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Abstract—ARM TrustZone, which provides a Trusted Exe-
cution Environment (TEE), normally plays a role in keeping
security-sensitive resources safe. However, to properly control
access to the resources, it is not enough to just isolate them
from the Rich Execution Environment (REE). In addition to the
isolation, secure communication should be guaranteed between
security-critical resources in the TEE and legitimate REE pro-
cesses that are permitted to use them. Even though there is a
TEE security solution — namely, a kernel-integrity monitor —
it aims to protect the REE kernel’s static regions, not to secure
communication between the REE and TEE.

We propose SeCReT to ameliorate this problem. SeCReT
is a framework that builds a secure channel between the REE
and TEE by enabling REE processes to use session keys in the
REE that is regarded as unsafe region. SeCReT provides the
session key to a requestor process only when the requestor’s code
and control flow integrity are verified. To prevent the key from
being exposed to an attacker who already compromised the REE
kernel, SeCReT flushes the key from the memory every time the
processor switches into kernel mode.

In this paper, we present the design and implementation
of SeCReT to show how it protects the key in the REE. Our
prototype is implemented on Arndale board, which offers a
Cortex-A15 dual-core processor with TrustZone as its security
extension. We performed a security analysis by using a kernel
rootkit and also ran LMBench microbenchmark to evaluate the
performance overhead imposed by SeCReT.

I. INTRODUCTION

A Trusted Execution Environment (TEE) that is isolated
from a Rich Execution Environment (REE) aims to protect
assets such as crypto keys and user credentials. As an ex-
ample of a TEE for embedded devices, ARM TrustZone
has been used to execute security-critical services [7], [9].
TrustZone’s resources are physically isolated from the REE,
such that attackers in the REE cannot access them directly.
Any direct access from the REE to TrustZone’s memory
region is restricted by a hardware access-control mechanism
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(e.g., TZASC) [5], which guarantees the confidentiality of the
resources it protects.

However, the current design of TrustZone’s architecture
does not authenticate the access to the resources in TrustZone.
To access the resources in TrustZone, a legitimate process
in the REE uses a communication channel between the REE
and TrustZone. The channel is created with an REE process
that synchronously invokes the specific instruction with the
arguments written on domain-shared memory that is allocated
in the REE. The legitimate REE process can send a request
to (and get a response from) TrustZone through the channel.
Unfortunately, the channel is vulnerable to an attacker with the
REE’s kernel privilege who attempts to access the resources in
TrustZone. Such an attacker can create a malicious process that
continuously sends requests with crafted arguments to discover
the vulnerabilities of the resources in TrustZone.

To the best of our knowledge, no message-protection
mechanism exists in TrustZone. Thus, the attacker could
easily perform a man-in-the-middle attack to manipulate the
messages transferred through the channel. Some security ana-
lysts performed a simple fuzzing test, exploiting the insecure
communication channel, against a PlayReady — a TrustZone-
based DRM service — on a Samsung Galaxy S3 phone to
demonstrate such an attack “in the wild” [10]. The Motorola
phone’s bootloader was unlocked by sending a crafted message
through the insecure channel to exploit the vulnerability of
TrustZone’s kernel [2], [3]. The assets in TrustZone, such as
DRM and mobile-payment services, are closely related to the
monetary interest. Thus, failing to protect them can lead to
the potentially severe economic consequences, which not only
affect the owner of the device, but also the manufacturer of
devices and the service provider in TrustZone; the importance
of enhancing the security of TrustZone cannot be overempha-
sized.

To minimize the attack surface and to protect the resources
in TrustZone, we propose the following security requirements.
First, access to the resources in TrustZone should be restricted
to those on the access control list (ACL) maintained by
TrustZone. The ACL contains a list of REE processes that
are permitted to access TrustZone’s resources. Second, the
messages transferred through the channel should be signed for
secure communication. To this end, a session key for signing
the messages should be created with a trusted anchor to protect
against attackers in the REE.

To satisfy these requirements, we propose SeCReT — a
framework for building a secure channel between the REE
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and TrustZone. SeCReT creates a session key to sign the mes-
sages transferred during inter-domain communication. With the
signed messages, the process in the REE can communicate
with TrustZone securely. Because the session key is symmet-
rically assigned for both the REE and TrustZone, SeCReT
protects the key in the REE that is regarded as an unsafe region.

SeCReT verifies every access to the memory page that
contains the key in the REE. SeCReT’s verification mechanism
ensures that only predefined and legitimate user processes can
read the key. To prevent an attacker from directly reading the
memory page containing the key value, SeCReT flushes the
page and shadows the register values every time the processor
mode switches to kernel. However, an attacker might also
manipulate the user-process’ control flow to read the key value
and copy it to an unmonitored memory region. SeCReT limits
this kind of attack by verifying the registers that contain critical
values such as the return-address. SeCReT performs this
register verification whenever the process switches back and
forth between user and kernel mode. To minimize performance
degradation, these key-protection mechanisms are activated
only when the process that is assigned with a session key
exists in the REE.

We developed a prototype of SeCReT on Arndale board
[6] that provides an ARM processor integrating TrustZone.
We ran Linux 3.9.1 as the REE OS and assumed that active
monitoring was running on TrustZone [14], [19] to protect the
REE kernel’s static region, such as the code and exception
vector. To implement SeCReT, approximately 140 LoC for
the REE’s kernel code and 900 LoC for TrustZone’s monitor
code were added. To evaluate the prototype, we performed a
security analysis by using a kernel rootkit that snapshots the
REE’s specific memory page to exfiltrate the session key. We
measured the performance degradation for the entire system
when SeCReT’s key protection mechanism is activated. The
specific overhead induced by the access control to the page
that contains the session key was also evaluated.

