


comings discussed above. As the left part of Figure 1 shows,
AAPL improves the state-of-art data-flow analysis by adding
the capability of identifying and checking the complex flows.
These complex flows constitute several types of common
privacy disclosures in Android apps. Including these flows
significantly increases the detection rate of privacy disclo-
sures. Furthermore, unlike previous works, which report all
detectable privacy disclosures, AAPL is capable of judging
the legitimacy of privacy disclosures and only alerting privacy
leaks, which are the true concerns of app users and security
analysts.

AAPL achieves highly accurate detection by introducing
three new techniques to existing static data-flow analysis of
Android apps: opportunistic constant evaluation, object origin
inference, and joint flow tracking. The first two techniques
overcome the open research challenge of correctly recognizing
conditional sources and sinks of sensitive data and identifying
the related data-flows. The third technique allows AAPL to
form joint data-flows from seemingly disconnected data-flows
that are connected by external code during runtime. These
improvements better adapt existing static analysis techniques
to the unique programming paradigms of Android apps and
therefore allow AAPL to detect the data-flows that are invisible
to existing methods.

Once the improved data-flows analysis has detected pri-
vacy disclosures, AAPL continues to discover privacy leaks
using a novel peer voting mechanism. This mechanism is
inspired by the fact that applications with the same or similar
functionality (i.e., peer apps) should exhibit similar privacy
consumption behaviors, and therefore incur a similar set of
privacy disclosures. The peer voting mechanism determines
the legitimacy of a particular privacy disclosure detected in
an app (i.e., primary app) by consulting the privacy disclosure
profiles of its peer apps. If the privacy disclosure is common
among the peer apps (i.e., majority of the peers “vote” for
it), it is considered to be necessary to the primary app’s main
functionalities. Otherwise, the privacy disclosure is likely to be
caused by dispensable or unexpected features of the primary
app, and therefore represents a high risk of privacy leak. The
peer app collection process is fairly straightforward. For a
primary app, AAPL queries the existing app recommendation
systems. Such systems, either an integral feature of app stores
or a standalone service by 3rd parties, returns a list of apps that
are functionally similar or related to the primary app. However,
it is not uncommon to see apps of different functionalities
returned on the same list by these systems. This is because apps
are considered as related not only when they’re functionally
similar but also when they are frequently installed or used
together (e.g., a restaurant review app and a movie review
app). AAPL filters out these minor noises by applying basic
semantic similarity analysis on app descriptions and removing
apps whose descriptions have a long semantical distance from
the descriptions of other peers.

We evaluated AAPL using 2, 777 popular apps as primary
apps, which led to 37, 679 peer apps in total. We randomly
chose 417 primary apps for in-depth evaluations, which involve
532 unique privacy disclosures. AAPL can achieve a 88.7%
accuracy with a false positive rate of 10.7% and a false
negative rate of 12.5%. For some specific leaks (e.g., contacts),
AAPL can achieve an even better accuracy of 94.6% with a

false positive rate of 4.4% and a false negative rate of 9.9%.

This paper makes the following main contributions:

• We improve the accuracy and coverage of privacy dis-
closure analysis using multiple techniques, including
conditional flow identification through opportunistic
constant evaluation and object origin inference, and
joint flow tracking. Results show that the enhance-
ments increase detection rate by 31% while reducing
the false positive rate by a factor of 5.

• We propose using a novel peer voting mechanism to
automatically differentiate the security-critical privacy
leaks from the more general legitimate privacy disclo-
sures.

• We evaluate AAPL on 40, 456 apps. The results show
AAPL has a high accuracy and high performance.

The remainder of this paper is organized as follows.
Section II overviews of the privacy disclosure problem and
AAPL system. Section III and Section IV present the design
and implementation of AAPL. Section V reports the evaluation
results. We discuss the limitations in Section VI and related
work in Section VII. Finally, we conclude the paper in Sec-
tion VIII.

II. OVERVIEW

As mobile users continue to rely on apps for personalized
services or business mobility, apps are increasingly entrusted
with more and more private and sensitive information. Mean-
while, a large number of apps without functional dependency
on user data also use (monetize on) user privacy to varying
degrees, ranging from typically benign cases, like targeted
advertising, to ill-intended ones, like identity theft. As a
result, mobile users on one hand are largely in favor of
personalized services, but on the other hand become more and
more concerned about apps abusing their data. This issue is
worsened by the current lack of tools or methods to inform
users of potentially harmful privacy leaks in their apps without
distracting or confusing users with apps’ legitimate privacy
disclosures.

Mainstream smartphone OSs, such as Android and iOS,
provide basic protection on user sensitive information, such
as the permission system, which enforces coarse-grained and
static access control on sensitive resources as per users’ explicit
consent. However, success of such systems largely assumes a
users’ common awareness and sometimes deep understanding
on the privacy impacts of an app’s advertised features. In
practice, this assumption is not true. Moreover, these systems
offer little clues and help to users when soliciting their consent.

A. Privacy Disclosure Analysis

To help users make more informed decisions, many existing
privacy disclosure detection systems were built to reveal apps’
behaviors that propagate sensitive data (i.e., a source) to
a sensitive channel (i.e., a sink) [13], [26]. These systems
perform either static or dynamic data-flow analysis on apps.
Dynamic approaches, such as TaintDroid [13], feature low
false positives, while the static detection approaches, such
as CHEX [26], achieve high coverage and scalability. Works

2



following either approaches have demonstrated effective detec-
tion of privacy disclosures, and their results [12], [26], [31],
[39] show that about 20%-40% of all apps in Google Play
market disclose user privacy for different purposes and through
different channels.

However, simply reporting the existence of privacy disclo-
sures may not be meaningful enough to app users or security
analysts. Even if the privacy disclosure of an app is detected
and presented users, the burden of comprehending each privacy
disclosure of an app and deciding its negative privacy impact
can be untenable for the average users. Let us consider a
common privacy disclosure through which a user’s location
is sent to the Internet. Current detection systems alert users
about such privacy disclosures whenever they are detected in
an app, regardless of if the app’s core functionalities depend on
them. Therefore, whenever analyzing a legitimate navigation
app or a calculator app with a 3rd-party library aggressively
tracking users, current detection systems alert users with the
same type of reports that indicate potential privacy violations.

B. Determining Disclosure Legitimacy via Peer Voting

In our work, we aim to provide a solution that can
automatically infer if a given privacy disclosure is legitimate
or not (i.e., whether it is likely required by an app’s core
functionalities). Considering the large amount of competing
apps with similar functionalities, we form the hypothesis that
one can derive the legitimate privacy disclosures required by
the core functionalities across a collection of similar app. On
the other hand, privacy disclosures that are uncommonly used
by a collection of similar apps would naturally stand out, and
are likely unrelated to the advertised core functionalities of the
app. Based on this hypothesis, it is possible to build a system
which can automatically screens all privacy disclosures, filters
out those which are likely related to app’s core functionalities,
and only flags the highly suspicious privacy disclosures.

To properly implement and verify our hypothesis, we face
three challenges: 1) We need some way to find functionally
similar apps. As will be described later in Section III, we
mostly leverage existing app recommendation systems such
as the one provided by Google Play, and employ a natural
language processing (NLP) technique called semantic similar-
ity [32] to further purify similar apps. 2) We need a highly
accurate analysis system that can capture privacy disclosure
flows accommodating with the special Android programming
paradigm. As will be described later in Section III-A, we
choose static analysis since it allows us to discover more
complete privacy disclosure flows with high performance. 3)
We need an automated approach to differentiate the highly sus-
picious privacy disclosures from legitimate ones. Our approach
is shown in Section III-B.

