
Inside Job: Understanding and Mitigating the Threat
of External Device Mis-Bonding on Android

Muhammad Naveed1, Xiaoyong Zhou2, Soteris Demetriou1, XiaoFeng Wang2, Carl A Gunter1

1Department of Computer Science, University of Illinois at Urbana-Champaign
2School of Informatics and Computing, Indiana University at Bloomington
{naveed2, sdemetr2, cgunter}@illinois.edu, {zhou, xw7}@indiana.edu

Abstract—Today’s smartphones can be armed with many
types of external devices, such as medical devices and credit card
readers, that enrich their functionality and enable them to be
used in application domains such as healthcare and retail. This
new development comes with new security and privacy challenges.
Existing phone-based operating systems, Android in particular,
are not ready for protecting authorized use of these external
devices: indeed, any app on an Android phone that acquires
permission to utilize communication channels like Bluetooth and
Near Field Communications is automatically given the access to
devices communicating with the phone on these channels.

In this paper, we present the first study on this new security
issue, which we call external Device Mis-Bonding or DMB,
under the context of Bluetooth-enabled Android devices. Our
research shows that this problem is both realistic and serious:
oftentimes an unauthorized app can download sensitive user
data from an Android device and also help the adversary to
deploy a spoofed device that injects fake data into the original
device’s official app on the phone. Specifically, we performed
an in-depth analysis on four popular health/medical devices that
collect sensitive user information and successfully built end-to-
end attacks that stealthily gathered sensitive user data and fed
arbitrary information into the user’s health/medical account,
using nothing but Bluetooth permissions and public information
disclosed by the phone. Our further study of 68 relevant device-
using apps from Google Play confirms that the vast majority of
the devices on the market are vulnerable to this new threat. To
defend against it, we developed the first OS-level protection, called
Dabinder. Our approach automatically generates secure bonding
policies between a device and its official app, and enforces them
when an app attempts to establish Bluetooth connections with a
device and unpair the phone from the device (for resetting the
Bluetooth link key). Our evaluation shows that this new technique
effectively thwarts the DMB attacks and incurs only a negligible
impact on the phone’s normal operations.

I. INTRODUCTION

With the rapid progress in smartphone technologies and
their unprecedented popularity come increasingly diverse and
innovative uses of these technologies. Today’s smartphones
have become a platform not only for calls, entertainment,

and navigation but also for such critical activities as personal
financial management and healthcare. These new applications
often rely on the hardware not already built into the smartphone
and therefore need an external device to work together with the
phone through Bluetooth, Near-Field Communication (NFC)
and other channels. A prominent example is smartphone-
enabled healthcare devices such as blood-glucose meters [10],
[11] and Electrocardiography (ECG) sensors [1]. Such devices
are typically sensors or other data-gathering mechanisms, which
leverage the smartphone to preprocess the information collected
from a patient before delivering it to more capable systems
such as web services. This utilization of the smartphone, a
general mobile computing system, helps reduce the cost of
those activities, but also brings in new security and privacy
challenges, as the phone’s security mechanism is not designed
for protecting these external devices.

External device protection on Android. More specifically, let
us take a closer look at Android’s security design. Its permission
and sandbox security model mainly aims at protecting the
phone’s local resources, such as GPS, SD-card, etc. Each
of these resources is guarded by one or more permissions,
and can only be used by the Android applications (apps for
short) granted the appropriate permissions by the user. By
comparison, no permissions are assigned to an external device.
All Android can control here is the channel that links the
phone to the device, such as Bluetooth, NFC, Audio port, etc.
The problem is that many devices could all share the same
channel and many apps could all claim the permission to use
that channel for different purposes. As a result, access to an
external device often becomes hard to control in the presence
of those “insiders” (unauthorized apps with the permission on
the device’s communication channel).

As an example, consider a blood-glucose meter that mea-
sures a patient’s blood-sugar concentration and reports the result
to an app running on her smartphone through a Bluetooth
channel. Only that app should be allowed to communicate
with the device. But, this access control cannot be enforced
on today’s Android, which lets any app with the Bluetooth
permission talk to the meter. Note that this problem cannot be
addressed by the standard Bluetooth security mechanism [44],
as it only ensures that the blood-glucose meter is paired with
an authorized smartphone, not an authorized app running on
that phone.

Our work. In this paper, we report our first-step study on this
emerging security challenge, which we call external Device
Mis-Bonding (DMB), particularly its threat to Bluetooth devices.

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23097

Our research shows that this DMB threat is indeed realistic and
serious. Specifically, we thoroughly analyzed four high-profile
smartphone-enabled healthcare devices, including a Bodymedia
Link Armband [3] (monitoring a user’s daily activity pattern),
an iThermometer [13], a Nonin Onyx II Pulse Oximeter [15]
(monitoring a patient’s pulse and Oxygen saturation) and an
Entra Health System Blood-Glucose Meter [11]. These devices
are very popular, and all of them except iThermometer are FDA
approved Class II medical devices. However, we found that the
lack of a secure bonding between them and their corresponding
apps leaves these devices vulnerable to different types of DMB
attacks. In particular, in a data-stealing attack, an unauthorized
app on the authorized phone can stealthily download the
data these devices gather from a patient, using nothing but
its Bluetooth permission and side-channel information for
determining the right moment for the download. This may
happen when such a device is present and the official app, that
is, the one the user expects to connect to the device, is, in fact,
not connected to it. In a data-injection attack, the malicious
app, again with a Bluetooth permission only, even breaks the
device-level Bluetooth security: the app stealthily unpairs the
phone from an authorized external device and pairs it with a
malicious device to feed falsified medical data into the original
device’s official app. Demos of the attacks are posted online [6].

As the current design of Android does not provide any
means to bond an app to an external device, individual
device manufacturers are left with no option but to develop
their own approaches to authenticate their official apps to
their devices. This could be challenging, given that these
devices are often simple sensors and may not have much
resources to perform authentication operations, such as running
cryptographic functions. To understand how pervasive the
problem is, we further conducted a measurement study in
which we analyzed 68 official apps responsible for a wide
spectrum of Android external devices sampled from Google
Play and confirmed that none of them are protected by any
app-device authentication mechanism.

Given the grave consequences of a DMB attack (compro-
mises of the confidentiality and integrity of critical user data)
and the credible threat it poses (the pervasiveness of vulnerable
devices), serious effort needs to be made to address this issue.
To this end, we present the first OS-level solution, called
Dabinder. Dabinder works as an Android service, keeping
track of the identities of individual external devices and the
apps that initiate the first Bluetooth connections with them right
after they are paired with the phone. Based on this observation,
a security policy is generated to tie the app to the device, which
forms a bond that cannot be broken without the user’s consent:
a different app is not allowed to connect to the device, nor can
it unpair the phone from the device, unless this access-control
policy is overruled by the user. We implemented Dabinder and
evaluated our prototype against the attacks on these popular
healthcare devices, which demonstrates its effectiveness in
mitigating the threat and negligible impacts on the phone’s
normal operations. We released the code of Dabinder as an
Android 4.2.2 r1 patch, which can be downloaded here [5].

Contributions. We summarize the contributions of the paper
as follows:

• New understanding. We made the first attempt to

understand the threat of Android device mis-bonding,
in the context of Bluetooth bonds. Our study reveals
the gravity of the threat that could lead to leaks of
sensitive user data or compromise of its integrity, as
well as the prevalence of the issue among popular
smartphone-enabled devices.

• New techniques. We developed the first techniques
to mitigate the threat. Our approach automatically
generates security policies for protecting the bonding
between an external device and its authorized app,
and effectively enforces the policies without impeding
normal operations on the phone.

• Implementation and evaluation. We implemented our
design and evaluated its effectiveness and performance.

Roadmap. The rest of the paper is organized as follows:
Section II introduces the background information of our study,
particularly the generality of the device mis-bonding problem;
Section III elaborates our security analysis on smartphone-
enabled Bluetooth devices; Section IV presents the design,
implementation and evaluation of our protection mechanism;
Section V discusses the limitations of our study and follow-up
research; Section VI compares our work with related prior
research and Section VII concludes the paper.

II. EXTERNAL DEVICE MIS-BINDING

In this section, we first explicate the threat of Android
external device mis-bonding at a high level and then clarify
the scope of our research and its underlying adversary model.

A. Background

The fundamental cause of the DMB problem is the inad-
equacy of the Android security model in protecting external
devices. Here we provide background information about these
devices and the way the Android security mechanism works.