SeCReT is similar to [16], [17], [20], [29] in that it protects
security-critical resources. However, SeCReT capitalizes on
existing hardware components rather than software stacks.
Previous works utilized hypervisors and compiler techniques.
TrustZone does not maintain additional page tables, such as the
extended page tables (EPT) of the hypervisor [16], [20]. More-
over, it does not provide the instruction-level introspection
that the compiler-based approach does [17]. The lack of these
features leads to difficulties in deploying the security functions
in TrustZone. However, it is worth noting that encryption is
not necessarily required to prevent attackers from reading the
security-critical part of the user process, provided that the
critical data and code are properly classified and located in
TrustZone. Furthermore, TIMA, an active monitoring system
that protects the kernel’s static region, is already available
in TrustZone [14], [27], [30]. To protect trampoline code on
the REE kernel — part of SeCReT’s implementation — we
assume that TrustZone-based active monitoring (e.g., TIMA) is
available.

In summary, SeCReT makes the following contributions:

• This is the first work that generates a secure channel
to reinforce the access control of the resources in
TrustZone. We propose comprehensive steps designed

to protect the session key that is used to sign the
messages transferred between the REE and TrustZone.

• We provide a technique that enables TrustZone to pro-
tect the specific memory area from the compromised
kernel in the REE. To this end, SeCReT makes the
best use of an existing hardware component without
adopting additional software stacks such as hypervisor.
We believe SeCReT can easily coordinate with already
deployed TrustZone-based security solutions such as
TIMA.

• We introduce an interface for user processes to com-
municate with TrustZone, which prevents the inter-
vention of an attacker even with kernel privileges.
With the proposed interface, we can extend the usage
of TrustZone more flexibly, not limited to simply
providing a TEE.

The next section reviews ARM TrustZone and TrustZone-
based active monitoring, constituting the trusted computing
base (TCB) for SeCReT. Section III describes the attack
models and assumptions. Section IV presents the design for
SeCReT, which is comprised of trampoline code in the REE
and access-control modules in TrustZone. Section V explains
the details regarding the implementation of SeCReT on the
ARM architecture. Section VI details the security analysis
and performance evaluation of SeCReT. Section VII discusses
the remaining issues pertaining to SeCReT, and Section VIII
examines related work. We summarize and conclude in Sec-
tion IX.

II. BACKGROUND

SeCReT is a framework to build a secure communication
channel between the REE and TrustZone. We implemented
SeCReT based on the assumption that the REE kernel’s static
region and the inserted code in the REE’s kernel-code area are
protected. We believe this is a reasonable assumption because
TrustZone-based active monitoring systems, such as TIMA,
are already available today. In this section, we provide the
background for ARM TrustZone and TrustZone-based active
monitoring.

A. ARM Trustzone

ARM TrustZone is a hardware-based security extension
to processors, which separates the system logically into two
domains: the Rich Execution Environment (REE) and the
Trusted Execution Environment (TEE). Each domain has
banked registers and memory to run the domain-dedicated OS
and software. Security-critical services, such as E-Ticket, Bring
Your Own Device (BYOD), and Digital Rights Management
(DRM), can be executed in the TEE. Processes in the REE
place the arguments in domain-shared memory and invoke a
secure-monitor call (SMC) to trigger one of the services in
the TEE. The domain-shared memory is allocated physically
in the REE’s memory region. However, any process that runs
in the TEE can access it by simply mapping the REE’s memory
address to a page table maintained in the TEE. This is possible
because the ARM processor’s architectural design accords the
highest privilege to the TEE.

The security extension to the ARM processor provides a
monitor mode that manages the switches between the two
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TABLE I. EXAMPLE OF SECURITY-SENSITIVE INSTRUCTIONS AND THE SMC

Operation Size of Operation (Byte) Description

MCR p15, 0, <Rt>, c1, c0, 0 4 Write to control register

MCR p15, 0, <Rt>, c2, c0, 0 4 Write to page table base register

SMC #<imm4> 4 SMC with 4bit immediate value

domains. In most designs, the code that runs in monitor
mode ensures that the state for each domain is saved safely
and restored correctly after every domain switch. The Non-
Secure (NS) bit from the Secure Configuration Register (SCR)
indicates the current context of the domain. That is, if the NS
bit is set, the context is in the REE. Otherwise, it is in the TEE.
To switch domains, the monitor code changes the value of the
NS bit after saving the context for the “from domain”, and
then restores the context for the “to domain.” There are two
ways to enter monitor mode from the REE: an SMC instruction
can be explicitly invoked, guaranteeing synchronous entry into
monitor mode; or, the control register can be set to enter
monitor mode asynchronously with each occurrence of an
interrupt or an external abort. In our prototype for SeCReT,
we used only an SMC instruction to synchronously invoke the
SeCReT code deployed in monitor mode.

The Translation Table Base Register (TTBR) contains the
address for the page-table base address that is required to
translate the address from virtual to physical. The TTBR is
banked for each domain, so the monitor code uses the TTBR
in the TEE. However, the monitor code can access any address
in the REE by constructing a map for the address in the REE
for the page table in the TEE. Because the TTBR is unique
for each process, it was adopted in the implementation of
SeCReT. The details regarding the TTBR’s usage are described
in Section IV.

B. TrustZone-based Active Monitoring

TrustZone-based active monitoring [14], [19], such as
TIMA, protects the kernel’s static region in the REE. To
prevent the direct modification of kernel code and static data,
active monitoring sets write-protect (WP) bits from the page
descriptors for pages that contain the objects to be protected.
Active monitoring not only write-protects the code and static
data, such as system call-tables and exception vectors, but
page tables as well. Therefore, any update to the page table
causes a data-abort exception. This exception is brought to
TrustZone through the inserted SMC instructions on the ex-
ception handlers. The active-monitoring agent for TrustZone
verifies the exception. If the root cause of the exception is a
legitimate update to the page table, the agent emulates it. In
other words, the page-table update for the REE is available
only in TrustZone, provided that active monitoring is running.