C. AAPL Usage Scenarios

AAPL is designed to be practical and efficient so that it can
be operated by 1) large-scale app market providers, to screen
their hosted apps; 2) users, to avoid apps that do not respect
their privacy; 3) developers, to understand the privacy issues
of the third-party libraries they use. AAPL is a general privacy
leak flow detection system that can be taken advantage of by
multiple principles. First, AAPL could be taken as an efficient

detection system for market providers to detect the apps with
potential suspicious privacy disclosures. To further determine
whether the detected suspicious privacy disclosures are real
privacy leaks, market providers can challenge developers to
justify why and how privacy disclosures are used in the app’s
which functionality. Failure to justify the privacy disclosures
might result in rejection of the app from the markets. Without
our system, simply challenging every privacy disclosure is
unacceptable, as 1) most privacy disclosures are actually
legitimate; 2) verifying the justifications of large-scale apps is
resource-consuming for market providers. AAPL aims to detect
highly suspicious privacy disclosures, and only a small portion
of AAPL detection results are false positives that mainly caused
by special functionalities of an app (e.g., messaging in the
photo editor app). Challenging the developers of such apps is
acceptable. Second, AAPL can help privacy-concerned users
identify the apps with suspicious privacy disclosures. Users
usually do not know why and how the privacy disclosures are
used in the app. Simply reporting the privacy disclosures to
users provides limited help to understanding how well the app
respects users’ privacy. AAPL provides an important metric
for users to understand how likely the privacy disclosure is a
privacy leak, and the suspicious privacy leaks when comparing
with similar apps. Third, developers can make use of AAPL to
check whether their apps have suspicious privacy disclosures.
If the suspicious privacy disclosure is caused by third-party
libraries, the developer can choose an alternative library to
avoid suspicious privacy disclosures. On the other hand, if
the suspicious privacy disclosure is necessary to the benign
code written by the developer, the developer can explicitly
justify the necessary usage of the privacy disclosure in the
app description.

D. Threat Model

We position AAPL as a suspicious privacy disclosure
detection system, designed to uncover privacy leakage data
flows in a given Android app. Instead of focusing on mali-
cious privacy leakages that deliberately evade detection, AAPL
targets efficient and scalable screening of a large number
of apps, some of which may not respect user privacy and
aggressively exploit user privacy in exchange of revenue.
Malware detection is described in existing works [4], [21],
[39], and is out of scope of this paper. Specifically, AAPL
detects unobfuscated privacy disclosures that could not be
justified by the general functionalities of the app. In addition,
while AAPL should generally have a high accuracy, it does
not guarantee a zero false positive rate or false negative rate
as most other privacy disclosure detection systems [18], [26].
AAPL aims to have a low false positive rate (such that manual
filtering is feasible) while also provide a large degree of code
coverage (as demonstrated through evaluation).

III. AAPL DETECTION SYSTEM

AAPL aims to address the problem of automatically
differentiating privacy leaks from legitimate privacy
disclosures with high accuracy. AAPL achieves
this goal by proposing two major components: 1)
Privacy Disclosure Analysis Module that detects
all potential privacy disclosures in Android app, including
legitimate privacy disclosures and privacy leaks, and 2)

3





1 public void sendContactsToServer() throws IOException

2 {

3 Uri uri=ContactsContract.Contacts.CONTENT_URI;

4 /* Limitation: did not indicate if ‘‘uri’’ points to

5 sensitive data - requiring constant evaluation */

6 Cursor cur=getContentResolver().query(uri,null, null,

null, null);

7 int contactsCounter = cur.getCount();

8 sendDataToServer(String.valueOf(contactsCounter));

9 if (contactsCounter == 0) return;

10 while (cur.moveToNext()) {

11 int idClnIdx = cur.getColumnIndex("_id");

12 String id = cur.getString(idClnIdx);

13 StringBuilder data = new StringBuilder(id);

14 int nameClnIdx = cur.getColumnIndex("display_name");

15 /* Limitation: did not track the joint flow from

16 ‘‘rawFile’’ to ‘‘newFile’’ - requiring joint flow

17 tracking */

18 String rawName = cur.getString(nameClnIdx);

19 File rawFile = new File(getFilesDir(), "filename");

20 writeDataToLocalFile(rawFile, rawName);

21 ...

22 File newFile = new File(getFilesDir(), "filename");

23 String newName = readDataFromLocalFile(newFile);

24 data.append(newName);

25 sendDataToServer(data.toString());

26 }

27 }

28

29 public void sendDataToServer(String Data) throws

IOException

30 {

31 URL url=new URL("http://urlsample");

32 HttpsURLConnection conn=(HttpsURLConnection)

url.openConnection();

33 OutputStream output=conn.getOutputStream();

34 /* Limitation: did not indicate if the generic

35 ‘‘write()’’ will write to sensitive sinks -

36 requiring object origin inference for ‘‘output’’ */

37 output.write(Data);

38 }

Fig. 4. Limitations with Previous Static Detection Systems

(sensitive) source/sink, we increase our detection rate at the
expense of a high false positive rate (the same API call
is used to access a plethora or different, and oftentimes
insensitive data/channels [6]). On the other hand if we choose
to skip them, then we will miss many extremely sensitive
data/channels associated with conditional sources/sinks (e.g.,
contacts, browse history, call log, SMS, and IO stream).
To correctly identify conditional sources/sinks, we have to
statically evaluate their possible values or types, which leads
us to design opportunistic constant evaluation

for conditional sources/sinks that are dependent on
the values of their parameters in Section III-A1
and object origin inference for conditional
sources/sinks that are dependent on the type of the object
they belongs to in Section III-A2.

Another limitation of existing works [18], [26] is that
existing taint flow tracking will stop when the data flow
into locations outside the app code, such as databases, file
systems, and other OS data structures. For example, the code
from lines 18 to 25 in Figure 4 temporarily stores sensitive
data in a non-sensitive local file, but later loads and sends
the sensitive data out to remote server (e.g., joint flow). We
propose joint flow tracking in Section III-A3 to solve
this issue.

1) Opportunistic Constant Evaluation: To identify
the conditional sources/sinks that are dependent on

1 String str = "dead";

2 ...

3 switch (...) {

4 case 0:

5 str += "beef";

6 break;

7 case 1:

8 str += "caffe";

9 break;

10 ...

11 default:

12 str += "";

13 }

14 ...

15 System.out.println(str);

Fig. 5. Traditional constant folding example.

the values of their parameters (e.g., the sensitivity
of ContentResolver.query() depends on the
value of its parameter uri), an intuitive solution is
to statically collect a set of all possible values of the
parameter in question and check if the set contains any
interesting value that indicates a sensitive source/sink (e.g.,
parameter uri in ContentResolver.query() points to
content://contacts). We have devised a new technique,
namely opportunistic constant evaluation,
inspired by traditional constant folding technique. Constant
folding (or constant propagation) is a standard compiler
technique [9] that simplifies constant expressions at compile
time. As an example, consider the following statement:
String str = "foo" + " " + "bar";. Without the
constant folding optimization this statement would resolve
to a series of method invocations from the String class, e.g.,
String str = "foo".concat(" ".concat("bar")).
If the compiler has constant folding enabled, it will directly
initialize str with the (string) constant "foo bar". Note
that, such folding is performed only if it can be proven to
be safe. For instance, in the snippet shown in Figure 5, the
compiler will not constify the argument str of println(),
since there are more than one data path that define str with
a (different) value (the exact value of str depends on the
switch condition, which in turn may depend on dynamic,
run time computation). However, if the compiler determines
that all cases apart “default” are dead code, it will replace
println(str) with println("dead"), since str

remains constant across all control and data paths leading to
the println() statement. Similarly, value-flow analysis [7]
can help find the variables that have same values as but
different names with some constants.