External devices. Increasingly smartphones are used to en-
hance healthcare, financial management, and services in other
critical domains. For this purpose, they often need to work
together with specialized external devices, helping preprocess
the data gathered by the devices and relaying the outcome to
various service providers. In particular, smartphones today are
extensively used with different medical devices for patient care
and monitoring, fitness, health, education and research [43].
Examples of related health devices include WiFi or Bluetooth
based blood pressure monitor [20], ECG device [1], muscle fa-
tigue monitor [19], pulse oximeter [15], heart rate monitor [21],
thermometer [13], lifestyle monitor [3], [8], [9] and many others.
These devices utilize smartphones to analyze and display data,
and to communicate with their corresponding web services.
The data here is often considered sensitive, as it describes an
individual’s health status and activities. In addition to healthcare
data, smartphone-enabled devices are also utilized to work on
other private user information. For example, the Square Reader
collects a user’s credit-card data through a phone’s audio port;
and NFC devices are widely used in Europe to accept payments
through phones.

As a leading mobile operating system (with 75% of market
share [2]), Android is the main platform that supports these

2

external devices. Its security design, therefore, becomes crucial
for protecting sensitive user data involved in the operations of
these devices.

Android security model. At the center of Android security
is its application sandboxing and permission model. Each
Android app is confined within its own sandbox and needs
permissions to access sensitive resources, including camera,
audio, location, network, etc. In particular, some of these
resources (e.g., audio, network, Bluetooth, NFC and others)
can serve as channels to connect a phone to external devices.
To acquire the permissions to use the resources, an app needs
to explicitly request (using AndroidManifest.xml) from the
phone’s user during its installation.

This security model is actually built upon Linux’s kernel
level protection (process separation and file system access
control). Each Android app runs as a Linux user with a unique
user ID, which naturally separates its operations and data
from those related to other users under the Linux user-based
protection. Sensitive system resources are usually mapped to
special Linux groups such as inet, gps, etc. An app granted
with the permission to use a resource is assigned to that
resource’s Linux group. Every member within that group (with
that permission) is equally entitled to operate on that resource.

B. Mis-bonding Threat

The problem. As we can see here, the Android security
model only controls the access rights on the channel used
for communicating with an external device (such as Bluetooth,
NFC, audio port) not the device itself. As long as an app
acquires a permission for this channel, it automatically gains
access to any device that is connected through the channel. This
is because all apps with the same permission are affiliated with
the same Linux group, so they have the same privilege on the
resources shared within the group, including the channel (e.g.,
Bluetooth). Android does not care how this channel is used
and which party an app talks to. Also, all information related
to an external device (such as Bluetooth pairing data) is also
shared within the group members, which could be exploited by
a malicious member to compromise the integrity of the data
received by the official app of the device (Section III-B).

As an example, consider a medical device that commu-
nicates with its Android app using Bluetooth. To make this
happen, the smartphone hosting the app first needs to pair
with the device, which forms a bond between the phone
and the device. This pairing process yields a set of bonding
information, which allows these two devices to connect to each
other automatically in the future. The bonding information
includes the external device’s MAC address and its Universal
Unique Identifier (UUID), together with a secret link key
for authentication and encrypted communication (when the
devices decide to do so). Note that such a bond relation is only
established on the device level; there is nothing to prevent an
unauthorized app (with Bluetooth permissions) on an authorized
phone from connecting to the device. This permission also
makes the app a member in the net_bt_admin group. As a
result, the unauthorized app is given the privilege to break the
bonding with an authorized medical device and pair the phone
with a malicious one configured with the former’s bonding

information so as to feed fake medical data into a patient’s
medical record (Section III-B).

Given the limitations of the Android security model, device
manufacturers are on their own to address this security risk.
One thing they can do is to design a way to secure the
communication between the device and its official app. An
instance we are aware about is the Square creditcard reader [18],
which connects to a smartphone through its audio port. Its
early version is vulnerable because every app with audio
permission can read from it. The later one comes with an
encryption capability: the reader encrypts the data (using
AES) collected from a credit card using a hard-coded key
and transmits the ciphertext through the phone to the web.
Most other devices, however, do not provide any app-device
level protection, as confirmed in our measurement study
(Section III-C), possibly due to the fact that most of them
are simple sensors, without sufficient computing resources to
support cryptographic operations. These devices can upload the
data to the online service through the smartphone, which also
provides an interface for the user to see and analyze their data.
Encrypting this data in the device and just using the phone as a
communication relay would severely affect the usability of the
device, as the user would not be able to use her phone to see
her data. All the devices we analyzed have apps that display
the user data on the smartphone. Hence, the treatment adopted
by Square does not seem to be suitable for these devices.

Scope and adversary model. In our research, we conducted a
preliminary study on this under-researched yet critical security
problem. As the first step, our study focuses on Bluetooth
healthcare devices, which are becoming increasingly popular
in recent years. The security risks we discovered and the new
technique we built are expected to be extended to other types
of external devices, though further studies are certainly needed
here to better understand their related security issues.

We assume that a malicious app is present on the victim’s
Android phone with both the Bluetooth and Bluetooth Ad-
minstration permissions. These two permissions are claimed
by almost all the Bluetooth-capable apps. For a data-injection
attack, in which a malicious party clones the target device, we
also assume that the fake device can be placed close to the
victim’s phone (within 100 meters).

III. ATTACKS AND MEASUREMENT

In this section, we report on our study that aims at better
understanding the magnitude of the device mis-bonding threat.
To this end, we built end-to-end attacks on popular smartphone-
enabled medical devices and further measured the pervasiveness
of the security risk discovered, as elaborated below.

Healthcare devices. As mentioned before, our study focuses
on Bluetooth devices. Specifically, we analyze four popular
healthcare devices. All of them except the iThermometer are
FDA approved Class II medical devices [16], in the category
of X-ray machines, infusion pumps, etc., which are used to
deal with real patient care and life critical information. The
first three devices either have their online services available
or are capable of synchronizing the information they collect
with other cloud based health-services. Here is more detailed
information about these devices:

3

• Bodymedia Wireless LINK Armband [3] is one of the
most popular activity monitoring systems, which has
been used in over 120 clinical studies [23]. It utilizes
four different sensors to collect data about the user’s
motion, temperature, perspiration, etc., for accurate
calculation of calories burned and monitoring of sleep
patterns. The output of the device can be displayed
by a mobile app running on Android or iOS, and
further synchronized to an activity manager website.
Disclosure of the data can leak out the user’s health
status and daily activities.

• Nonin Onyx II 9560 Pulse Oximeter [15] is one of
the best wireless finger pulse oximeters. Along with
a smartphone app, it enables clinicians to remotely
monitor blood-oxygen saturation levels and pulse rates
of the patients with chronic diseases such as Chronic
Obstructive Pulmonary Disease (COPD) or asthma [16].
The device uses Bluetooth to connect to the smartphone,
which can deliver the data to the health provider, online
health services or stored locally for later analysis. The
data collected here is also critical for understanding
the patient’s status and choosing an effective treatment.
This device is Microsoft HealthVault1 certified [16].

• Entra Health System MyGlucoHealth Blood-Glucose
Meter [11] is one of the most popular glucose mon-
itoring devices. It comes with a complete diabetes
management system (including testing at home) up-
loading data to the online account through its Android
app, which helps a patient manage her disease and
share this data with her health provider. Glucose levels
determine the amount of insulin to be injected into the
patient’s body, which is private and also life-critical: a
wrong amount of injection can have severe implications,
including death [31]. Along with FDA, this device is
also approved by CE2 and is fully HL73 compliant [7].

• iThemometer [13] is an electronic thermometer that
works with Android through Bluetooth for personal
health or long-distance monitoring of elderly persons
or babies. The body temperature is an indicator for
life-threatening conditions like infection.

All these devices involve the user’s critical data, whose
confidentiality and integrity is important to her health and well-
being. In the presence of the malicious insider app, however,
we show that such data becomes extremely vulnerable to the
DMB threat.

A. Data-Stealing Attacks

In our research, we investigate the feasibility of data-stealing
attacks on Bluetooth devices, in which a malicious app running
on the victim’s phone attempts to steal sensitive data collected
by the target device. The attack turns out to be more complicated
than it appears to be: particularly, depending on the nature of
a device, the malicious app needs to capture a small time
window during which the device is on and in proximity, under

1Microsoft HealthVault is a free online service for personal health information
management.

2CE Mark is medical device approval mechanism in Europe.
3HL7 – Health Level Seven International – is a globally interoperable

standard for health information exchange.

the competition of the official app that also wants to make a
connection to the device. Here we describe how we addressed
such technical challenges and designed end-to-end attacks on
real devices.