Attackers can exploit privileged instructions that disable the
MMU or update the page-table base register. Active monitoring
replaces all of these privileged instructions with an SMC such
that any execution of security-sensitive operations is verified
and emulated in TrustZone. As can be seen in Table I, the
size of the security-sensitive instructions and the SMC are
equivalent to four bytes. Thus, replacing all of the security-
sensitive instructions is feasible. In addition to replacing the
instructions, active monitoring ensures that newly allocated
pages are set with Privileged Execute Never (PXN) bits by

default. As a result, any attempt to run security-sensitive
instructions on the newly allocated page causes an exception
that is also brought to TrustZone. All such enforcements from
active monitoring guarantee that the REE kernel’s static region
remains immutable.

III. ATTACK MODEL AND ASSUMPTIONS

A. Trust Base of SeCReT

The prototype of SeCReT is implemented on ARM-based
SoC hardware with security extension. We assume that com-
mercially available security features such as Secure Boot [12]
and active monitoring are already activated as a base-line
defense against attacks. Therefore, only the authorized OS and
applications for both the REE and TEE are loaded during the
startup process. Because the presence of a malicious manufac-
turer is not a consideration for our attack model, intentionally
implanted vulnerabilities or malwares are not assumed to be
loaded. During runtime, the kernel’s static region in the REE
is protected by active monitoring in the TEE. We also assume
that a list of REE processes permitted to access TEE resources
is predefined and safely maintained in the TEE. Furthermore,
all valuable resources that could be the target of attacks are
properly classified and stored in the TEE.

B. The Weakness of Communication Channel for TrustZone

When an REE process employs resources from the TEE,
a communication channel is necessary for the transmission of
messages between the two domains. The channel is regarded
simply as the domain-shared memory that can be accessed
from both domains. Although the shared memory is allocated
to the REE memory area, it is still accessible by the TEE.
The process that volunteers to use the resources in the TEE
places arguments, such as the identity number of the TEE
services, in the shared memory before opening the TrustZone
device driver to invoke the SMC instruction [10]. Once the
SMC instruction is executed, the processor mode is switched
to monitor mode and the address for the shared memory is
delivered as a parameter of the SMC instruction. The code
that runs in monitor mode retrieves the address of the shared
memory from this parameter value and maps the address to
the page table in the TEE. The arguments procured from the
shared memory might contain the information that is required
to dispatch the request to the proper service in the TEE. As a
motivation for this paper, we focused on some weaknesses of
the channel established under the compromised kernel in the
REE. We state these weaknesses as follows.

First, it is difficult to verify whether the request from the
REE — equivalent to invoking an SMC instruction with param-
eters — originated from authenticated processes. An attacker
with kernel privileges is free to call the SMC instruction with
maliciously crafted parameters.
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translating the address. SeCReT uses TTBR0 exclusively by
setting the TTBCR.N to 0. This setting is unchangeable in the
REE on account of TrustZone’s active monitoring. The session
key’s value and the VA for the memory page that stores the
key in the REE are also elements of the APC. The value of the
session key is randomly generated on demand. The APC also
provides a link to the information concerning critical resources
that are accessible in the TEE. The definition of a critical
resource, which is a topic beyond the scope of this paper,
depends on the developers’ design criteria in implementing
TrustZone-based applications.

To protect the session key, SeCReT maintains some
flags, whitelist and shadow stacks in the APC as well. The
key request flag indicates whether the access to the session
key is legitimate. The mode switch flag and shadow stack are
updated and verified to enforce the coarse-grained control-flow
of the process using the session key. The whitelist sighand
registers addresses of the signal handlers that are exempted
from shadow-stack verification. We explain the usage of those
elements in depth in Section IV-D1 and IV-D2.

C. Session Key Lifecycle

Secure Boot Maintaining the session key entails con-
secutive interactions between the REE process and SeCReT.
During boot time, our SeCReT prototype temporally loads the
process that is granted access to the resources in the TEE, and
calculates the hash of the code based on the granularity of
the small page, which is 4KB in ARMv-7. The hash values
are transferred to SeCReT M, and saved in the TEE. This
is adequately safe, because we assume that Secure Boot is
enabled. However, calculating the hash at boot time might
lead to performance degradation. Therefore, as an alternative
design, the pre-calculated hash values from REE processes can
be stored in the TEE in advance, along with security-sensitive
services that run in the TEE. This might be accomplished
during the manufacturing of the device.

New Process Execution During the system’s runtime,
SeCReT verifies whether newly executed processes in the REE
have permission to access the resources in the TEE. To this
end, SeCReT simply refers to the process descriptor (e.g.,
task struct in Linux) to check the name of the currently loaded
process. However, an attacker can easily modify the values in
the task descriptor. Thus, alternatively, as with Patagonix [24],
we can set the Non-Executable (NX) bit for all page descriptors
of the newly executed process and check the hash from the first
code-page when the fault occurs due to the execution of the
process. However, in our prototype for SeCReT, immediately
prior to assigning the session key, the hashes for all code-pages
that are present in the memory are computed and compared
with the whitelist in the TEE. This method is simple, but it
is comparatively faster than a hash-check to verify the new
process. If the new process is found in the whitelist, SeCReT
creates an APC for the process and updates it with information
such as the TTBR and the link to the pre-calculated hash
information corresponding to the process.

Key-Assignment Request The REE process must send a
request to SeCReT for the creation of the session key. The
key is used to authenticate the communication. Once SeCReT
receives a request for the creation of a key, it first traverses

the APL to find the APC corresponding to the process asking
for the key. Because each REE process is assigned a unique
TTBR, the TTBR is used as a key to search for the proper
APC in the APL. If the APC is found, SeCReT allocates
a page-aligned small page for storing the session key. The
virtual address (VA) for the allocated page in the REE is
stored in the session key address element of the APC. The
access permission for the page is set to No Access (NA),
which is neither writable nor readable. The session key is also
created and stored in the session key value element of the
APC. However, the key is not written to the allocated page in
the REE at this time because SeCReT makes the key visible
only at the moment when the process accesses the page to use
the key.

