocol aware

Sniper Attack Experimental Results

Sniper Resource Usage

		Direct		Anonymous		
<u>Config</u>	RAM (MiB)	<u>Tx</u> (KiB/s)	<u>Rx</u> (KiB/s)	RAM (MiB)	<u>Tx</u> (KiB/s)	<u>Rx</u> (KiB/s)
1 team, 5 circuits	28	4.0	2.3	56	3.6	1.8
1 team, 10 circuits	28	6.1	2.6	57	9.4	2.1
5 teams, 50 circuits	141	30.0	9.5	283	27.7	8.5
10 teams, 100 circuits	283	56.0	20.9	564	56.6	17.0

Memory Consumed over Time

Sniper Attack Through Tor

Tor Hidden Services Background