Fig. 1: Data-stealing Attack

Attack strategies. Given the BLUETOOTH and BLUETOOTH
_ADMIN permissions, a malicious app appears to have all it
needs to steal data from these healthcare devices, and merely
because Android does not mediate which app is supposed
to connect to the devices. In practice, however, the situation
is much more subtle than it appears to be at a first look: a
malicious app must not be oblivious to the fact that the target
device could or could not be in proximity and even when they
are, for some of them one needs to push a button or take some
actions to activate their Bluetooth services. Specifically, the
Bodymedia armband is activated a few seconds after it is put
on one’s arm; the iThemometer has such a button on it; the
Nonin pulse oximeter turns on when one inserts her finger
into the device and turns off once she takes out her finger;
and the MyGlucoHealth meter has a button for activating the
Bluetooth and the meter turns off automatically after sending
data to the phone. Also complicating the attack is the presence
of the official app. Once the official app establishes a socket
connection with the target device, the malicious app cannot
directly talk to the device before this connection is torn down
and vice versa.

A straightforward solution is an opportunistic strategy in
which the malicious app either periodically invokes the service
discovery protocol to find out whether the target device is in its
vicinity or blindly makes repeated connection probes, hoping
to get to the device as soon as it shows up. However, neither
of these approaches works well in practice due to increased
power usage of Bluetooth radio, a power-consuming practice
that is usually suggested against [53]. For instance, a user may
keep the Bluetooth communication off to save power. Then,
when she wants to use it, she runs a Bluetooth-capable app
that automatically turns on Bluetooth. A malicious app using
this strategy must repeatedly enable Bluetooth to discover the
target device; this consumes more battery power than expected
and could also be noticed by the user, given the presence of
the Bluetooth sign on the phone.

In our research, we adopt a lightweight and stealthy strategy
to perform the surveillance. Simply put, the execution of the
device’s official app is a strong indication that the device is in
action and also within the connection range of the target device.
Based on this observation, the malicious app can keep checking
when any of the target apps launches, an event that can be used

4

to trigger an attempt to catch the window of opportunity. Specif-
ically, our app, which works as a service in the background,
periodically runs the Android API getRunningTasks() to
get the app running in the foreground in constant time O(1).
This needs an additional permission GET_TASKS. Alternatively,
we can use getRunningAppProcesses(), which does not
need any permission, but returns a list of running processes in
an unspecified order that the malicious app needs to traverse
in search for the target app, which takes O(n) running time,
where n is the number of concurrently-running processes on the
phone. The same result can be achieved by executing the Linux
command ps. After the malicious app determines that one of
the target apps is in the foreground, it attempts to establish a
Bluetooth connection with its respective device.

A catch here is that, when the official app is in com-
munication with the target device, the malicious app cannot
connect to it. To get the data, the malicious app needs to
connect to the device right before this legitimate connection is
established, right after it completes, or during some disruption
of the connection. Below we summarize these options:

• Pre-connection. The official apps of these devices, once
executed, often need the user’s intervention to start
the communication with their devices. For example,
all the apps for the MyGlucoHealth, iThermometer
and the Bodymedia armband have a soft button that
needs to be pushed to initiate the connection. These
apps can also be configured to attempt automatic
connections to their respective devices as soon as
they are launched. Therefore, in order to capture data
from the target device, the malicious app should be in
position to exploit the time gap between the moment it
discovers that the target app is running and the moment
when the legitimate connection is established (after
the soft button is pushed or the automatic connection
goes through). The likelihood of this succeeding is
contingent on how frequently the malicious app checks
currently-running processes, i.e., its sampling rate for
monitoring the official app.

• Post-connection. After discovering the running official
app, the malicious app can simply wait until its
connection ends and then immediately connect to the
device. This strategy avoids aggressive monitoring of
the official app: the malicious app can keep a slow
sampling rate, as long as it can still detect the target
during its execution. There is a risk, however, that the
user turns off the target device before exiting its app.
When this happens, the adversary loses the chance to
get data at that specific point.

• Disruption. The malicious app can disrupt the legiti-
mate app’s communication by deactivating Bluetooth
on the phone. It can then reactivate the channel
and immediately make a connection to the target
device. During this attack, the user might observe the
disruption and have to manually click the button on
the app again to resume data collection. The approach
makes the attack less stealthy but more reliable in
getting the data from the target device.

Here we elaborate how we utilize these techniques to launch
data-stealing attacks on the healthcare devices.

The attacks. In our study, we execute the data-stealing
attacks on all four healthcare devices. To prepare for the
attacks, we analyzed the code of these devices’ official apps
and their Bluetooth traffic captured using hcidump [12] to
facilitate our understanding of their protocols (for talking
to the devices), and further built these protocols into the
malicious app. During its operation, the malicious app calls the
getBondedDevices() API to get a list of external devices
already paired with the phone and their bonding information,
including the name, the MAC address and the UUID of the
device of interest. Using such information, the malicious app
makes RFCOMM connections to the device to download
sensitive user data.

The attack strategy we implement includes a
surveillance component that periodically calls the API
getRunningTasks() to monitor the execution of the
device’s official app twice per second. With this implementation,
our app can keep a low profile incurring, on average, around
only 3mW of extra power consumption. In the meantime,
given that human interventions (clicking on a button after the
app is activated) can take seconds, our app stands a good
chance of capturing the time window before the official app
establishes a connection to its device. In case, automatic
connection is configured on the target apps, there is a race
condition on the socket establishment. To make sure that we do
not miss the opportunity to capture data when a target app is
launched, our design incorporates both the pre-connection and
the post-connection strategies: as soon as the malicious app
finds that the target app is running, it first makes a connection
attempt; if not successful, the app listens for the asynchronous
ACTION_ACL_DISCONNECTED event broadcasted by the
OS, which notifies the app once a low level –(Asynchronous
Connection-Less (ACL)– connection with a remote device
ends, and then tries to connect to the target device again if the
device is the one disconnected and the disconnection is not
caused by the malicious app itself. If either the pre-connection
or post-connection attempt succeeds, the malicious app
requests and captures the data from the appropriate external
Bluetooth device, sends them to the adversary and closes the
connection, to make it available to the legitimate app.

It is particularly tricky when the official app is configured to
automatic connections: once the pre-connection attack succeeds,
the malicious app rapidly finishes its operations and releases the
socket that is almost instantly captured by the legitimate app.
This causes the OS to miss reporting the DISCONNECT event
and the consecutive CONNECT. Hence, when the legitimate
app releases the socket, the malicious app believes that the
disconnection is initiated by itself. As a result, it skips the post-
connection opportunity and thus misses the new data the device
collects during the period of the legitimate app’s connection.
To address this issue, we designed the malicious app to check
whether enough time elapses from the moment it sends out
a disconnection request to when it receives a disconnection
event from the OS; if so, the app believes that the event it
gets is about another app and then goes ahead to make another
connection attempt.

We run the malicious app on a Nexus 4 development phone
running JellyBean (4.2), together with all target devices’ apps.
We evaluated the effectiveness of the data-stealing attack by
observing the success rate when the apps were configured to

5

initiate automatic connections to their respective devices once
launched. This is the worst case scenario as this operation
is much faster than its alternative where the user must click
a button to initiate such connections, hence the window of
opportunity is smaller for the pre-connection attempt. Our study
shows that the malicious app is often successful in capturing
this window. The experimental results are presented in Table I.

For the Bodymedia armband device, we found that in 100
pre-connection trials, the malicious app managed to connect 99
times to the device, get the sensitive data and send them to a
remote server. The case that the connection failed was attributed
to a device de-synchronization issue that rendered even the
official app unable to connect to it. We achieve this high success
rate because the Bodymedia Link Armband mobile app does
some pre-processing operations before attempting to connect
to its device, which gives enough time for the malicious app
to perform its operations and release the socket. The success
rates were also high for other apps, except for iThermometer
(e.g., 42 out of 100 trials) due to its app’s prompt response in
establishing Bluetooth socket connections. When the malicious
app won the race, the authorized app failed to connect but it
automatically retried after 10 seconds, and succeeded as this
interval was often enough for the malicious app to finish its task
and release the socket. The post-connection attacks succeeded
most of the time except for the glucose meter, MyGlucoHealth,
as long as the devices were switched off after the official apps
stopped. MyGluooHealth automatically turns itself off after
sending data to its app to save its battery power, so none of
the post-connection attacks on it succeeded. We also tried the
disruption strategy, which also worked, allowing our app to
discontinue the official app’s connection and get the health
data. A problem with this attack strategy, as discussed before,
is that the legitimate connection needs to be interrupted, which
could be noticed by the user.

Power consumption evaluation. A rough estimation of the
power consumption of different surveillance strategies is
important for understanding the stealthiness of the malicious
app, because this activity dominates all of its operations in terms
of the time interval that it has to run. We tested the different
options we had. We evaluated getRunningTasks (the
strategy we implemented in the malicious app) and its alterna-
tives including calling getRunningAppProcesses() and
making repeated attempts to connect to or check the existence of
the target Bluetooth device. We ran the app using each strategy
independently for 10 minutes. The average power consumption
of the strategy under scrutiny is illustrated in Table II. As
depicted, the one we decided to adopt (getRunningTasks)
turned out to be both much more efficient and stealthier (as the
Bluetooth sign appears on the screen only when it is supposed
to be, i.e., when the the official app is running). We further
compared the power consumption of this strategy with that of
two popular apps, as described in Table III. As we can see here,
our surveillance strategy has a comparable power-consumption
level (3mW) as those apps (1 to 18mW). Accurate power
consumption measurement is not required to do this evaluation,
we only need rough relative power measurement. The software
we used for the power consumption evaluation provides accurate
measurement for a very limited number of phones and rough
measurements for all Android phones. This rough measurement
suffices for this evaluation.