Session-Key Protection Access control to the session key
is based on the occurrence of a data-abort exception and
SeCReT’s handling of it. Access to the page that is allocated
in the step prior to the key’s creation causes the data-abort
exception because the access permission for the page is set
to NA by default. When the exception occurs, the processor
mode is changed to kernel, and the control flow for the current
process is redirected to an exception handler for data abort.
The SeCReT T — that is, the trampoline code inserted to the
starting point of the exception handlers — causes the control
flow to jump to SeCReT M. SeCReT M first retrieves the
REE process’ APC from the APL. Based on the information
in the APC, SeCReT determines whether an exception has
occurred from a legitimate process’ attempt to use the key.

The integrity of the code and the control flow is also
checked for the process. If no intervention from an attacker is
found, SeCReT writes the session key to the page in the REE
and changes the access permission for the page to readable.
Additionally, SeCReT changes the control flow, returning to
user mode directly without executing the remaining exception
handler routines in the REE kernel. Therefore, the process
can obtain the key by re-executing the instruction that failed
because of the page’s initial NA permission. To conceal the
session key from an attacker, the key is flushed from the page
when the processor mode switches to kernel. The details for the
access-control mechanism relating to session-key protection
are described in Section IV-D1.

Process Termination Every process-termination event also
triggers SeCReT. If the process being terminated has the
APC, SeCReT frees the memory page that was allocated for
the session key. The APC containing the information for the
process is also removed from the APL. An attacker might reuse
SeCReT T, the trampoline code, to remove the victim process’
APC from the APL. This would constitute a DoS, but DoS
attacks are exempted from our attack model.

D. Session-Key Protection Mechanism

1) Access Control for the Session Key: The session key is
readable only when a legitimate process runs in user mode
and that process accesses the page allocated to contain the
key. This amounts to an exclusive key assignment at moment
the process requires it. One effective way to acquire the key
synchronously might be for the user process to make a direct
request to SeCReT that the session key be made readable
on the page. However, this is not possible because the only
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assigned the session key beforehand. This additional switch in
modes causes performance degradation to the entire system.
However, SeCReT cannot selectively switch the mode only
for the process that assigned the key because the information
for the session key is only accessible in the TEE. Thus, as
an alternative solution, we enable SeCReT’s access control
and key-flush mechanism only if the process assigned with
the session key exists in the REE. To this end, in addition to
the normal exception vector, we create the SeCReT exception
vector (SeCReT EXV).

In Linux, early in the boot time, a 4KB page is allocated for
locating an exception vector with other handler codes such as
sigreturn. The virtual address for the page that is equivalent
to the address of the exception vector is fixed at 0xffff0000
in Linux for ARM processors. However, the address can be
changed based on the setting in the System Control Register
(SCTLR). We utilized this feature to dynamically remap the
exception vectors.

The exception-vector remapping and the change of the
control flow due to the remapping are described in Figure 4.
The remapping is triggered with the occurrence of events
such as process executions and terminations. The remapping
from normal to SeCReT EXV is done when the first process
is executed that has permission to access the resources in
the TEE. Subsequently, the SeCReT EXV remains enabled
until the last process granted this permission is terminated.
With every process termination, SeCReT not only deletes
the APC corresponding to the terminated process, but also
checks whether the APC is the final one in the APL. If it
is, SeCReT remaps the exception vector back to the original
exception vector. When the SeCReT EXV is enabled, perfor-
mance degradation from the additional mode switching for
every process remains a problem. However, we believe that
the overall degradation is alleviated by this remapping process
at least when no process is running with access to the resources
in the TEE.

F. Trusted-Computing Base for SeCReT

SeCReT depends on active monitoring as part of its Trusted
Computing Base (TCB). Active monitoring protects the kernel
code in REE kernel’s static region. This ensures the immutabil-
ity of SeCReT T, which is inserted to the part of the kernel
code in the REE containing exception vectors and handlers.
In addition to protecting the kernel code, active monitoring
protects the registers that play a significant role such as
traversing the APL and distinguishing exception types. The
TTBR is used as an identifier to retrieve the APC from the APL
because each process has a unique TTBR. SeCReT checks the
value of the Data Fault Status Register (DFSR) and the Data
Fault Address Register (DFAR) to demarcate a normal data
abort from a data abort specifically occurring because of the
demand for the session key. The Vector Base Address Register
(VBAR) contains the address of the SeCReT EXV selectively
enabled based on the existence of a process with permission
to access the TEE. To change the values of those registers,
an attacker must run privileged instructions the execution of
which is prevented by active monitoring.

AP[2] AP[1:0]

Small Page Base Address, PA[31:12]

XN

31 12 11

Hardware PTE

DIRTY

YOUNG

Small Page Base Address, PA[31:12]

PRESENT

RDONLY

USER

Linux PTE

AP: Access Permission bits     XN: Execute-never bit 

10 9 8 7 6 5 4 3 2 1 0

Fig. 5. Hardware page-table descriptor and Linux page-table descriptor

V. IMPLEMENTATION

We implemented a prototype for the SeCReT framework
on Arndale board, offering a Cortex-A15 dual-core processor.
We used Linux version 3.9.1 as an REE OS and Sierra
TEE software [11] as a PoC in the TEE. For the SeCReT
components in the REE, 140 LoC were added to the Linux
kernel code. In monitor code, approximately 900 LoC were
added to implement the SeCReT components in the TEE.
In this section, we describe the implementation details for
SeCReT based on each domain.