Opportunistic constant evaluation is doing
the folding in an opposite way. Its main idea is to stati-
cally compute the set of all possible values of specific pa-
rameters along all program paths passed to the conditional
sources/sinks, e.g., generic content resolvers, and decide the
sensitivity of the source/sink based on the set. As a result, in
the example shown in Figure 5, it produces a set of all possible
values {deadbeef, deadcaffe, dead}.

Let us consider again ContentResolver.query().
The actual content accessed with this call depends
on the value of the first parameter (i.e., uri) of
query(). If uri = "content://contacts/...",
then contact information will be accessed. Likewise, if

5



uri = "content://mms-sms/...", MMS and SMS
messages will be accessed. Assuming that both contact infor-
mation and MMS/SMS content is sensitive, we should consider
ContentResolver.query() as a sensitive data source in
case uri is one of the above, but we should ignore it if, uri
is used to access app-specific (insensitive) data. Although uri
can be computed dynamically at run time, the Android frame-
work provides a set of constant schemas that are typically used
as templates by app authors when requesting access to content.
For instance, Contacts.CONTENT_URI is a Uri object
(declared as public static final) that uses the content
schema to request access to contact information. Similarly,
Browser.SEARCHES_URI is used for the browser search
history. Our intuition is that in most cases, the uri parameter
will either be constant at the point of use or constructed
progressively (perhaps with the help of run time information)
using URI objects from the Android framework (i.e., start
with a constant accessor, like Contacts.CONTENT_URI,
and further specialize it by appending a variable suffix).

To facilitate conditional tracking, we first need to aug-
ment our list of predefined sources/sinks, with informa-
tion regarding the parameter values of generic data and
OS object accessors. We have manually analyzed the An-
droid framework and identified about 600 cases that sig-
nify whether we should track a generic source/sink or
not. For example, ContentResolver.query() is con-
ditionally tracked in 48 cases, e.g., when uri begins with
the prefix content://call_log, content://mms,
content://contacts, etc.

Armed with that information, we apply constant folding
opportunistically in an inter-procedural manner, and collect
as many constant values for the interesting parameters of
conditional sources/sinks as possible. Notice that though tra-
ditional constant folding algorithms aim for safety (recall that
in Figure 5 str will not be constified in the general case), we
strive to be as complete as possible. Hence, for the code snippet
in Figure 5, AAPL returns the following as possible values
for str: {"dead", "deadbeef", "deadcaffe"}. To
achieve that, leveraging system dependence graph (SDG) [24],
we build a data-dependency only graph (DDG). We first
compute a data-dependence sub-graph of the source/sink in
question. Such a sub-graph is a DDG rooted with the condi-
tional parameter(s) of the respective source/sink (taken from
our augmented list). Every node of that sub-DDG represents
a Static Single Assignment (SSA) statement related to the
computation of the value of the parameter at the source/sink.
We then perform a post-order DFS traversal and constify
each node using abstract interpretation of the SSA statements.
Note that the post-order traversal of the sub-DDG guarantees
that before trying to constify a certain node, we will have
already visited and constified all its predecessors (DDGs are
directed graphs). The initial seeds to this process are SSA
statements that correspond to leaf nodes in the sub-DDG graph
and contain constants of primitive types (e.g., strings, URIs,
numerical values). Finally, once we have collected a set of
possible constants for the respective parameter(s), we check
every constant separately to see if it matches the value that
indicates this is a source/sink.

2) Object Origin Inference: In Section III-A1, we show
how we identify the conditional sources/sinks that depends on

their parameter values. In this section, we present another kind
of conditional sources/sinks whose conditions are the types
of the objects they belong to. In the 37th line in Figure 4,
the object output of generic type OutputStream can
write data to either a local file or a remote server based
on its channel. However, data-flow analysis itself can only
reflect that the output is an object of type OutputStream.
Without the knowledge of the concrete channel output is
pointing to, we cannot figure out to where it will write
data, and thus fail to determine whether output.write()
is a sensitive sink. Type inference [3], [28] is a traditional
technique used for analysis and optimization of object-oriented
programs (e.g., Java program). The basic idea of traditional
type inference systems allocate a type variable with every slot
and expression in the target program, then build a directed
graph by performing the (top-down) data-flow propagations
over all the type variables. Given that we are only interested
in some particular conditional sources/sinks, we propose the
lightweight and efficient object origin inference to
infer the “derived type” of the interested object. Having the
background with sub-DDG in constant evaluation, our origin
inference approach is actually intuitive. Considering the same
example, we first select the node of output in the SDG as
a root node, and build its sub-DDG using backward slicing.
Unlike constant evaluation, we now perform pre-order BFS
traversal to find the closest node for constructing the object.
We collected the API signatures of the constructors of all pos-
sible derived types. Upon encountering any constructor node
(e.g., HttpsURLConnection.getOutputStream() in
the given example) in the sub-DDG, we terminate the
traversal and obtain the type information from the con-
structor node. Given the type information, we can confi-
dently identify the sensitive source/sink confidently. In the
given example, as output is a OutputStream object for
HttpsURLConnection, we identify it as a sensitive sink.
Similarly, we need to augment such conditional sources/sinks
with sensitive type information. Including the ones we defined
in Section III-A1, we modeled a set of augmented 66 source
types and 15 sink types that we constructed semi-automatically
using the API-to-permission mapping provided by PScout [6]2

3) Joint Flow Tracking: In AAPL, the privacy disclosure
detection problem is converted to the equivalent problem of
checking for data-flows between sources and sinks. Naturally,
the identification of sources/sinks becomes the prerequisite.
Consider the example shown in the source code lines from 18

to 25 in Figure 4, in which the sensitive data rawName (a con-
tact name) is first temporarily stored in the local file, and then
loaded again to newName that is finally sent out to the remote
server. From the perspective of privacy disclosure analysis, it
can successfully identify cur.getString() as a source
and output.write() in sendDataToServer() as a
sink, and then check whether there is a flow between them. It
turns out that the flow cannot be identified due to: 1) rawFile
was not identified as a sensitive sink and newFile was not
identified as a sensitive source; 2) the flow between rawFile
and newFile is implicitly connected outside of app code,
thus not identified. However, the sensitive data rawName is
indeed sent to the remote server, as there is a joint flow from

2Note that while this set is adequate for testing and evaluation purposes
(i.e., it covers a relatively wide range of information leaks), it is by no means
complete.

6



rawFile to output.write(). We propose using joint
flow tracking to handle such issues. Unlike the mechanisms in
opportunistic constant evaluation and fine-grained propagation
policy, joint flow tracking records all potential sources/sinks
even they point to non-sensitive resources/channels, and finds
all sub-flows containing potential sources or potential sinks by
conservatively matching all potential sinks with all potential
sources. We can then join sub-flows together to complete
privacy disclosure flows (if they exist). In the given example,
even though rawFile is pointing to a non-sensitive local
file, it is first recorded as a potential sink. Accordingly,
newFile is recorded as a potential source. The sub-flow
from rawName to rawFile and sub-flow from newFile to
output.write() will be joined together to form a sensitive
privacy disclosure flow. Note that the number joint flows is
usually small (See Table II), the overhead of the iterative
matching is minor.

B. Privacy Leak Detection Module

Our study shows most privacy disclosures (see Figure 7)
are actually necessary to apps’ core functionalities. Simply
reporting all privacy disclosures to end users provides limited
help, and the burden of consuming all privacy disclosures
is extremely heavy. It is pressing to propose an automatic
approach to differentiate the privacy leaks from legitimate
privacy disclosures. We observed that identifying uncommon
data-flows (i.e., suspicious privacy disclosure flows) among
peer apps with similar functionalities is an effective way to
differentiate privacy leaks from legitimate privacy disclosures.
In this section, we detail how we collect the peer apps for each
primary app and leverage peer voting mechanism to find the
privacy disclosure flows which are likely to cause privacy leak
flows.