Target Device Pre-connection Post-connection
Bodymedia LINK Armband 99/100 100/100

iThermometer 42/100 100/100
Nonin Pulseoximeter 99/100 92/100

myGlucoHealth 100/100 0/100*

*the device turns off few seconds after sending data to the phone.

TABLE I: Success rate of data-stealing attack. This table
depicts the successful connections made by the malicious app

on 100 trials.

Technique Avg Power Consumption Sampling Rate
getRunningAppProcesses() 8mW 2 samples/s

getRunningTasks() 3mW 2 samples/s
connect() 17mW 0.18 samples/s

startDiscovery() 15mW 0.054 samples/s

TABLE II: Average power consumption over 10 minutes per
surveillance technique using PowerTutor[53].

B. Data-Injection Attacks

In addition to the threat of the data-stealing attacks, we
found that the presence of the insider, the malicious app, on
the phone also makes it possible to inject fake data into the
device’s official app and its online account for the user. More
specifically, this attack works as follows:

1) The malicious app first uses its Bluetooth permissions
to collect part of the bonding information for the target
device and delivers the information to the adversary.

2) The adversary clones the device using the bonding
information (MAC address, UUID and device name)
and places the clone in the neighborhood of the
original device or other places where the user may
come close. With a standard Class 1 Bluetooth device,
the clone can stay as far as 100m from the phone.

3) When the user gets into the clone’s Bluetooth trans-
mission range, the malicious app resets the link key (in
the presence of secure communication) by unpairing
the phone from the original device and pairing it with
the clone, then it invokes the target app (if it is not
already running). The clone then talks to the official
app and transmits falsified data to the app.

4) To make the attack stealthy, the malicious app can
choose to pair the phone back with the original device
after the attack, thus the phone user will not notice
that her device has been unpaired. This succeeds most
of the time, as the PIN for most Bluetooth devices
is either “0000” or “1234” [51]. It should be noted
that the original Bluetooth device does not need to be
discoverable for pairing, as long as its MAC address
is known. Moreover, most of the new devices with
Bluetooth 2.1+ use Secure Simple Pairing (SSP) [28],
which does not need any user intervention for pairing.

Technique Avg Power Consumption
Facebook 18mW

getRunningTasks() 3mW
Gmail 1mW

TABLE III: Average power consumption over an hour.
Comparison between our surveillance technique and 2 popular

applications using PowerTutor[53].

6

Fig. 2: Normal Scenario Fig. 3: Adversary injecting fake data

To make this attack happen, we need to address a few
technical challenges, particularly, how to clone the original
device, how to stealthily reset the link key when secure
connections are in use, and how to connect to the spoofed
device in the presence of the original one. Here we elaborate
these problems and our solutions.

Device spoofing. To clone a Bluetooth device, all an attacker
needs is the target device’s name, MAC address and UUID.
As discussed before, such information can be easily obtained
by calling Android’s getBondedDevices() method of
BluetoothAdapter class [24], which gives a list of devices
paired with the phone and their bonding data. In our experiment,
we ran SpoofTooph [25] on a Linux laptop that masqueraded
the original device using its name, MAC and class (i.e., UUID).
The spoofed device can be placed wherever the user may come
close if the official app of the original device does not have a
soft button for activating its Bluetooth connections. An example
here is the Bodymedia armband in automatic connection mode.
Otherwise, the adversary needs to set it up in the vicinity of
the original device. The presence of two devices with the same
name, MAC and UUID is hard to detect, as Bluetooth scanners
show only one of them. Also, the spoofed device can be much
further away from the user’s phone than the original device
(even outside the door) and still ensure the success of the attack,
which we elaborate later in this section.

Link key reset. What gives trouble to this data-injection
attack is the link key stored in the operating system that
the malicious app cannot get. The link key is used to
encrypt Bluetooth packets when the device’s official app
invokes createsecureRfcommSocket. Without knowing
this piece of information, the clone cannot talk properly
with the app. This is not always a problem: an app can
connect to its device without encryption protection (through
createInsecureRfcommSocket) and even some devices
that offer encryption may not provide adequate security.
Consider the Nonin pulse oximeter as an example. Its app
first tries secure connections, but, if this attempt fails, the app
automatically switches to the insecure channel to ensure that the
communication can still go through. However, for the device
that always sticks to the secure channel, an attacker needs a
way to circumvent the defense provided by the link key.

Here is our strategy: if we cannot get the link key, we
can simply replace it, setting it to one known to our spoofed
device. Given the Bluetooth and Bluetooth_ADMIN

permissions, the malicious app can easily unpair the phone
from any Bluetooth device by calling the API IBluetooth,
which removes the current link key shared with the device.
To enable the official app to talk to the clone, however, we
need to pair it with the spoofed device. This operation sets a
new link key for the clone, which requires the user to enter
a PIN to authenticate her phone to the device. (Note that the
PIN here is for device-device authentication, not app-device
authentication). The PIN itself is not a big issue, as the clone
will accept whatever it receives.4 The problem is that there is
no public Android API for programmatically entering the PIN.
The phone user’s intervention seems inevitable.

A close look at Android source code, however, shows
that the OS has a hidden interface that allows programmatic
entering of a PIN. All we need to do here is to find a
way to use it. The APIs provided by Android communicate
with different system services through IPC (Inter-Process
Communication) calls, based on those services’ interfaces
specified by Android Interface Definition Language (AIDL).
Actually, a method setPin() under Android IBluetooth
API (Android’s private API for Bluetooth services) can be
used to programmatically input the PIN. The problem is that
this interface is not open to ordinary apps. In our research,
we managed to get this interface by using a technique [22]
that retrieves the AIDL description of the method from the
Android source code and then compiles it together with the
code of the malicious app. As a result, the interface becomes
visible to the app. Through the interface, a PIN can then
be automatically entered for a Bluetooth pairing. To avoid
showing any user interfaces that might arouse suspicion from
the phone user, the app performs this pairing operation when
the screen is off, which can be determined without requesting
any permission [54]. We provide a demonstration of this attack
on a web page [6].

Connection race. Another technical challenge comes from
some apps’ soft buttons, which needs to be clicked by the
phone user to initiate their Bluetooth communication with the
devices. All four device apps we studied can be set in this
“button” mode. In this case, automatic triggering of those apps’
Bluetooth connections is difficult. Therefore we have to place
the clones somehow close to their original devices (within
tens of meters), in hopes that when the user starts running the

4After the attack, if the malicious app wants to restore the pairing with the
original device, oftentimes a default PIN (0000 or 1234) works just fine [51].

7

official apps, they will mistakenly talk to the clones. This turns
out to be pretty realistic: we found that we can set the spoofed
device in a way that it almost always wins this connection race,
as elaborated below.

A Bluetooth device typically waits for a smartphone to
initiate a connection. During this waiting process, it continues
to switch between two modes, page sleep where it sleeps to
save power [35] and page scan where it wakes up to look for
connection requests. This process is called paging. Let Tsleep

be the time interval between two scans and Tscan the duration
of a scan. Obviously, a larger Tscan and a smaller Tsleep lead to
more power consumption, but are more likely to timely respond
to the phone’s connection requests. According to Bluetooth
specifications [35], [26], these parameters are supposed to be
set such that 11.25ms Tsleep 2.56s and 10.625ms
Tscan Tsleep. For most Android external devices, including
all those used in our research, their parameters are chosen
for power saving and cannot be modified by the user. The
adversary, however, can be more aggressive. In our research,
we used the Linux configuration tool hciconfig to set these
parameters for the Bluetooth dongle on our attack laptop to
Tscan = 11.25ms and Tsleep = 1.28s, and ran this spoofed
device against all four healthcare devices. We found that the
clone almost always won such connection races. This happened
even when the original device was more powerful than the clone
in terms of radio signal strengths. For example, Nonin pulse
oximeter [15] is a Class I Bluetooth device, with a 100mW
radio and a range up to 100m, whereas clone was Class II
with a 2.5mW radio and a range up to 10m; even under such
a disparity, the clone always managed to first connect to the
phone even behind a wall and 7m away.