A. SeCReT Components in the REE

In ARM architecture, the exception vector that holds the
address for each exception can be located flexibly. The V-bit
for SCTLR selects the base address for the exception vector.
For example, if the value of the bit is set, the address is fixed
at 0xffff0000. Otherwise, it is at 0x00000000. However, if a
security extension such as TrustZone is enabled and the V-
bit is cleared, the exception vector can be re-mapped to the
address held by the Vector Base Address Register (VBAR).
In this case, each exception handler is invoked by branching
to the address that is computed by adding predefined offsets
for each exception to the address in the VBAR. We utilized
the VBAR to hold the base address for the SeCReT EXV.
To enable the SeCReT EXV, the V-bit for SCTLR is cleared
when the first process with permission to access the TEE
is executed. Moreover, the bit is set to enable the normal
exception vector again when the last APC is deleted, signaling
that there are no processes remaining with permission to
access the TEE. Because configuring the SCTLR requires the
privileged instructions that are restricted from execution in the
REE by active monitoring, only SeCReT M in the TEE can
dynamically change the SCTLR’s configuration.

The SeCReT EXV is a newly created exception vector
that provides addressing for the exception handlers patched
with SeCReT T. The normal exception vector is created dur-
ing the boot time. To create the SeCReT EXV, we inserted
SeCReT T to the exception handlers in the entry-armv.S and
entry-common.S files. Furthermore, we patched the mmu.c
and traps.c files to allocate a small page (4KB) where we
composed the SeCReT EXV. Therefore, new vector code that
branches to the exception handlers patched with SeCReT T
is copied from the entry* files and placed into the new
page during the boot time. In our prototype for SeCReT, the
SeCReT EXV is mapped to 0xfffe8000 arbitrarily, and we
assume that it is protected by active monitoring.

Furthermore, SeCReT T is statically inserted to the kernel
code that handles process execution and termination. To run
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TABLE II. SECRET’S ATTACK SURFACE AND DEFENSE MECHANISM

Attack Surfaces Defense Mechanisms

Process-code modification Hash check for present code pages

Control-flow manipulation Shadow-stack verification

Reusing SeCReT T for shadow-stack manipulation mode switch flag verification
- mimicking sigaction system call
- Decoy switch to kernel mode

Trampoline bypass when switches to user mode mode switch flag verification

Memory snapshot for key exfiltration Memory page flushing coordinating
with active monitoring

SeCReT M with every execution of a new process, we invoked
SeCReT T after execve is complete. With this invocation,
SeCReT M can check the task struct of the current process to
decide whether a new APC must be created for the process. In
our prototype, we simply compare the value of comm, which
contains the name of the executable, in task struct with the
whitelist which defines the legitimate processes that have per-
mission to access the resources in the TEE. With every process
termination that invokes a do exit system call, SeCReT T
is also invoked in order for SeCReT M to delete the APC
corresponding to the process that is currently terminated.

B. SeCReT Components in the TEE

When SeCReT T invokes the SMC instruction, it creates
an SMC exception. At the same time, monitor mode is entered,
and the exception is handled by the SMC exception handler
in monitor mode. Similar to the REE, there are several excep-
tions, such as FIQ, IRQ, data abort, and SMC, that can occur
in monitor mode. The Monitor Vector Base Address Register
(MVBAR) holds the base address for the exception vector.
Therefore, to handle each exception, the control flow branches
to the address corresponding to the MVBAR value added by
predefined offsets for each exception.

Because in our prototype every entry to monitor mode
happens synchronously by invoking the SMC instruction, every
implementation for SeCReT M is limited by the SMC excep-
tion handler. SeCReT T not only invokes the SMC instruction,
it administers parameters through the general-purpose registers
— parameters such as the current event type. According to the
Procedure Call Standard for the ARM Architecture (AAPCA),
four general-purpose registers from r0 to r3 can be used to
input arguments [13]. Of the four registers, we utilized two
registers, r0 and r1, to pass parameters to SeCReT M.

The r0 register delivers the current event types such as
process execution, key-assignment requests, and process termi-
nation. Based on the event type in r0, the subroutine to handle
each event is invoked in the SMC exception handler. The r1
register has the virtual address for the kernel-stack pointer in
the REE to validate the control flow integrity during switches
to the mode. With a switch to kernel mode, SeCReT M
retrieves the LR U and the return address from the kernel
stack and pushes them into the shadow stack maintained in
the APC. Moreover, with the execution of the process, the
r1 register can offer the address for the process descriptor
— that is, task struct in Linux — to refer to the name of
currently loaded executable. The value of other registers, such
as the TTBR, DFSR, and DFAR can be queried by invoking a
privileged instruction in monitor mode. Thus, we did not pass
them as parameters of the SMC instruction. It should be noted

TABLE III. LMBENCH LATENCY MICROBENCHMARK RESULTS (IN
MICROSECONDS.)

Linux SeCReT enabled Overhead

Null 0.27 1.06 3.9259x

Open/Close 5.43 8.83 1.6264x

Read 0.33 1.23 3.7273x

Write 0.42 1.57 3.7381x

Fork 147.78 174.66 1.1819x

Fork/Exec 160.32 189.03 1.1791x

that, even in the monitor mode, as long as the NS-bit for the
SCR is set, we are able to retrieve the value for the registers
based on the REE’s context.

In ARM Linux, two page tables are maintained: the
hardware page table, which supports the ARM-specific page
descriptor; and the Linux page table, which is specific to the
Linux OS. In ARM’s page-table descriptor, some properties,
such as the present bit and the dirty bit, are not supported.
Thus, Linux maintains the additional page tables in order to
emulate the missing properties. Figure 5 shows the difference
of the attributes provided by each page table descriptor. Se-
CReT utilizes both tables. The hardware page table is used to
set the NA permission bit that causes the data-abort exception
when a process accesses the session key. The Linux page is
traversed to discover the currently loaded code pages for the
process by checking the present bit. The integrity of the code
pages is checked before whitelisting the specific return address
of the signal handler and before assigning the session key to the
process. Both pages tables are protected by active monitoring
and updated only in the TEE.

VI. EVALUATION

In this section, we present a security analysis and a perfor-
mance evaluation for SeCReT. We evaluated the performance
of SeCReT on Arndale board that offers a Cortex-A15 at 1.7
GHz dual-core processor. For the security analysis, not only
Arndale board, but ARM Fast Models [4] that emulates ARM
Cortex-A15 single-core processor was also utilized.