1) Peer Apps: Peer apps are defined from the perspective of
users, which comprises the apps that are functionally similar
to the primary app. In other words, a peer app could be an
alternative app of the primary app to the users. AAPL aims to
detect the privacy leaks of a given primary app via peer voting
mechanism. Given the primary app, the first step is to derive its
peer apps. There are several options to do this. For examples,
we can simply use keyword-based search to collect peer apps,
make use of machine learning techniques to classify apps based
on some features (e.g., category, description, permissions, and
called APIs), or leverage Google Play recommendation
system.

To evaluate the quality of keyword-based peer apps, we
took the name of the primary app as the keyword to query
Google Play, and manually verified the returned peer apps.
Unfortunately, we found several obvious problems with this
option: 1) If the given app is unpopular, the number of
returned “peer apps” is usually very small (e.g., less than
2), which is not enough for peer voting; 2) any app con-
taining the keyword may appear in the returned apps list.
For example, taking Facebook as a keyword, a game app
Space Dog + Facebook Game is in the returned list,
which is obviously not functionally similar to Facebook. Due
to these fundamental issues with the keyword-based approach,
we turn to think about the machine learning approach to collect
peer apps. However, features, such as permission and API are
not suitable since they would bias the peer apps to likely have

similar privacy disclosures, defeating our original purpose of
discovering uncommon privacy leaks.

We instead decide to adopt the existing Google Play

recommendation system, which can provide a
Similar Apps list (also called Users Also Viewed

before), and a Users Also Installed list for each
app. These two lists are derived from the users’ experience.
Google takes the user views and installation patterns and
leverages on data mining to derive these two lists to help
users find alternative apps. Even though the detail techniques
behind the recommendation is a black box, these two lists
indeed provide users meaningful choices in terms of selecting
functionally similar apps.

It is possible these two lists may contain some noisy apps
and polluting apps. There are two main kinds of noisy apps:
accessory apps and the “most popular” apps. It can be expected
that users who viewed/installed an app may also view/install
its accessory app (e.g., skin or photo downloading app), and
the most popular apps (e.g., browser app). Though providing
accessory apps and “most popular” apps is a necessary feature
for a recommendation system, AAPL prefers purer peer apps
to produce more accurate results. Therefore, we seek for some
way to filter out noisy apps. For “most popular” apps, the
simple same-category policy can remove most of them. Only
apps having same category as the primary app are selected as
potential peer apps. To filter out other noisy apps, we observe
NLP can help provide a ranking of similar apps based on the
semantic similarity [32] of descriptions between them and pri-
mary app. For example, the description of facebook skin

app only mentions its changing color functionality but none
of facebook’s core functionalities (e.g., sharing photos and
videos with friends, posts, text, chat and games). Such apps
will be naturally put in a low ranking by NLP. With this
intuition, we apply NLP on the similar app lists provided
by Google Play, and rank them based on their semantic
similarity with the primary app. Apps with low ranking will
be excluded for peer apps, as shown in Section V-C1.

Similar apps recommended by Google Play that are
published by the same publisher as primary app, are defined
as polluting apps. In our evaluation, we indeed find many
such cases that the developers release multiple “almost the
same” apps, dramatically affecting the fairness of peer voting
(Section III-B2) and resulting in false negative. To eliminate
such polluting apps, we take the developer account into con-
sideration, ensuring that the developer of every peer app is
different from the one of the primary app.

The above filtering is not completely reliable. Fortunately,
the peer voting mechanism does not require a perfect peer app
list. As shown in Section V-C2, with the quality of current
peer apps selection approach, we have already achieved good
accuracy. Note that the peer voting mechanism is not bound
to a specific peer app selection algorithm. If one can provide
a better approach to produce peer app lists in the future, the
final detection accuracy of AAPL will be further improved.

2) Peer Voting Mechanism: After detecting the privacy
disclosures of primary app and its peer apps, the peer voting
mechanism becomes intuitive. Given a particular privacy dis-
closure in each primary app, every (its) peer app has a chance
to vote for it: every peer app needs to answer the question:

7



Do I have this privacy disclosure? If yes, the peer votes for
1; otherwise, vote for 0. The total number of votes with 1

is represented as VotesNumber, while the number of peer
apps for the primary app of the given privacy disclosure is
represented as PeersNumber. We can derive a new number,
namely privacy legitimacy, which is calculated with
the following formula:

privacy legitimacy = VotesNumber/PeersNumber (1)

privacy legitimacy represents "how likely the privacy
disclosure is legitimate in the primary app".

IV. IMPLEMENTATION

In this section, we detail our end-to-end implementation
of the complete suspicious privacy disclosure flow detection
system, including the privacy disclosure analysis module and
the peer voting mechanism.

A. Privacy Disclosure Analysis Module

Similar to CHEX [26], our privacy disclosure flow analysis
module is built on top of Dalysis [26] and IBM WALA. It
takes as input an off-the-shelf apk file, and translates its Dalvik
bytecode into an intermediate representation (IR), relying on
Dexlib, a popular and open-sourced Dalvik bytecode parser
for Android apps. After that, static single assignment (SSA)
conversion is performed to leverage various built-in basic
analyzers of WALA, e.g., point-to analysis and the call graph
building.

Given that existing works [1], [18], [26] have implemented
similar static program analysis systems based on WALA, we
skip the basic implementation details, and only elaborate
on our core contributions described in Section III-A, which
significantly improve the accuracy of privacy disclosure flow
detection. These improvements account for about 6K SLoC in
Java. In the following, we mainly focus on system dependency
graph refinements conditional data-flow analysis. and post flow
analysis.

1) Refining System Dependency Graph using Fine-grained
Propagation Policy: Similar to the previous works [26], we
do not include the framework code in our analysis scope, but
choose to model the framework functions. This design choice
helps us avoid significant overhead and inaccuracy caused by
the use of reflection and complexity in framework code; on
the other hand, it misses the flow propagation details inside
the framework functions. To address this issue, when building
the SDG using WALA, we first employ a default coarse-grained
data propagation policy (i.e., there are flows from parameters to
return value, but not flows between parameters) for framework
functions, and obtain a raw SDG. After that, we adopt manual
modeling of commonly invoked framework functions at a fine
granularity, and perform SDG refinement to insert or delete
edges for the manually modelled framework functions.

Figure 6 shows an example of how we spec-
ify our fine-grained data propagation policy for a fre-
quently used framework function. More specifically, each
propagationPolicy tag contains a set of flow propaga-
tion policies of a specific framework method. Within each
propagationPolicy tag, we could specify multiple data-
flows between the parameters, return value, and the object

1 <PropagationPolicies>

2 <class name="java.lang.StringBuilder">

3 <method name="append">

4 <parameter name="this" type="java.lang.StringBuilder"

/>Next

5 <parameter name="str" type="java.lang.String" />

6 <return name="ret" type="java.lang.StringBuilder" />

7 <propagationPolicy from="str" to="this" />

8 <propagationPolicy from="str" to="ret" />

9 <propagationPolicy from="this" to="ret" />

10 </method>

11 ...

12 </class>

13 ...

14 </PropagationPolicies>

Fig. 6. Fine-grained Propagation Policy Example

instance. To make the coverage of fine-grained propagation
policy as complete as possible, we collect all framework
functions used in the app set used in evaluation V-B, and
rank them based on their occurrences in descending order. We
specify fine-grained policies as long as a framework function
has 1) a flow from its parameter to parameter; or 2) no flow
from any parameter to return value. Finally, our policy set
covers 131 commonly used framework functions contained
in 17 classes, including String, Uri, StringBuilder,
HttpUriRequest, etc. In our in-depth evaluation in Sec-
tion V-B, we did not find any false positive flow that is due
to we have not specified fine-grained policies for the involved
functions.