The attacks. In our research, we implemented the attack and
evaluated them on our NEXUS 4 phone (Android 4.2, 1.5GHz
quad-core CPU and 2GB memory) and the medical devices.
The experiments were conducted in the presence of both the
original devices and their clones (a VM with Intel Core i7 CPU
(shared), 1GB memory, a Bluetooth 2.0 dongle), though this
is unnecessary when these devices’ apps are in the automatic
connection mode that enables the malicious app to trigger them
to automatically connect to the clones whenever the phone
user comes close to the spoofed devices. To make our attacks
realistic, we deliberately placed the original devices closer to
the phone (0 feet) than the spoofed ones (20 feet away, with a
wall in-between). Among all 100 executions of the official apps,
the phone was always first connected to the clones, despite
their larger distance from the phone. The results are presented
in Table IV. Note that in the presence of secure connections,
the phone cannot talk to the original device after the reset
of the link key. When this happens, however, the phone will
get a notification of connection failure if the response from
the original device comes first. In our experiment, we never
observed such a notification: each time, the phone always
smoothly established a connection with the clone.

In all the tests, our app first unpaired the phone from
the original device and then paired it with the clone, using
a random PIN as an input. All these unpairing and pairing
attempts succeeded. Once a connection was established, we
observed that the spoofed device easily dumped fake data into
the official app, this data was displayed on the phone or the
web page for the user’s account. A demo is posted online [6].

Distance of cloned device 1 ft 20 ft*

Number of observations 100 100
Distance of original device 0 ft 0 ft

No. of times original device responded 0 0
No. of times cloned device responded 100 100

* with a wall in between

TABLE IV: Data-injection attack launched 1ft and 20ft away
from the victim’s phone, with the original device touching the
phone. In both cases, the experiments were repeated 100 times.

Total apps 90
Apps not using Bluetooth (eliminated) 2
Device apps with sensitive information 68
Device apps with insensitive information 20

TABLE V: Sampled apps

C. Measurement of the DMB Threats

As discussed before, the DMB problem comes from the
lack of a bonding between an Android external device and
its official app. In the absence of OS-level protection, this
threat can only be addressed by the app-device authentication
developed by individual device manufacturers. The design and
implementation of such an authentication mechanism, however,
can be nontrivial, which could raise the cost of the devices.
To find out whether such a security measure has already
been taken in practice, we performed a measurement study
that analyzed a relevant set of apps from Google Play. Our
study, for which we give details below, reveals that all of the
selected apps are actually vulnerable, indicating that the DMB
problem is indeed realistic and serious. Given the pervasiveness
of vulnerable devices and challenges in fixing them (which
could require modifying their hardware), an OS-level solution
becomes inevitable (Section IV).

App collection. To collect relevant official apps for differ-
ent Bluetooth devices, we searched Google Play for those
compatible with Google NEXUS 4, using the following terms:
“Bluetooth Door Lock”, “Bluetooth Health”, “Bluetooth Medical
Devices” and “Bluetooth Meter”. All together, these queries
gave us 90 apps. For each of these apps, we manually inspected
its descriptions to determine whether it received sensitive user
data from its device. Among these 90 apps, 68 involved some
private user information, such as the heart rate, blood pressure,
body temperature, glucose level, daily activities, and so on as
summarized in Figure 4.

Methodology and analysis. To avoid purchasing all those 68
devices, which is too expensive, we analyzed their code to find
out whether they included any app-device authentication. This
analysis was done both automatically and manually, as follows.

We first decompiled all the 68 apps and searched for
authentication-related programming structures. Authentication
should be based upon a secret, which was not hard-coded
into any of those apps, given the fact that from two indepen-
dent downloads of the same app, we always got the same
code and data. Therefore, such a secret should either come
from some external inputs of the app, particularly its user
interfaces, web communication or internal memory files, or
is generated by cryptographic operations. In our study, we

8

Fig. 4: Classifications of the sampled apps. Some of them
collect information in multiple categories.

inspected all such potential sources of authentication secrets
(Table VI) to determine whether their outputs affected the
inputs of the app’s Bluetooth communication, particularly that
of BluetoothSocket.write, which transmits data to the
device through a Bluetooth socket connection.

We ran a script that used grep to locate the APIs related
to those sources and identified the apps where such APIs only
appeared within public libraries. For example, we found that,
for most apps, their cryptographic APIs (provided by Java
JCE, Bouncy castle and spongycastle [14], [4], [17]) were
all included in shared libraries such as Google ads, Twitter
authentication, OAuth, etc. Those libraries are used for specific
purposes, getting ads or performing web-based authentication,
for example. It is unlikely that they be used for authenticating
the app to its Bluetooth device. Therefore, we removed all the
apps that did not have any of those APIs outside the public
libraries. There were 48 such apps among all we collected.

For the remaining 20 apps, we manually inspected all the
occurrences of these “suspicious” APIs (Table VI) in their
code. We looked at the functions where the calls to the APIs
were made. It turned out that they were all used for the
purposes having nothing to do with app-device authentication.
For example, most reads from memory files appeared in the
crash-handling mechanisms and most cryptographic operations
were performed on the SQL queries on web databases. We
also found that HttpClient was used in the functions for
sharing tweets or getting the user’s workout data from the web.
None of these API outputs were propagated to the inputs of
the app’s Bluetooth communication.

We further installed all the 68 apps and manually inspected
their user interfaces. None of them asked for passwords,
PINs, etc. for authenticating themselves to their corresponding
devices.

Authentication
Methods

Libraries/Functions
used

Total Apps with app-
device authentica-
tion

Crypto e.g.,
javax.crypto,
bouncycastle

9 0

Internal storage e.g.,
openFileInput()

15 0

Web communica-
tion

e.g., HttpClient 5 0

UI for app-device
authentication

Manual 0 0

TABLE VI: Manual analysis on 20 apps. The other 48 apps
were automatically filtered out by the locations of their

suspicious APIs.

Summary of the findings. As discussed above, we found
no evidence that any of these 68 apps, which were relevant
apps in Google Play, performed any app-device authentication.
Table VI summarizes our findings. The 48 apps we removed
automatically either did not have any suspicious APIs or
had such APIs in their shared libraries, including those for
advertising, web authentication, crash analysis, etc. For the 20
apps we manually analyzed, 9 called cryptographic APIs in
their own code, 5 invoked web APIs and 15 read from memory
files. Also, for all the 68 apps we studied, none had user
inputs for app-device authentication. Again, none of these apps
generated any data flow that affected the inputs of Bluetooth
communication functions.

Our study also shows that most of these apps supported
secure Bluetooth communication: 42 apps utilized secure
socket only; 12 worked under both secure and insecure
communications and the rest utilized insecure communication
only. This indicates that most of the devices processing sensitive
user data do take privacy protection seriously. However, the
presence of malicious apps with the Bluetooth permissions on
Android renders such device-device authentication insufficient
for protecting private user information.

IV. ANDROID DEVICE BINDING CONTROL

Our security analysis of existing Android Bluetooth devices
shows that most of them are completely unprotected from
the mis-bonding attacks. Although theoretically each device
manufacturer can provide its own app-device authentication
to address the problem, this requires upgrading not only its
software (the app) and also the hardware (the external device),
thus making the device more expensive. Also, this case-by-
case fix renders the quality of security protection for different
external devices hard to control. Therefore, we believe that a
better solution is to enhance Android to provide an OS-level
access control that bonds each device to authorized app(s).
In this section, we elaborate our design and implementation
of such a technique, called Dabinder, and evaluation of its
efficacy. Dabinder assumes that underlying Android OS is not
compromised. The protection mechanism (namely Dabinder is
developed on framework layer of Android OS.

A. Overview

We built Dabinder to effectively control app-device bonding
in both pairing and communication stages and to minimize

9

Fig. 5: Bluetooth Subsystem and our defense mechanism:
DaBinder is built into AdapterService and checks the interaction
between apps and Bluetooth devices. It only allows authorized
app to access Bluetooth device and keeps bonding policy in a
secure storage. Reference Monitor and Bonding Policy blocks
(both shown in light-blue) constitute Dabinder.

user involvements in setting access-control policies. Here we
describe a high-level design that achieves these two goals.

Architecture. Figure 5 illustrates the architecture for Blue-
tooth socket communication on Android 4.2, which includes
Dabinder components (Reference Monitor and Binding Pol-
icy database). To pair a device programmatically, the sys-
tem calls setPairingConfirmation and setPin or
setPassKey of BluetoothDevice. To unpair a device,
the app uses the API removeBond. Alternatively, it can invoke
the settings program to control the Bluetooth adapter. In both
cases, an IPC request needs to be sent to AdapterService
to control the Bluetooth device. Once a bond (pairing) is
established, the app can make a socket connection to access
the device. To this end, again it first needs to talk to the
BluetoothAdapater, to get a list of paired devices. From
this list, the app identifies the target device (MAC) and further
requests a socket through the object BluetoothDevice.
This request is also delivered using an IPC, through the
IBluetooth interface, to AdapterService, which cre-
ates the socket for the connection.