A. Security Analysis

There are several attack surfaces that an attacker can
attempt to exploit for session-key exfiltration. First, the attacker
can snapshot the physical memory area that contains the
session key. To protect the key from the memory-snapshot
attack, the memory area that contains the key should be flushed
with the occurrence of event that causes the switch to kernel
mode. We utilized a Model Debugger [8] to find a proper
point of kernel code that SeCReT T can be inserted. Because
Fast Models are available for processors with various number
of cores, we performed our analysis based on a Cortex-A15
single-core processor which makes debugging easier than a
multi-core processor. After finishing the analysis, we inserted
SeCReT T to the REE kernels on Fast Models as well as
Arndale board.

On each environment, running a single- and dual-core
processor, respectively, we ran a rootkit that continuously
copies the specific memory region reserved for the session-
key assignment. At the same time, we ran a legitimate process
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——————————————————————
Input: An ascii payload of size: 128 to 8192 bytes
Output: Encrypted payload
*key = allocMemory()
if Key Protection then

assignKeyBySeCReT(key)
else

*key=tempValue()
end if
payload = encrypt(payload, *key)
printString(payload)
——————————————————————

Fig. 6. Measurement for key-access control overhead

that repeatedly accesses the session key. With this experiment
on Fast Models with a single-core processor, we could confirm
that our prototype for SeCReT flushes the session key clearly
with every possible exception that causes a switch to kernel
mode. However, on Arndale board with a dual-core processor,
the key was exposed to the rootkit when the legitimate process
and the rootkit are scheduled to run on different cores at the
same time. The mitigation of this problem is quite simple when
active monitoring cooperates with SeCReT. We discuss this in
more detail in Section VII.

An attacker could also attempt to manipulate the code or
the control flow of the process. As explained in Section IV-D1
and IV-D2, verifying the hash check and shadow stack can
detect attacks to the code and the control flow, respectively.
SeCReT T, which is trampoline code, can be reused to add
the malicious address to the shadow stack or whitelist sighand.
Moreover, SeCReT T, inserted to the switch to user code, can
be bypassed to skip the shadow-stack verification and jump
to the address sought by the attacker. Such attacks are not
feasible because we maintain the mode switch flag, which
can be updated only once for each legitimate mode switch.
SeCReT’s defense mechanisms against each attack surface are
summarized in Table II.

B. Performance

1) Microbenchmarks: We ran LMBench to evaluate the
performance degradation to the overall system from enabling
SeCReT. LMBench measures the performance of OS func-
tionalities such as system-call invocations, memory mapping,
and page-fault handling. For the evaluation, we created a
temporary process that requests a session-key assignment to
enable SeCReT. Once SeCReT is enabled, monitor mode
is entered with every switch in modes, regardless of what
processes are currently scheduled and running. Thus, any
process that runs when SeCReT is enabled experiences some
performance degradation.

Table III presents the results of the microbenchmark,
reporting the average latency after running ten times for each
system call and the performance degradation from enabling
SeCReT, comparing it to running Linux without SeCReT. It
should be noted that we evaluated the performance only on
Arndale board because Fast Models does not guarantee the
accuracy of cycle counts. The null system call caused the most
degradation, indicating the performance overhead for switching
between user and kernel mode. The read and write system

call also caused high overhead. However, as can be seen with
other system calls such as open and fork, the table reveals a
tendency for less overhead imposed by SeCReT as the latency
increases. When SeCReT is disabled, running the benchmark is
meaningless because SeCReT is not triggered during the mode
switch. Therefore, the overhead for SeCReT-disabled was not
measured in our performance evaluation.

2) Key Access-Control Overhead: The overhead imposed
by the access control to the session key was also measured.
As can be seen in Figure 6, we wrote a simple test program
that parses, encrypts, and prints an input payload. The input
payload was a simple string with lengths varying from 128 to
8192 byte. We ran the test in three different environments:
Linux, SeCReT-enabled Linux, and SeCReT-enabled Linux
with key protection. SeCReT-enabled Linux with key protec-
tion refers to the environment where the test process uses
the session key that is protected by SeCReT. For the other
two environments, we temporarily assigned an integer value
as a key to encrypt the payload. The key in both Linux and
SeCReT-enabled Linux were unprotected. This was adopted
merely to determine the performance overhead from SeCReT’s
key-protection mechanism.

The results of the experiment can be seen in Table IV,
indicating the average latency after running ten times for each
input payload. SeCReT Enabled shows that the performance
overhead imposed from enabling SeCReT is maximum 16.41%
with an input payload of 256 bytes. It is worth reiterating
that the control flow is redirected to monitor mode with every
switch in modes when SeCReT is enabled, whether the session
key is protected or not. This additional mode switch is the main
factor that causes the overhead in SeCReT Enabled.

Finally, we measured the overhead of SeCReT with Key
Protection. As shown in Table IV, SeCReT with Key Protec-
tion indicates the overhead for protecting the session key in
addition to enabling SeCReT. Unfortunately, the worst case
in our experiment was the test run with an input payload of
128 bytes, outputting at 48.28% overhead, compared to Linux.
According to our analysis, the performance was deteriorated
since the key protection additionally required the hash-check
for code area, and repetitive assignments and flushes of the
session key. However, similar to the results of LMBench, the
overhead was considerably reduced (almost down to 0.18% for
key protection) as the latency of the test increased.