2) Implementing a Highly Accurate Detection Model:
To accommodate the programming paradigm of Android, our
primary goal is to accurately determine whether the condi-
tional sources/sinks are indeed sensitive. We implemented the
opportunistic constant evaluation and object origin inference
components to support conditional source/sink as a back end
analyzer.

For opportunistic constant evaluation, we first construct
the sub-DDG for a statement in question (e.g., for a generic
data wrapper like ContentProvider.query()). Next,
we traverse the sub-DDG using the technique outlined in
Section III-A1. We extended the basic WALA statement node
representation with additional fields for keeping sets of con-
stant values. While performing the post-order DFS traversal
each node is “constified” by considering the SSA instruction
of the node, along with the constant sets of the predecessor
nodes (i.e., typically instruction operands). The opportunistic
constant evaluation process is also guided by our manually
specified “folding” policies (e.g., we perform string concat for
StringBuilder.append()), including special handling
for all ALU instructions (i.e., ADD, AND, XOR, SHL, NEG,
etc.), as well as domain knowledge for all methods of primi-
tive Java classes, such as String, StringBuilder, Uri,
Integer, Float, Boolean, etc.

The implementation of object origin inference is similar,
while it leverages the pre-order BFS traversal to find the closest
constructor or assigner (i.e., the origin) that decides the type of
the object in question (e.g., output in 37th line in Figure 4).
With the type information of the object, we can safely decide
the sensitivities of the respective conditional sources/sinks. The
design of joint flow tracking is described in Section III-A3; its
implementation is straightforward, and thus omitted here.

8





if 3 or more experts flag it as such; otherwise, it is a privacy
leak. Finally, we label 532 unique privacy disclosures from 417

randomly chose primary apps. The results (see Figure 7) show
there are 356 (67%) privacy disclosures are actually legitimate
(i.e., there are indeed necessary to apps’ core functionalities).
This confirms our observation that most privacy disclosures
are legitimate. These labelled disclosures are then equally
but randomly divided into “training set” and “testing set”,
each containing 178 privacy disclosures and 88 privacy leaks.
Note that the training set is only used to determine the two
parameters of AAPL (but not to learn a complicated machine
learning model) to achieve the highest accuracy: 1) a parameter
used as a similarity threshold to exclude noisy peer apps in
the ranked similar app lists by NLP; 2) a parameter used
as a privacy legitimacy threshold to differentiate legitimate
disclosures from privacy leaks in the output of peer voting.
Correspondingly, the testing set is used to verify effectiveness
of AAPL with these two determined parameters. We take the
accuracy in testing set as the one our current AAPL can
achieve.

B. Disclosure Analysis

We conduct a large-scale experiment on the disclosure
detection system. First, we analyze a set of 6, 000 most popular
free apps and discover 2, 777 of them have privacy disclosures.
Taking this 2, 777 as primary apps, we further calculate their
peer apps. Overall, we analyze 40, 456 apps (including primary
apps and peer apps), and find 18, 100 apps have privacy
disclosures (i.e., the overall detection rate is 44.7%). In the
following, we first present the detailed analysis results, and
then discuss the detection accuracy as well as the performance.

Table I presents a detailed classification of privacy dis-
closures discovered by the detection system. We select the
top 10 most frequently disclosed privacy data, which accounts
for over 97% of all disclosures, and show their corresponding
percentage over all disclosures, total number of apps, as well
as a breakdown by data sink types (i.e., data is disclosed to
network (Network Sink) or a local public location inside device
(Local Sink)).

Privacy Rate by Rate by Network Local
Disclosures Apps Sink Sink

Android ID 32.48% 21.38% 45.13% 54.87%

Location 26.15% 20.51% 33.56% 66.44%

Device ID 12.33% 11.22% 26.47% 73.53%

Contacts 8.08% 6.89% 4.49% 95.51%

External Storage 7.41% 6.73% 100.0% 0.0%

Phone Number 6.46% 6.07% 21.13% 78.87%

Browse History 1.72% 1.99% 0.0% 100.0%

Call Log 1.40% 1.12% 73.33% 26.67%

SMS 1.13% 1.02% 87.50% 12.50%

Cookie 0.41% 0.51% 0.0% 100.0%

Overall 97.57% 77.44% 37.40% 62.60%
TABLE I. DETAILED PRIVACY DISCLOSURE DETECTION RESULTS

We evaluate the detection accuracy by manually investi-
gating 530 data-flows in 300 popular apps, and find a false
positive rate of 6.7%. The majority of the false positives
are related to over reduction of information along the data
propagation path. For example, an app first retrieves user’s
contacts, then derives the size information from the contacts
data, and finally sends out the size over the Internet. Because

the size information contains too little entropy to recover
meaningful data of the contacts, such information flow does
not disclose privacy data. Although these kinds of information
flows could be ruled out on a case-by-case basis, there is no
general rule to effectively filter them6. As a result, we consider
these detected information flows as false positive.

We further conduct an experiment to understand the effects
of our static analysis improvements, as presented in section
III-A. Table II presents a break-down of each improvement
and its impact on the detection rate and accuracy. In this
table, the Detection Rate shows how many apps have
the privacy disclosures; the Disclosures per App is the
average number of disclosures an app has. Note that the
detection rate 48.4% on the last row of table II is slightly
higher than the overall detection rate 44.7%, because this
evaluation is performed on a smaller app set with the most
popular apps. (i.e., the chosen 300 popular apps rather than all
40.456 apps we analyzed).

In terms of performance, we find that the privacy disclosure
flow analysis module has a throughput of 4.5 apps per minute
in our three-machine cluster. And the analysis procedure
can scale linearly with the available computation resources.
However, there are 6.8% of the apps could not be analyzed
under the pre-defined timeout threshold (1, 200 seconds), and
thus their analysis results are excluded from the evaluation.
We find most of the timeout cases are due to a large number
of entry points, which leads to exponential growth in inter-
component permutations. We believe the high performance of
privacy disclosure flow analysis module makes AAPL practical
for screening a large-scale apps.

C. Peer Voting Mechanism Evaluation

To illustrate the effectiveness of peer voting, we use the
following standard metrics:

• True positives (TP): a privacy leak that AAPL correctly
detects as a privacy leak

• False positives (FP): a legitimate disclosure that AAPL

incorrectly detects as a privacy leak

• True negatives (TN): a legitimate disclosure that AAPL cor-
rectly detects as a legitimate disclosure

• False negatives (FN): a privacy leak that AAPL incorrectly
detects as a legitimate disclosure

• False positive rate (FPR) = FP/(TN + FP)

• False negative rate (FNR) = FN/(TP + FN)

• Accuracy = (TP + TN)/(TP + FN + TN + FP)

We evaluate the effectiveness and correctness of the peer
voting mechanism using the “ground-truth” data set obtained
via manual investigations, as described in Section V-A. The
expert labeled data set is randomly divided into a training set
and a testing set. Note that, our evaluation excludes “phone-
state” related disclosure (e.g., Device ID and Android ID).
The reason is that phone-state data is not functionality-related,

6For example, instead of the size information, the app may derive a numeric
representation of the contact’s phone number, in which case the data-flow does
still carry sensitive information.