In our design, the whole security mechanism is built
into AdapterService, including a component that controls
socket establishment (within an authorized app-device pair5)
and one that manages the unpairing operation (which can only
be performed by an authorized app6). Such access controls
are based on a set of security policies that unambiguously
bonds a device to its authorized app, which are generated
automatically by the system from what is observed from the
phone’s Bluetooth operations.

How it works. Here we explain how Dabinder works. Once
the device is activated, it is paired with its authorized app by
the phone user. This pairing operation is observed by Dabinder,
which then generates a bonding policy that associates each
device (name, MAC and UUID) to its official app (that is, its

5App-device pair is our terminology for creating a bond between an app and
Bluetooth device as opposed to conventional Bluetooth pairing which creates
a bond between the phone and the device.

6Authorized app: The app that has already established bond to the device.

Linux user ID or UID). Whenever Android receives a Bluetooth
socket-connection request from an app, the policy enforcement
mechanism checks whether the app is associated in the bonding
policy to the device it is trying to talk to: if the app is not on the
device’s bonding policy, the request is denied; otherwise, it is
allowed to proceed. In this way, our mechanism defeats the data-
stealing attacks. Also, Dabinder runs an unpairing controller to
manage the operations to dissolve a pairing relation between
the phone and a device: in the absence of the bonding policy
between the device and the app that requests such an operation,
the app is considered to be unauthorized and its unpairing
attempt is stopped. As the data-injection attack is contingent
on resetting the link key for the phone-device communication,
it cannot work without unpairing the phone from the original
device. Therefore, such an attack cannot go through.

B. Design and Implementation

Here we present the detailed design of Dabinder, which we
implemented in our research on a Galaxy NEXUS 4 phone
with Android 4.2. As described before, our design includes
mechanisms for generating and maintaining security policies,
and for enforcing these policies during phone-device pairing
and app-device connection establishment. All these mechanisms
were implemented within AdapterService.

Policies identification. Critical to Dabinder’s mission is the
security policies on the legitimate bond between an app and
an external device. Such a policy can certainly be manually
specified, but it is highly desired that it can also be automatically
generated, without the user’s intervention if she prefers to
do so. In our design, this policy-identification operation
is performed within AdapterService, when our policy
enforcement mechanism inspects a pairing request and its
follow-up connection request: if an app is the first one to
make a socket connection to the device after the device is
paired with the phone, our mechanism automatically adds this
app-device relation to a policy database as a new bonding
policy.

To securely and persistently maintain these policies in
the system, AdapterService keeps a Bluetooth MAC
Address and UID mapping in the Settings.Secure key-
value storage, which is persistent and read-only to the apps,
and can only be modified by the phone user or a sys-
tem program. The user can manage these policies from
BluetoothManagerService through a user interface
built upon two functions exposed by AdapterService,
addDevApp and removeAppDev. In particular, she can
explicitly declare an exemption policy for a device, thus
allowing it to be accessed by any app.

Connection control. To communicate with an external
device, an app needs to establish a connection
with it through a Bluetooth socket. Such a socket
is created by the system, through a call to the
BluetoothDevice APIs: createRfcommSocket,
createRfcommSocketToServiceRecord,
createInsecureRfcommSocket or
createInsecureRfcommSocketToServiceRecord.
A straightforward solution here is to instrument these APIs in
order to control the creation of Bluetooth sockets. The problem
is that such mediation actually happens in the user land, inside

10

individual apps’ address space. As a result, there is no guarantee
that it cannot be circumvented. Also, such a policy compliance
checking needs an additional IPC to AdapterService, to
get the policies from the system. Instead, in our research,
we modified AdapterService.connectSocket, a
system function all these APIs have to invoke, for policy
compliance checking and enforcement. Whenever the function
is called, it first searches the policy database for the device
according to its MAC address. If the device is found, our
enforcement mechanism continues to look for its related
bonding policies. In case, the app does not appear on any
of them (i.e. the device has been connected before and is
not exempted from the bonding protection), we consider
that a policy violation is detected and the request is denied.
Otherwise, connectSocket returns a socket and allocates
the corresponding resources, such as file descriptors for the
connection.

This policy enforcement is implemented on the Android
framework layer. Apparently, the app including native code
such as createBondNative and removeBondNative
may still touch the Bluetooth device on the Linux layer, as
illustrated in Figure 5. In our research, we inspected the
Bluetooth interface on Linux and found that it is actually
included in the Linux group bluetooth. For the app with
BLUETOOTH_ADMIN and BLUETOOTH permissions, it can
get into the groups net_bt_admin and net_bt, but not
bluetooth. As a result, it will not be able to directly access
the Linux Bluetooth resources, even through its native code, due
to the Linux access control. Under all circumstances, the app
needs IPC calls to transfer the execution to a system process
in order to use kernel resources. Therefore, we conclude that
our protection mechanism cannot be circumvented even by the
native code.

Unpairing control. In the presence of secure Bluetooth
communication, a malicious app needs to first unpair the
phone from the original device before pairing it with the
clone to reset the link key. To prevent this unauthorized
unpairing, Dabinder interposes on the function removeBond
within AdapterService. Whenever an unpairing request
is received from the IBluetooth interface, our mechanism
checks it against the bonding policy retrieved from the policy
dataset: if the app that sends the request is not the authorized
one on the policy, this request is denied. Alternatively, we
can pop up an interface on the phone to alert the user to the
unpairing request and allow the operation to proceed with her
permission.

A problem here is that some devices do not use secure
Bluetooth communication, which enables the spoofed device
to talk to the official app even without knowing the link key.
Fortunately, our measurement study shows that most of devices
collecting sensitive user data do support encrypted communica-
tion (Section III-C), though some of them can also automatically
switch to the insecure one when the secure connection fails. To
address this issue, Dabinder provides an optional policy through
which the phone user can require that any communication with a
certain device must be encrypted. In case, the policy is violated
(that is, a device is switching to the insecure communication),
we can choose to stop the communication and alert the user
for further instructions. This happens in AdapterService,
within the method connectSocket which checks whether

Functions Original Dabinder Delays
BluetoothSocket 0.0317/0.0059 ms 0.0353/0.0153 ms 0.0036 ms
connectSocket 63.1670/14.7098 ms 86.5152/14.2201 ms 23.3482 ms
removeBond 0.5319/0.1863 ms 0.5493/0.1822 ms 0.017ms

TABLE VII: Dabinder performance evaluation. (mean/sd)

SEC_FLAG_AUTH and SEC_FLAG_ENCRYPT on flag are
set.

C. Evaluation

We evaluated our implementation to understand its effec-
tiveness in protecting the communication with external devices
and its performance impacts on the phone’s normal operations.
All the experiments were conducted on the Galaxy Nexus
phone with a Dual-core 1.2 GHz Cortex-A9 and 1GB memory,
Android 4.2 operating system and BlueDroid stack.

Effectiveness. To understand the effectiveness of our approach,
we ran it against all the data-injection and data-stealing attacks
discussed in Section III. All these attack attempts were thwarted.
Specifically, for all the data-stealing attacks, Dabinder stopped
the malicious app from making socket connections to the target
device, as these connections violated the policy it automatically
detected during the pairing stage of the phone. When it comes
to the data-injection attacks, our implementation blocked all
the attempts to unpair the phone from the devices and therefore
defeated the attacks when the secure communication was in
use. Also, our approach denied the establishment of a socket
for insecure connection required by the Pulse Oximeter app.

Performance. We further evaluated the performance of
Dabinder, comparing the execution times for establishing
sockets and unpairing a device with and without its policy
inspection and enforcement. Specifically, we measured the
performance of a set of functions using the code instrumented
before and after their executions. The results are illustrated in
Table VII.

Here, BluetoothSocket creates a Bluetooth
socket, connectSocket builds a socket connection
and removeBond unpairs the phone from a device. As we
can see from the table, for all these functions, the delay is
mainly caused by connectSocket, about 23ms on average.
It should be noted that only 8 devices can have Bluetooth
connection simultaneously to a smartphone. Moreover, a
phone cannot have more than 30 RFCOMM sockets active
at the same time, as RFCOMM have only 30 channels [27].
For external devices, they typically can accommodate only
one or two connections. Actually, all data from the device is
downloaded through a single Bluetooth connection. Therefore,
this 23ms delay will not bring in any noticeable inconvenience
to the phone user.

V. DISCUSSION

External device mis-bonding is an emerging security chal-
lenge for mobile operating systems. Our study reveals its serious
consequences and makes a first step toward mitigating this
threat. However, what we have done has just scratched the
surface of this problem domain. Further efforts are needed

11

to better understand the problem and come up with effective
solutions. Following we discuss two examples of possible future
research on this issue.