VII. DISCUSSION

A. Extension of SeCReT

The current design of TrustZone’s architecture does not
provide an interface for user processes to communicate directly
with TrustZone. The only way to synchronously enter Trust-
Zone is invoking an SMC instruction, and such an instruction is
only available in kernel mode. On the other hand, the hypercall
of the hypervisor can be invoked directly from user mode.
Thus, previous works [16], [20] can utilize the hypercall to
protect the user process from the untrusted kernel. To build
a direct communication protocol such as the hypercall in
TrustZone’s architecture, SeCReT’s key-protection mechanism
can be applied. For example, the user process can set up
parameters to the predefined general-purpose registers and
cause an exception intentionally by accessing the pinned page
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TABLE IV. BENCHMARK OF SECRET OVERHEAD COMPARED TO LINUX

Payload Linux SeCReT Enabled SeCReT w/ Key Protection
Size (Bytes) Time (µs) Time (µs) Overhead Time (µs) Overhead

128 1334.6 1544.5 15.73% 1979.0 48.28%
256 1642.5 1912.1 16.41% 2425.8 47.69%
512 2279.4 2509.8 10.11% 3068.2 34.61%

1024 3650.9 3822.6 4.70% 4516.7 23.71%
2048 340225.7 340244.6 0.01% 341531.4 0.38%
4096 679761.2 679818.7 0.01% 681604.3 0.27%
8192 1693561.2 1693683.6 0.01% 1696639.1 0.18%

that has its access permission set to NA. Subsequently, the
trampoline code inserted to the starting point of the exception
handlers redirects the control flow to TrustZone. Even though
the approach nevertheless requires the trampoline code from
the kernel code, it is reasonable because the protection of
the kernel code’s integrity is available already in TrustZone’s
architecture [14].

Therefore, as shown in the previous works [16], [20], we
can also leverage this approach to protect applications from
untrusted kernels and facilitate the generalization of SeCReT.

SeCReT can also be extended to protect the guest VMs
from vulnerable hypervisors [21], [38]. By inserting Se-
CReT T into the exception vectors in HYP mode (hypervisor
mode) and protecting the vectors from the malicious modi-
fication, SeCReT can work with virtualization extensions, as
well.

B. Attack against SeCReT

In Section VI-A, the memory snapshot attack that was
performed on a multi-core processor could exfiltrate the key
even with SeCReT. Although the key is only transiently
accessible, the rootkit still has a chance to snapshot the key if
the running of rootkit is synchronized to the instance of access
to the key by the legitimate process in another core.

However, such an attack is not feasible because of the
following reasons. First, the attacker cannot directly manip-
ulate the page table to map the physical address that contains
the key because the page-table updates are available only on
TrustZone running active monitoring [14], [19]. Second, active
monitoring can refer to the APC and exclude the address that
contains the key during the memory allocation and page-table
update. A Direct Memory Access (DMA) is already controlled
by the active monitoring to enforce the kernel code’s integrity.
Thus, an attack utilizing the DMA from another core is also
prevented.

SeCReT is triggered by exceptions that occur asyn-
chronously as well as synchronously. With synchronous trig-
gers, the attacker may be able to predict when SeCReT will be
engaged and create a transient attack that can hide itself before
SeCReT is activated. However, the fact that SeCReT can also
be triggered asynchronously would prevent the attackers from
consistently predicting the exact instant that SeCReT runs.
Thus, in SeCReT, any attempt that transiently manipulates the
legitimate code in user mode or maps the malicious code in
the data region of a pre-authorized application will be difficult,
although not impossible, to conduct. SeCReT can further
limit the occurrence of this transient attack by increasing the
frequency of checking the code hash and/or by validating the

return address to user mode to check if it falls within the range
of a legitimate code area.

Attackers may attempt to analyze all possible paths of
the control flow to pinpoint a specific exception that occurs
consistently during the runtime of the process. Based on the
analysis, an attacker might succeed at inferring the offsets of
the saved return address from the current SP or manipulating
the message directly. To mitigate this attack, we can write-
protect the data area, such as user stack, and allow SeCReT
to emulate writing to it. To this end, we must scrutinize the
behavior of all system calls to learn how they update the
user-level memory. However, we expect that the emulation of
writing will cause additional performance degradation. Thus,
without the emulation, SeCReT can selectively protect some
critical data, such as the saved return address and message
buffers. The list of critical data can be defined by analyzing
the binary in advance. It can then be deployed in TrustZone
and referred to as part of APC.

The registers that configure debug events can also be
exploited to hijack the control flow arbitrarily. For instance,
an attacker can set a break point to the instruction that is
executed right before signing the message with the session
key. This message can be replaced with a maliciously crafted
one making the session key useless. As a simple mitigation for
this attack, we can disable every break point by configuring
the control register, such as the Breakpoint Control Registers
(DBGBCR) in ARM, at every mode switch to user for the
process that accesses the resources in the TEE.

Applications in the REE that use the session key also
require careful development to protect against vulnerabilities
— both control and non-control data vulnerability — that an
attacker can exploit to exfiltrate the key. Although this would
appear to be a task for application developers, we plan to
explore an efficient way for TrustZone to aid in obfuscating
the application in order to prevent attackers from analyzing the
application in advance or during run-time.

C. Usability of SeCReT

In this section, we consider two aspects of SeCReT’s
usability: (1) protecting the session key, and (2) updating the
list of pre-authorized applications.

The session key should be used in a secure manner be-
cause simple operations can create copies of the key. We are
designing SeCReT libraries that help developers safely use the
session key. For instance, a SeCReT library should not copy
the key values to unprotected memory during message signing.
The library can achieve this by strictly using the general-
purpose registers that SeCReT can flush out on every mode
switch.
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We note that an alternate design could avoid using keys
and transfer data directly to the TEE using a secure buffer in
the memory area that is protected by SeCReT. Unfortunately,
this approach is limited by the the following implementation
challenges. First, the secure buffer approach requires more
protected memory pages, depending on the size of the mes-
sages that need to be transferred to the TEE. Second, because
the pages that SeCReT should protect can be dynamic during
the runtime of the application (e.g., the location, size, and
value of the data can change), more interactions between the
REE and the TEE may be required to update the information
appropriately.

