

Privacy-Preserving Distributed Stream Monitoring

Arik Friedman¹, Izchak Sharfman², Daniel Keren³, Assaf Schutser²

¹ NICTA, Australia ² Technion, Israel ³ Haifa University, Israel

Distributed Stream Networks

NICTA Copyright 2014

Related work...

- Continuous monitoring in centralized settings
 - Differential privacy under continual observation [DPNR10]
 - Statistics on sketches [MMNW11]
 - Adaptive sampling [FX12]
- Computation in Distributed settings
 - Distributed noise generation [DKMMN06, CRFG12]
 - Distributed heavy hitters [HKR12]
- Distributed time series data
 - Historical time-series data [RN10]
 - Cryptographic protocols [SCRCS11]
 - Heavy hitters over a sliding window [CLSX12]

This work:

Monitoring complex functions over statistics derived from streams

NICTA Copyright 2014

Problem Setting

Problem Setting

Other peers should not be able to infer anything about any particular mail message

Cryptographic solutions:

✓ Confidentiality

Inferences from the output still possibly

 \Rightarrow Differential privacy addresses such leaks

Differential privacy [DPNR10]

Privacy as a Budget - Naïve Solution

 $\Rightarrow \mathsf{P}(\mathsf{o}_1 - \mathsf{o}_2 | \mathsf{S}) \approx_{\scriptscriptstyle{\mathsf{C}}} \mathsf{Pr}(\mathsf{o}_1 - \mathsf{o}_2 | \mathsf{S}')$

Privacy loss in each time period \Rightarrow wasteful, outputs are not independent Instead, privacy cost can be *amortized*

NICTA Copyright 2014

Efficient stream monitoring [SSK'06, KSSL'12]

Efficient stream monitoring [SSK'06, KSSL'12]

Our Algorithm

Our Algorithm

Noise added to the

the privacy in all

new safe zone is

assigned!

safe zone will protect

silent rounds, until a

Privacy at the Node Level

Evaluating v₁(t) against <u>the safe zone in Stream S:</u> t=1: silent round t=2: silent round t=3: silent round t=4: safe zone breach Evaluating u₁(t) against the safe zone in Stream S': t=1: silent round breach!

 \Rightarrow Addressed by adding

randomness to the safe zone radius (Laplace mechanism) $Pr(silent | S) \approx Pr(silent | S')$ because $Pr(r') \approx Pr(r'')$

Privacy at the Node Level

Evaluating v₁(t) against <u>the safe zone in Stream S:</u> t=1: silent round t=2: silent round t=3: silent round t=4: safe zone breach Evaluating u₁(t) against <u>the safe zone in Stream S':</u> t=1: silent round t=2: silent round t=3: silent round t=4: <u>safe zone breach</u> silent round ⇒ Addressed by adding randomness (exponential mechanism) when evaluating $v(t) \in_{\varepsilon} B(c,r')$

Our Algorithm

Our Algorithm

Experimental evaluation

Reuters corpus:

- 781,265 labelled news stories
- Distributed by round robin between 10 nodes
- Each node monitors a window of 10,000 stories
- "CCAT" category denotes spam, "febru" feature a monitored term

Monitoring count

NICTA Copyright 2014

Adding error margins

Error margins trade accuracy for longer system lifetime

Additional results in the paper...

- Infogain evaluation
 - Tradeoff between System lifetime, threshold and privacy: we pay for privacy mainly when close to the threshold.
- Error margins trade-offs
- Violation rounds (local breaches *b*) trade-off
- Costs of distributed vs. centralized

Summary and future directions

Communication efficiency translates to better privacy

- Possible enhancements:
 - Local communication between nodes could allow further mitigation of privacy loss
 - Prediction models that tailor safe zones to nodes can reduce the probability of local breaches
 - As the processing window advances, the privacy budget can be replenished

Thank you

NICTA @ Sydney (we hire!)