Mis-bonding problems on iOS and other channels. The
fundamental cause for the DMB problem is that Android does
not differentiate devices attached to the same channel and
therefore cannot bind an app to a device. Other mobile OSes
may have the same issue. In particular, iOS does not seem to
provide any means for tying an app and a device together, nor
does it control the access to different devices through other
channels. Further research on this OS platform could lead to
interesting findings. Also, we have not explored other channels
on the phone. For example, NFC is increasingly used for
connecting financial apps to external devices for the operations
such as payment. Apparently, the same mis-bonding problem
also exists on this channel: it is possible that an app only needs
to get the NFC permission to access an NFC-enabled device,
even if the app is not authorized to do so. If this is true, those
NFC devices can also be subject to the data-stealing attacks
described in Section III-A. More investigations are needed to
understand this threat.

Bonding control. In our research, we developed a technique
that controls the binding between an app and a Bluetooth device.
The same idea could be applied to other channels and OSes.
For example, if device mis-bonding indeed becomes a problem
for NFC, we might be able to establish a relation between
an NFC device and its app, and ensure that such a relation
will not be broken without the phone user’s consent. Also, in
case, iOS is found to be vulnerable to the DMB threat, a new
bonding control mechanism becomes imperative for protecting
the external device attached to iPhone, iPad and iPod. Follow-up
work on this direction is certainly important.

VI. RELATED WORK

Health Device Security. The prior works on the security issues
of health devices are the most closely related to our work.
Rahman et al. [46] identified several vulnerabilities on Fitbit,
a wireless wearable fitness device, which can be leveraged to
inject data into the device and launch a denial of service attack
against it. Li et al. [38] look into the security weaknesses of
glucose monitoring and insulin delivery systems and proposed
the technologies for protecting those devices’ operations using
rolling-code and body-coupled communication. Also, Marti et
al. [39] lay out a few necessary requirements for building a
secure mobile health care system. All such prior work focuses
on the security problems of a specific health device or the
communication protocol it uses, whereas our research aims at
understanding the security implications of the way Android
handles its external devices, in the presence of malicious apps
running on the phone.

Android Permission. Android permission system has been
under scrutiny for years [42], [47], [41], [33], [30], [45], [41],
[29], [40]. Much has been proposed to extend this security
model, allowing the phone user to selectively grant permissions
to apps [40], deny those with dangerous permission combina-
tions [34], utilize app-defined fine grained access control [42] or
leverage IPC provenances for security protection [32]. However,
all these prior approaches are designed to guard a phone’s local

resources. In contrast little has been done on mobile OSes to
protect the external devices that connect to smartphones. In
particular, on Android, an app that acquires the permissions
to use a channel (e.g., Bluetooth, NFC, etc.) is automatically
granted the access to any device attached to this channel. There
is nothing to bind a device to its authorized app. This problem
could be mitigated by SE-Android [49], through labeling the
app and the device, and design of a security policy to link them.
However, this all depends on the knowledge of the device and
app in advance, and a careful setting of the right policy, which
oftentimes needs the help from the expert. Also, SE-Android
has not been extensively used. Its utility in the presence of
diverse applications of Android phones is still not clear.

Bluetooth Security. Bluetooth is a short-range wireless com-
munication technology designed to replace the serial cable links.
With its increasing utilization by different devices – including
health devices, remote car control, activity monitoring, etc. –
security and privacy concerns are running high. Since Bluetooth
2.1, link-layer encryption is required and cannot be turned
off, but encryption and authentication alone cannot address
all issues with Bluetooth. Prior research [50] summarizes
several traditional Bluetooth attacks, e.g., Bluesnarfing, Bluet
buggin, Bluejacking, etc. Further security analyses have yielded
discoveries of many weaknesses in Bluetooth systems or
protocols, which enable the adversary to crack keys, PINs [36],
[48], perform Man-in-the-Middle attacks [37] and propagate
malware [52], etc. Different from all such prior research, our
study focuses on the way mobile OSes handle Bluetooth devices,
instead of the Bluetooth system and the protocol themselves.
This has never been done before, to the best of our knowledge.

VII. CONCLUSION

Smartphones are becoming increasingly sophisticated, with
their functionalities enriched by assorted external devices such
as Bluetooth headsets, medical devices, creditcard readers, etc.
This new development, however, also brings in new security and
privacy challenges. The OSes these phones use, particularly
Android, are not designed to protect the secure interaction
between an external device and its authorized app. As a
result, oftentimes, any app with the permissions to use the
communication channels utilized by such a device, such as
Bluetooth, NFC, Audio port, etc., automatically gain the access
to the device, even if it is not authorized to do so.

In this paper, we reported the first study on this external-
device mis-bonding threat, which we found to be both realistic
and serious. Particularly, our in-depth analysis on four popular
health devices, including a Bodymedia Armband, a thermometer,
a Pulse Oximeter and a Glucose meter, shows that all of
them are vulnerable to different types of DMB attacks. In
a data-stealing attack, the malicious app with the Bluetooth
permissions can download sensitive user data from the devices
without being noticed, using the side-channel information
revealed by Android to determine the right moment to attack.
In a data-injection attack, the app can collect the pairing
information of the target device and reset the link key, which
enables an adversary to place a spoofed device that masquerades
the medical device and injects the fake data into the phone
user’s medical accounts. All these attacks can succeed even
in the presence of Bluetooth secure communication, which is
designed for protecting device-device communication, not the

12

interaction between a device and an app. Our measurement
study, which analyzed 68 device apps randomly sampled from
Google Play, further demonstrates that most existing devices
are vulnerable to this DMB threat.

To mitigate the threat, we developed a new OS-level protec-
tion mechanism, called Dabinder. Our approach automatically
identifies the binding relations between an app and its external
device from the phone’s activities, and then uses such relations
as security policies. These binding policies are enforced during
the phone’s runtime. Whenever an unauthorized app attempts
to connect to an external device or unpair the phone from
the device, Dabinder detects and blocks the attempts. Our
study shows that this new approach works effectively against
Bluetooth DMB attacks and incurs a negligible performance
impact.

Our study on the DMB threat here focuses on Bluetooth,
and therefore is only a first step toward understanding and
mitigating this new security issue. Follow-up investigations on
the problem in a broader context are important and expected
to happen in the near future.

ACKNOWLEDGMENT

We thank our shepherd, William Enck, and the anonymous
reviewers for their comments. This work was supported in part
by NSF CNS 09-64392 (NSF EBAM) and HHS 90TR0003-01
(SHARPS). The authors with Indiana University were supported
in part by the NSF CNS-1017782, CNS-1117106, CNS-1223477
and CNS-1223495. The views expressed are those of the authors
only. We also thank Holly B. Cogliati (EPFL) for proofreading.

REFERENCES

[1] Alivecor ecg. [http://www.alivecor.com/].
[2] Android accounts for 75 percent market share. [http:

//www.zdnet.com/android-accounts-for-75-percent-market-share-
windows-phone-leapfrogs-blackberry-7000015496/].

[3] Bodymedia link armband. [http://www.bodymedia.com/].
[4] Bouncycastle library. [http://www.bouncycastle.org/].
[5] Dabinder android open source. https://github.com/DabinderAndroid/

extDroid.git.
[6] Demos for our attacks. [https://sites.google.com/site/edmbdroid/].
[7] Entra health systems, myglucohealth. [http://health2con.com/source/

gbmf frontend/company/show/59].
[8] Fitbit one. [http://www.digifit.com/fitbit/index.asp].
[9] Fitbit zip. [http://www.digifit.com/fitbit/zip/].

[10] Foracare testngo. [http://www.foracare.com/glucometer-Testngo.html].
[11] Foracare testngo. [http://www.myglucohealth.net/].
[12] hcidump. http://www.linuxcommand.org/man pages/hcidump8.html.
[13] ithermometer. [http://www.ithermometer.info/].
[14] Java cryptography extension. [http://www.oracle.com/technetwork/java/

javase/documentation/index.html].
[15] Nonin onyx ii pulseoximeter. [http://www.nonin.com/PulseOximetry/

Finger/Onyx9560].
[16] Nonin onyx ii pulseoximeter specs. [http://www.nonin.com/products.

asp?ID=39&sec=2&sub=9].
[17] Spongycastle library. [http://rtyley.github.io/spongycastle/].
[18] Square up. [https://squareup.com/].
[19] Tmg muscle fatigue monitor. [http://www.tmg.si/].
[20] Withings blood pressure monitor. [http://www.digifit.com/withings-

blood-pressure-monitor/index.asp].

[21] Zephyr heart rate monitor. [http://www.zephyr-technology.com/products/
bioharness-3/].