10



Improvements Detection Rate Disclosures per App False Positive Rate

Before Improvements 36.9% 0.82 34.2%

+Fine-grained Propagation Policy 40.3% (9.0%↑) 1.00 (22.3%↑) 28.1%

+Constant Evaluation 49.3% (33.4%↑) 1.72 (109.0%↑) 16.5%

+Object Origin Inference 52.5% (42.1%↑) 1.76 (114.6%↑) 16.1%

+Joint Flow Tracking 52.8% (43.0%↑) 1.77 (115.1%↑) 16.1%

+Post Flow Analysis
48.4% (31.0%↑) 1.40 (70.8%↑) 6.7%

(With All Improvements)
TABLE II. EVALUATION OF ACCUMULATIVE IMPROVEMENTS

as any kind of app may use phone-state data for different
purposes. The average number of the original similar apps
provided by Google Play is about 70.

1) Parameters of AAPL: As mentioned in Section V-A, in
order to achieve the highest accuracy, there are two param-
eters to be selected based on the training set: the similarity
threshold used for choosing peer apps from the ranked similar
apps, and the legitimacy (i.e., percentage of peer app having
same disclosures as primary app) threshold used for detecting
privacy leaks. Given this simple detection model, determining
these parameters is intuitive: we exhaustively iterate each pos-
sible value for both parameters and check which pair of values
can produce the best accuracy. Each similar app is bound
with a semantic similarity score ranges from 0.000 to 1.000 ,
and the legitimacy score ranges from 1.0% to 100.0%. After
the iteration, we observe a limitation when we use similarity
score as the first parameter to select peer apps: similarities in
different similar app lists are extremely diverse due to the vari-
ous lengths of descriptions in primary apps. More 10% primary
apps do not have any similar app with similarity greater than
the average similarity (through the whole app set) - 0.148. For
example, FriendPaper Live Wallpaper has 79 similar
apps, most of which are also wallpaper-related apps (and
thus truly similar apps). However, due to its description only
contains one sentence and several words, even its most similar
apps have less than 0.05 similarities with it. On the other
hand when the description of a primary app has a moderate
length and can reflect app’s functionalities properly, most of its
similar apps may have a high similarity (greater than 0.5). In
other words, the computed similarity score cannot be treated
universally, but is specific to the primary app. Considering
each list has different number of similar apps, we alternatively
choose to use ratio (i.e., the percentage of top similar app
to be selected) as a parameter to select top similar apps as peer
apps, which ranges from 1% to 100%. Figure 8 shows the best
accuracy AAPL can achieve when we set the different ratios.
More specifically, when selecting top 78% (ranked) similar app
as peer apps, we achieve the best accuracy at 90.2% with
false positive rate 11.3% and false negative rate 6.8%, based
on training set. The privacy legitimacy parameter is not drawn
in this figure due to limited space, which is usually around 2%.
In the point AAPL achieves the best accuracy, the privacy
legitimacy parameter is 1.8%.

2) Accuracy of AAPL: After the parameters of AAPL are
determined, we apply AAPL to the testing set to evaluate the
actual accuracy AAPL can achieve. The results, derived
from testing set, show AAPL can achieve a high accuracy.
More specifically, AAPL achieves an accuracy 88.7% with
false positive rate 10.7% and false negative rate 12.5% .
We additionally apply AAPL to some specific disclosures.
For certain categories of disclosures, such as contacts, AAPL

0 20 40 60 80 100
Ratio for peer app selection (%)

30

40

50

60

70

80

90

100

B
e
st
 A
cc
u
ra
cy

 (
%
)

Fig. 8. Best Accuracy for Different Ratio of Peer Apps

achieves an even higher accuracy of 94.6% with false positive
rate 4.4% and false negative rate 9.9% .

3) Comparison to NLP-based Peer App Selection: One
interesting question is how good will the accuracy be if we
only use NLP to select peer app. We also perform evaluation
on NLP-based (only) peer app selection, using the same
methodology (i.e., determining parameters of AAPL based on
the same training set), and computing accuracy based on the
same testing set. Note that a limitation of NLP-based approach
is that it is hard to collect a complete app set, unless we gain
Google’s support. Instead of collecting a complete app set,
we take all collected app in our evaluation (i.e., 40, 456 apps),
as the app set. Similarly, given a primary app, we apply NLP to
calculating semantic similarity between each app in the app set
and it. Then we rank all apps based on their similarity scores.
After that, we again iteratively choose number (from 1 to 200)
of top ranked apps and privacy legitimacy score (from 0.0% to
100.0%) as the two parameters of AAPL. After running AAPL
on the training set and testing set, we find the best accuracy
81.3% with false positive rate 15.2% and false negative rate
25.4% is achieved when choosing top 94 ranked similar apps
as peer apps and 1.9% privacy legitimacy to determine the
legitimacy of disclosures. This result indicates that combining
Google Play recommendation system and NLP for peer
app selection can help AAPL achieve better accuracy than
only using NLP, based on our current training and testing data
set. This is probably because of a fundamental limitation: many
apps do not provide sufficient or accurate descriptions for their
core functionalities.

4) Comparison to Permission-based Detection: We further
evaluate the contribution of the disclosure detection to the
accuracy of the peer voting results by applying the same

11





Case # Type App Detected Leak # of Peer Apps Privacy Legitimacy

1 True Positive com.linpusimetc.android.linpustckbd Contacts -> Url 20 0%

2 True Positive com.apptivateme.next.hrdp Cookie -> Log 15 0%

3 True Positive com.mobilecuriosity.ilovecooking Account->Log 14 0%

4 True Positive simosoftprojects.musicplayerforpad Phone Number -> Url 21 0%

5 True Positive com.webwag.alertmachine MMS -> Log 18 0%

6 True Positive com.scan.master Location -> Http 18 0%

7 False Positive com.easyandroid.free.mms PhoneNumber -> Http 5 0%

8 False Positive com.pauloslf.cloudprint Contacts -> Http 13 0%

9 False Negative com.blue.batterywidgetLedAndroid Phone Number -> Http 11 25.0%

10 False Negative app.angeldroid.safenotepad Cookie -> Log 17 13.3%
TABLE III. CASE STUDIES

Among the 23 apps with more privacy disclosures, we
find three reasons for the increased leakages: 1) Modified
control flow: the unofficial apps have modified components
with potentially malicious code injected, which introduced
more privacy leaks. 2) Replaced library: the unofficial apps
have bundled different ad libraries, which contain more privacy
leaks. 3) Cross component privacy leak: some additional
privacy disclosures are found with source inside the app’s own
component but sink inside the ad library, and vice versa. We
think this finding is quite interesting, and it may represent a
new kind of leak, where the ad library may be exploited in
participating in privacy leaks. Such a privacy leak behavior
was never reported before in previous research in ad library
related privacy leaks, such as [33]. Among the 7 apps with
less privacy disclosures, we find two reasons for the reduced
leakage: 1) Earlier versions: the unofficial apps are modified
based on earlier versions of the official ones, which had less
privacy leaks. 2) Replaced library: the unofficial apps have
bundled different ad libraries, which contain less privacy leaks.

Based on the analysis of the chosen apps, we find more
than 15% unofficial apps exhibit more privacy disclosures than
official ones, most of which are repackaged to contain modified
ad libraries. We recommend users download apps from Google
Play to better protect privacy.

VI. LIMITATIONS

There are several limitations with AAPL. As other static
analysis systems [1], [26] on Android, AAPL cannot detect
the disclosures caused by Java reflection, code encryption, or
dynamical code loading. As mentioned in Section III-B2,
polluting attack may also bypass AAPL detection. Currently,
we proposed a lightweight filtering approach using devel-
oper account comparison. Naturally, if the developer adopts
multiples different accounts, this filtering might be bypassed.
However, this will dramatically increase the cost for attacker
to publish polluting apps in this way.