Finally, to provide the TEE services to newly developed
applications, we must securely update the list of pre-authorized
applications. To this end, we can leverage the mechanism that
TrustZone-based DRM solutions utilize. In other words, we
can send an encrypted list outside of the device and safely
decrypt it inside TrustZone. Alternatively, we can also update
the list as part of a firmware-upgrade procedure that is cur-
rently available for updating the TEE resource on commercial
devices.

VIII. RELATED WORK

A. Active Monitoring

Active monitoring utilizes either trampoline code or hooks
implanted in the monitored system to redirect the control
flow to the monitoring code. Thus, active monitoring relies
on the protection of the trampolines and the monitoring code
to guarantee the event-driven nature and consistency of the
monitoring. The hypervisor was widely adopted to satisfy
this requirement because, in essence, it provides an isolation
between guest VMs. Furthermore, the hypervisor can control
and inspect the guest VMs because it is accorded a higher
privilege than the guest VMs. Lares [28] implants the tram-
poline code in a monitored VM and uses the hypervisor-layer
memory protection to prevent attackers from compromising
the trampolines. SIM [33] is similar to Lares in that it uses
trampolines to branch to the monitoring code. However, SIM
is focused more on efficiency. To this end, it locates the
monitoring code in an untrusted guest VM and removes the
involvement of the hypervisor during the transition between
the trampolines and the monitoring code. SecVisor [32] is a
tiny hypervisor that protects the kernel code by leveraging
hardware-memory protection. To protect the module code, it
hooks the kernel code to invoke SecVisor with a hypercall.
HookSafe [37] relocates thousands of kernel hooks into con-
tinuous memory and protects them with the page granularity.
Even though HookSafe aims to solve the problem related to
the protection-granularity gap, its effect is somewhat redundant
because it redirects or verifies accesses to the hooks that are
done similarly with active monitoring.

On the other hand, TrustZone is also utilized to implement
active monitoring. TIMA [14], [27], [30] and SPROBES [19]
locate the monitoring code in TrustZone and implants the
trampoline in the kernel code in the REE to enforce the
integrity of the kernel’s static region. SeCReT can also be
regarded as a variety of active monitoring in TrustZone because
it implements trampolines and isolated access-control modules.
However, the purpose of SeCReT is to secure a communica-
tion channel, and this is clearly different from other works.

Moreover, SeCReT was implemented with the assumption that
the kernel’s static region is immutable due to the protection
provided by active monitoring.

B. Process-Data Protection

Several previous works aim to protect user processes
from the untrusted kernel. XOM [22] and XOMOS [23] are
hardware-based approaches — specially designed hardware
and a dedicated OS for XOM, respectively — enabling the
protection of secure processes by using cryptographic technol-
ogy. All code and data remains encrypted outside XOM, but
securely decrypted and executed during run-time in XOM.

A hypervisor and compiler have also been used as a
software-based approach. Overshadow [16] and InkTag [20],
both of which are implemented on hypervisors, encrypt and
decrypt the memory of user processes based on the context
switch. Overshadow introduces a Shim that communicates
with the hypervisor to interpose every mode switch between
a cloaked application and the OS. InkTag uses a trampoline
code similar to the Shim, and it also provide para-verification
so that the untrusted OS verifies its own behavior to some
degree. Virtual Ghost [17] uses compiler-based instrumentation
to prevent untrusted kernels from writing to or reading from
the protected memory area of the user process.

SeCReT, like previous work, attempts to protect the critical
component of the process, whether it is data or code. Securing
a communication channel also requires the interposition of
SeCReT at every mode switch. However, because it utilizes
an existing hardware component — namely, TrustZone — Se-
CReT does not require additional hardware or software stacks.
Furthermore, TrustZone basically ensures the confidentiality of
the contents inside it, so we only focused on a way to reinforce
the access control to the resources in TrustZone. In the absence
of a direct channel, such as hypercall, SeCReT creates the
protocol that the user process can use to communicate with
TrustZone as directly as possible.

C. Trusted-Execution Environment

Isolating individual guest VMs, ensured by a hypervisor,
enables the TEE to be built on the hypervisor. Previous systems
[18], [28], [34], [35] that implement an external monitor on
separated VMs are examples of a TEE built on the hypervisor.
Intel’s SMM is an operating mode with special software, such
as firmware or a debugger, running with all normal execution
suspended. This is also regarded as a TEE, because any process
that runs in SMM is isolated from an attacker outside SMM.
HyperCheck [36] and HyperSentry [15] use SMM as a TEE to
securely run the monitoring code to check the integrity of the
hypervisor. Intel’s Software Guard Extensions (SGX) is similar
to TrustZone in that it provides separated memory regions from
the REE [26]. The isolated area, called an enclave, is protected
against all external software access, guaranteeing the security
of critical resources inside the enclave.

In addition to TIMA, Trusted Sensor [25] and Trusted
Language Runtime (TLR) [31] also leverage TrustZone as
a TEE. Trusted Sensor attempts to ensure that mobile ap-
plications read sensors securely in TrustZone. TLR enables
separating the critical part of a .NET mobile application and
runs it in TrustZone. These systems were implemented without
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considering a secure communication channel. We believe that
SeCReT can help to reinforce the security of those systems.

IX. CONCLUSION

SeCReT is a framework that strengthens the security of the
communication channel between two domains, the REE and
the TEE built in TrustZone. To establish a secure channel,
SeCReT enables a legitimate process to use a session key
in the REE. The key is only readable at the moment the
legitimate process accesses the memory that is reserved for the
key assignment. To protect the key, SeCReT interposes with
every switch between user mode and kernel mode, verifying
the code’s integrity and the coarse-grained control flow of the
process. To minimize the performance overhead, SeCReT’s
key-protection mechanism is activated only during the runtime
of the process that has permission to access TrustZone. As the
first work to secure a communication channel in TrustZone,
we believe that SeCReT will not only regulate malicious
access to the critical resources, but also cooperate with existing
TrustZone-based security solutions such as TIMA.
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