[22] Getting ibluetooth instance. http://snipplr.com/view/49526/, 2011.
[23] Bodymedia puts a spin on the ordinary testing procedure. http://blog.

bodymedia.com/page/6/, 2012.
[24] Android bluetoothadapter class. http://developer.android.com/reference/

android/bluetooth/BluetoothAdapter.html, 2013.
[25] Spooftooph. http://www.hackfromacave.com/projects/spooftooph.html,

2013.
[26] S. Bluetooth. Specification of the bluetooth systemversion 2.0, 4.

november 2004.
[27] S. Bluetooth. Rfcomm with ts 07.10. Bluetooth SIG, 2003.
[28] S. Bluetooth. Bluetooth core specification version 2.1+ edr. Specification

of the Bluetooth System, 2007.
[29] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R. Sadeghi, and

B. Shastry. Towards taming privilege-escalation attacks on android. In
19th Annual Network & Distributed System Security Symposium (NDSS),
Feb. 2012.

[30] M. Conti, V. T. N. Nguyen, and B. Crispo. Crepe: context-related
policy enforcement for android. In Proceedings of the 13th international
conference on Information security, ISC’10, pages 331–345, Berlin,
Heidelberg, 2011. Springer-Verlag.

[31] C. Daniels. Why is too much insulin bad? [http://www.livestrong.com/
article/423665-why-is-too-much-insulin-bad/].

[32] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach. Quire:
Lightweight provenance for smart phone operating systems. In 20th
USENIX Security Symposium, San Francisco, CA, Aug. 2011.

[33] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, OSDI’10,
pages 1–6, Berkeley, CA, USA, 2010. USENIX Association.

[34] W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM conference
on Computer and communications security, CCS ’09, pages 235–245,
New York, NY, USA, 2009. ACM.

[35] M. Handy and D. Timmermann. Time-slot-based analysis of bluetooth
energy consumption for page and inquiry states.

[36] M. Jakobsson and S. Wetzel. Security weaknesses in bluetooth. In
Topics in Cryptology CT-RSA 2001, pages 176–191. Springer, 2001.

[37] D. Kügler. man in the middle attacks on bluetooth. In Financial
Cryptography, pages 149–161. Springer, 2003.

[38] C. Li, A. Raghunathan, and N. K. Jha. Hijacking an insulin pump:
Security attacks and defenses for a diabetes therapy system. In e-Health
Networking Applications and Services (Healthcom), pages 150 – 156,
2011.

[39] R. Marti, J. Delgado, and X. Perramons. Security specification and
implementation for mobile e-health services. eee, 00:241–248, 2004.

[40] M. Nauman, S. Khan, and X. Zhang. Apex: extending android permission
model and enforcement with user-defined runtime constraints. In
Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ASIACCS ’10, pages 328–332, New
York, NY, USA, 2010. ACM.

[41] M. Ongtang, K. Butler, and P. McDaniel. Porscha: policy oriented secure
content handling in android. In Proceedings of the 26th Annual Computer
Security Applications Conference, ACSAC ’10, pages 221–230, New
York, NY, USA, 2010. ACM.

[42] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically
rich application-centric security in android. In Proceedings of the 2009
Annual Computer Security Applications Conference, ACSAC ’09, pages
340–349, Washington, DC, USA, 2009. IEEE Computer Society.

[43] E. Ozdalga, A. Ozdalga, and N. Ahuja. The smartphone in medicine:
a review of current and potential use among physicians and students.
Journal of medical Internet research, 14(5), 2012.

[44] J. Padgette, K. Scarfone, and L. Chen. Guide to bluetooth security. NIST
Special Publication, 800:121, 2012.

[45] G. Portokalidis, P. Homburg, K. Anagnostakis, and H. Bos. Paranoid
android: versatile protection for smartphones. In Proceedings of the

13

%5Bhttp://www.alivecor.com/%5D
%5Bhttp://www.zdnet.com/android-accounts-for-75-percent-market-share-windows-phone-leapfrogs-blackberry-7000015496/%5D
%5Bhttp://www.zdnet.com/android-accounts-for-75-percent-market-share-windows-phone-leapfrogs-blackberry-7000015496/%5D
%5Bhttp://www.zdnet.com/android-accounts-for-75-percent-market-share-windows-phone-leapfrogs-blackberry-7000015496/%5D
%5Bhttp://www.bodymedia.com/%5D
%5Bhttp://www.bouncycastle.org/%5D
https://github.com/DabinderAndroid/extDroid.git
https://github.com/DabinderAndroid/extDroid.git
%5Bhttps://sites.google.com/site/edmbdroid/%5D
%5Bhttp://health2con.com/source/gbmf_frontend/company/show/59%5D
%5Bhttp://health2con.com/source/gbmf_frontend/company/show/59%5D
%5Bhttp://www.digifit.com/fitbit/index.asp%5D
%5Bhttp://www.digifit.com/fitbit/zip/%5D
%5Bhttp://www.foracare.com/glucometer-Testngo.html%5D
%5Bhttp://www.myglucohealth.net/%5D
http://www.linuxcommand.org/man_pages/hcidump8.html
%5Bhttp://www.ithermometer.info/%5D
%5Bhttp://www.oracle.com/technetwork/java/javase/documentation/index.html%5D
%5Bhttp://www.oracle.com/technetwork/java/javase/documentation/index.html%5D
%5Bhttp://www.nonin.com/PulseOximetry/Finger/Onyx9560%5D
%5Bhttp://www.nonin.com/PulseOximetry/Finger/Onyx9560%5D
%5Bhttp://www.nonin.com/products.asp?ID=39&sec=2&sub=9%5D
%5Bhttp://www.nonin.com/products.asp?ID=39&sec=2&sub=9%5D
%5Bhttp://rtyley.github.io/spongycastle/%5D
%5Bhttps://squareup.com/%5D
%5Bhttp://www.tmg.si/%5D
%5Bhttp://www.digifit.com/withings-blood-pressure-monitor/index.asp%5D
%5Bhttp://www.digifit.com/withings-blood-pressure-monitor/index.asp%5D
%5Bhttp://www.zephyr-technology.com/products/bioharness-3/%5D
%5Bhttp://www.zephyr-technology.com/products/bioharness-3/%5D
http://snipplr.com/view/49526/
http://blog.bodymedia.com/page/6/
http://blog.bodymedia.com/page/6/
http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
http://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
http://www.hackfromacave.com/projects/spooftooph.html
%5Bhttp://www.livestrong.com/article/423665-why-is-too-much-insulin-bad/%5D
%5Bhttp://www.livestrong.com/article/423665-why-is-too-much-insulin-bad/%5D

26th Annual Computer Security Applications Conference, ACSAC ’10,
pages 347–356, New York, NY, USA, 2010. ACM.

[46] M. Rahman, B. Carbunar, and M. Banik. Fit and vulnerable: Attacks
and defenses for a health monitoring device. CoRR, abs/1304.5672,
2013.

[47] A. Shabtai, Y. Fledel, and Y. Elovici. Securing android-powered mobile
devices using selinux. IEEE Security & Privacy, 8(3):36–44, 2010.

[48] Y. Shaked and A. Wool. Cracking the bluetooth pin. In Proceedings of
the 3rd international conference on Mobile systems, applications, and
services, MobiSys ’05, pages 39–50, New York, NY, USA, 2005. ACM.

[49] S. Smalley and R. Craig. Security enhanced (se) android: Bringing
flexible mac to android. In Preceding of Network and Distributed System
Security Symposium, 2013.

[50] C. A. Soto. A menu of bluetooth attacks. [http://gcn.com/articles/2005/
07/20/a-menu-of-bluetooth-attacks.aspx], 2005.

[51] D. Spill and A. Bittau. Bluesniff: Eve meets alice and bluetooth. In
Proceedings of USENIX Workshop on Offensive Technologies (WOOT),
2007.

[52] S. Töyssy and M. Helenius. About malicious software in smartphones.
Journal in Computer Virology, 2(2):109–119, 2006.

[53] L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and L. Yang.
Accurate online power estimation and automatic battery behavior based
power model generation for smartphones. In Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 2010 IEEE/ACM/IFIP
International Conference on, pages 105–114, 2010.

[54] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt. Identity, location, disease and more: Inferring
your secrets from android public resources. In Proceedings of the 2013
ACM Conference on Computer and Communications Security, CCS ’13,
pages 1017–1028, New York, NY, USA, 2013. ACM.

14

%5Bhttp://gcn.com/articles/2005/07/20/a-menu-of-bluetooth-attacks.aspx%5D
%5Bhttp://gcn.com/articles/2005/07/20/a-menu-of-bluetooth-attacks.aspx%5D

	Introduction
	External Device Mis-Binding
	Background
	Mis-bonding Threat

	Attacks and Measurement
	Data-Stealing Attacks
	Data-Injection Attacks
	Measurement of the DMB Threats

	Android Device Binding Control
	Overview
	Design and Implementation
	Evaluation

	Discussion
	Relatedwork
	Conclusion
	References