VII. RELATED WORK

There are a plethora of research efforts [12]–[14], [18],
[20], [22], [26], [31] on detecting, measuring and understand-
ing privacy disclosures on different mobile platforms. In terms
of techniques of detecting flows of privacy disclosures inside
an app, there are two major approaches. Dynamic taint analy-
sis [13] sees the truth about what had happened. The challenges
are either deployment on the phones with low overhead, or
dynamic testing with good code coverage. TaintDroid [13]
is one of the pioneer works using dynamic taint analysis

to detect privacy disclosures. AppsPlayground [31] employs
TaintDroid [13] and automated software testing technique to
detect privacy disclosures. Due to low code coverage issue
and relatively high overhead, this technology has not been well
adopted yet. Static analysis sees the future (what could happen)
with good coverage, and is more scalable, but it remains a
challenge to ensure a low false positive rate. Many automated
systems on app privacy disclosure screening are based on static
analysis, such as PiOS [12], Woodpecker [20], CHEX [26]
and AndroidLeaks [18]. Accurately detecting privacy disclo-
sures statically needs to models Android specific programming
paradigms. Woodpecker [20] and AndroidLeaks [18] both con-
sider implicit control transfers such as threads and callbacks.
CHEX [26] propose techniques to discover entry points inside
Android apps and leverage entry point permutation techniques
to detect the information flows related to privacy disclosures.
FlowDroid [5] improves the precision of static taint analysis on
Android apps by solving challenges of static analysis: handling
the Android-specific lifecycle and the system event callback,
identifying sources from user interaction fields and resolving
alias in Java code.

AAPL not only takes the advantage of these previous wis-
doms, but also statically solves the conditional sources/sinks by
building the inter-procedural constant evaluation and concrete
object type inference. Moreover, we also chain non-sensitive
sub-flows to form sensitive data-flow using joint flow tracking.

All the aforementioned automation techniques do not try
to analyze or to understand whether the detected privacy
disclosures has any relationship with the app’s functionality
or user expectation. Instead, the security experts or the users
have to understand such relationship manually. AppFence [23]
provides fake data or information flow blocking for privacy
control, but it remains challenging to automatically figure out
whether those policies will affect the functionalities of the
apps. Nadkarni et al., propose a nice runtime enforcement and
policy for proper information disclosure cross apps [27], in
which, the policies are specified by experts or users, which
is complementary to the approaches try to detect privacy
disclosures in the apps statically. Appintent [35] employs
static analysis and symbolic execution to understand how user
actions trigger the information flow. It also provides program
execution context alongside the detected privacy disclosure,
which may help experts diagnose detected privacy disclosure.
WHYPER [29] leverages a NLP technique to understand
whether the application description matches the permission us-
age. AAPL takes a novel complementary approach—evaluating
the legitimacy of privacy disclosure based on the “criteria
privacy disclosures” extracted from peer apps.

13



CHABADA [19] applies topic modelling, an NLP tech-
nology to detecting malicious behaviors of Android apps. It
generates clusters according to the topic, which consists of a
cluster of words that frequently occur together. Then, it tries to
detect the outliers as malicious behaviors. CHABADA cannot
precisely find out privacy leaks since it just identifies the
sensitive APIs without tracing the data-flow between the source
and sink sensitive APIs. Our approach identifies suspicious
privacy leaks and helps the users choose more “conservative"
applications. Although previous works have employ app simi-
larity and clustering for re-packing detection [37], we leverage
on app recommendation system to find peer apps to compare
their privacy disclosures.

There are many research efforts on Android related security
problems. Enck et al.are the pioneers on Android permission
policy study [15]. Further Felt et al. [16] and Au et al. [6] map
the Android permissions to APIs, and study the permission
usages. Peng et al. [30] and Chakradeo et al. [10] leverage
machine learning approaches to predict the potential risk of an
app with a specific permission set. A number of studies [8],
[11], [17], [20], [26] focus on confused deputy attack sur-
face for Android platform and apps, and Android malware
analysis [36], [37], [39], [41]. Recently, several vulnerabilities
and attacks have been found in in low-level Android modified
Linux [25], [38] and Android’s eco-system [34].

VIII. CONCLUSION

In this paper, we present the design and implementation of
the AAPL system, which detects real privacy leaks in Android
apps that negatively impact end-users. AAPL conducts special-
ized static analysis and achieves significant improvements over
previous work in terms of coverage, efficiency, and accuracy.
By comparing detected privacy disclosures in primary apps
with those of the peers, AAPL effectively rules out the common
and legitimate disclosures, exposing only those privacy leaks
that cannot be associated with apps’ functionalities. The results
show that our peer voting-based approach can successfully
remove the overwhelming noise (i.e., false alerts on legitimate
disclosures) from which most similar detection systems suffer.
The evaluation demonstrates that AAPL scores a high accuracy
of 88.7% with a 10.7% false positive rate and a 12.5% false
negative rate, at a high throughput (4.5 apps per minutes on a
three-machine cluster). As a result, AAPL can greatly increase
the detection rate of threatening privacy leaks, and at the same
time, considerably reduce the manually efforts required from
security analysts or end-users.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
their helpful feedback, as well as our operations staff for their
proofreading efforts. Wenke Lee, Kangjie Lu, and Cong Zheng
were supported in part by the National Science Foundation
under Grants No. CNS-1017265, CNS-0831300, and CNS-
1149051, by the Office of Naval Research under Grant No.
N000140911042, by the Department of Homeland Security un-
der contract No. N66001-12-C-0133, and by the United States
Air Force under Contract No. FA8650-10-C-7025. Any opin-
ions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation, the Office

of Naval Research, the Department of Homeland Security, or
the United States Air Force.

REFERENCES

[1] “Scandroid: Automated security certification of android applications,”
http://www.cs.umd.edu/avik/projects/scandroidascaa.

[2] “Android application components,” http://developer.android.com/guide/
topics/fundamentals.html#Components, April 2012. [Online]. Avail-
able: http://developer.android.com/guide/topics/fundamentals.html#
Components

[3] O. Agesen, “The cartesian product algorithm: Simple and precise type
inference of parametric polymorphism,” in Proceedings of the 9th

European Conference on Object-Oriented Programming, ser. ECOOP
’95. London, UK, UK: Springer-Verlag, 1995, pp. 2–26. [Online].
Available: http://dl.acm.org/citation.cfm?id=646153.679533

[4] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, and K. Rieck,
“Drebin: Effective and explainable detection of android malware in your
pocket,” in Proceedings of the 21th Network and Distributed System

Security Symposium (NDSS), 2014.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for
android apps,” in Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594299

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proceedings of the 2012 ACM

Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[7] R. Bodík and S. Anik, “Path-sensitive value-flow analysis,” in
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ser. POPL ’98. New York,
NY, USA: ACM, 1998, pp. 237–251. [Online]. Available: http://doi.
acm.org/10.1145/268946.268966

[8] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and
B. Shastry, “Towards taming privilege-escalation attacks on android,”
in Proceedings of the 19th Network and Distributed System Security

Symposium (NDSS), 2012.

[9] D. Callahan, K. D. Cooper, K. Kennedy, and L. Torczon,
“Interprocedural constant propagation,” in Proceedings of the 1986

SIGPLAN Symposium on Compiler Construction, ser. SIGPLAN ’86.
New York, NY, USA: ACM, 1986, pp. 152–161. [Online]. Available:
http://doi.acm.org/10.1145/12276.13327

[10] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck, “Mast: Triage
for market-scale mobile malware analysis,” in Proceedings of the

Sixth ACM Conference on Security and Privacy in Wireless and

Mobile Networks, ser. WiSec ’13. New York, NY, USA: ACM, 2013,
pp. 13–24. [Online]. Available: http://doi.acm.org/10.1145/2462096.
2462100

[11] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” in Pro-

ceedings of the 20th USENIX conference on Security, San Francisco,
CA, Aug. 2011.

[12] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications,” in Proceedings of the 18th Network and

Distributed System Security Symposium (NDSS), 2011.

[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: an information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th

USENIX conference on Operating systems design and implementation,
ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010, pp.
1–6. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924943.
1924971

[14] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security,” in Proceedings of the 20th USENIX

conference on Security. Berkeley, CA, USA: USENIX Association,
2011, pp. 21–21. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2028067.2028088

14



[15] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM conference

on Computer and communications security, ser. CCS ’09. New York,
NY, USA: ACM, 2009, pp. 235–245. [Online]. Available: http://doi.
acm.org/10.1145/1653662.1653691

[16] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM conference

on Computer and communications security, ser. CCS ’11. New York,
NY, USA: ACM, 2011, pp. 627–638. [Online]. Available: http://doi.
acm.org/10.1145/2046707.2046779

[17] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: attacks and defenses,” in Proceedings of the

20th USENIX conference on Security, ser. SEC’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 22–22. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028089

[18] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
Automatically detecting potential privacy leaks in android applications
on a large scale,” in Proceedings of the 5th International Conference

on Trust and Trustworthy Computing, ser. TRUST’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 291–307. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-30921-2_17

[19] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in Proceedings of the 36th International

Conference on Software Engineering, ser. ICSE 2014. New York,
NY, USA: ACM, 2014, pp. 1025–1035. [Online]. Available: http://doi.
acm.org/10.1145/2568225.2568276

[20] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection
of capability leaks in stock android smartphones,” in Proceedings of

the 19th Network and Distributed System Security Symposium (NDSS),
2012.

[21] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker:
Scalable and accurate zero-day android malware detection,” in
Proceedings of the 10th International Conference on Mobile Systems,

Applications, and Services, ser. MobiSys ’12. New York, NY, USA:
ACM, 2012, pp. 281–294. [Online]. Available: http://doi.acm.org/10.
1145/2307636.2307663

[22] J. Han, Q. Yan, D. Gao, J. Zhou, and R. Deng, “Comparing mobile pri-
vacy protection through cross-platform applications,” in Proceedings of

the 20th Network and Distributed System Security Symposium (NDSS),
2013.

[23] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: Retrofitting android to protect
data from imperious applications,” in Proceedings of the 18th ACM

Conference on Computer and Communications Security, ser. CCS ’11.
New York, NY, USA: ACM, 2011, pp. 639–652. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046780

[24] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” SIGPLAN Not., vol. 23, no. 7, pp. 35–46, Jun.
1988. [Online]. Available: http://doi.acm.org/10.1145/960116.53994

[25] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee, “From zygote to morula:
Fortifying weakened aslr on android,” in Proceedings of the 2014

IEEE Symposium on Security and Privacy, ser. SP ’14. Washington,
DC, USA: IEEE Computer Society, 2014, pp. 424–439. [Online].
Available: http://dx.doi.org/10.1109/SP.2014.34

[26] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings

of the 2012 ACM Conference on Computer and Communications

Security, ser. CCS ’12. New York, NY, USA: ACM, 2012,
pp. 229–240. [Online]. Available: http://doi.acm.org/10.1145/2382196.
2382223

[27] A. Nadkarni and W. Enck, “Preventing accidental data disclosure in
modern operating systems,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer &#38; communications security, ser. CCS
’13. New York, NY, USA: ACM, 2013, pp. 1029–1042. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516677

[28] J. Palsberg and M. I. Schwartzbach, “Object-oriented type inference,”
in Conference Proceedings on Object-oriented Programming Systems,

Languages, and Applications, ser. OOPSLA ’91. New York, NY,
USA: ACM, 1991, pp. 146–161. [Online]. Available: http://doi.acm.
org/10.1145/117954.117965

[29] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper:

Towards automating risk assessment of mobile applications,” in
Presented as part of the 22nd USENIX Security Symposium

(USENIX Security 13). Washington, D.C.: USENIX, 2013,
pp. 527–542. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity13/technical- sessions/presentation/pandita

[30] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks
of android apps,” in Proceedings of the 2012 ACM conference on

Computer and communications security. ACM, 2012, pp. 241–252.

[31] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic
security analysis of smartphone applications,” in Proceedings of the

Third ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’13. New York, NY, USA: ACM, 2013, pp. 209–220.
[Online]. Available: http://doi.acm.org/10.1145/2435349.2435379

[32] P. Resnik, “Semantic similarity in a taxonomy: An information-based
measure and its application to problems of ambiguity in natural lan-
guage,” 1999.

[33] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in android ad libraries,” in Workshop on Mobile

Security Technologies (MoST). Citeseer, 2012.

[34] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
android, elevating my malware: Privilege escalation through mobile os
updating,” in Proceedings of the 2014 IEEE Symposium on Security

and Privacy, ser. SP ’14. Washington, DC, USA: IEEE Computer
Society, 2014, pp. 393–408. [Online]. Available: http://dx.doi.org/10.
1109/SP.2014.32

[35] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang,
“Appintent: analyzing sensitive data transmission in android for
privacy leakage detection,” in Proceedings of the 2013 ACM SIGSAC

conference on Computer &#38; communications security, ser. CCS
’13. New York, NY, USA: ACM, 2013, pp. 1043–1054. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516676

[36] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,
“Smartdroid: An automatic system for revealing ui-based trigger
conditions in android applications,” in Proceedings of the Second

ACM Workshop on Security and Privacy in Smartphones and Mobile

Devices, ser. SPSM ’12. New York, NY, USA: ACM, 2012,
pp. 93–104. [Online]. Available: http://doi.acm.org/10.1145/2381934.
2381950

[37] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged
smartphone applications in third-party android marketplaces,” in
Proceedings of the Second ACM Conference on Data and Application

Security and Privacy, ser. CODASPY ’12. New York, NY, USA:
ACM, 2012, pp. 317–326. [Online]. Available: http://doi.acm.org/10.
1145/2133601.2133640

[38] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The
peril of fragmentation: Security hazards in android device driver
customizations,” in Proceedings of the 2014 IEEE Symposium on

Security and Privacy, ser. SP ’14. Washington, DC, USA: IEEE
Computer Society, 2014, pp. 409–423. [Online]. Available: http://dx.
doi.org/10.1109/SP.2014.33

[39] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization
and evolution,” in Proceedings of the 2012 IEEE Symposium on

Security and Privacy, ser. SP ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 95–109. [Online]. Available: http://dx.
doi.org/10.1109/SP.2012.16

[40] ——, “Detecting passive content leaks and pollution in android appli-
cations,” in Proceedings of the 20th Network and Distributed System

Security Symposium (NDSS), 2013.

[41] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets,” in Proceedings of the 19th Network and Distributed System

Security Symposium (NDSS), 2012.

15


	Introduction
	Overview
	Privacy Disclosure Analysis
	Determining Disclosure Legitimacy via Peer Voting 
	AAPL Usage Scenarios
	Threat Model

	AAPL Detection System
	Privacy Disclosure Analysis Module
	Opportunistic Constant Evaluation
	Object Origin Inference
	Joint Flow Tracking

	Privacy Leak Detection Module
	Peer Apps
	Peer Voting Mechanism


	Implementation
	Privacy Disclosure Analysis Module
	Refining System Dependency Graph using Fine-grained Propagation Policy
	Implementing a Highly Accurate Detection Model

	Peer Voting Mechanism

	Evaluation
	Setup and Methodology
	Disclosure Analysis
	Peer Voting Mechanism Evaluation
	Parameters of AAPL
	Accuracy of AAPL
	Comparison to NLP-based Peer App Selection
	Comparison to Permission-based Detection
	Case Studies and Sources of FP & FN

	Another AAPL Application

	Limitations
	Related Work
	Conclusion
	References

