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Abstract—Mobile devices and their application marketplaces
drive the entire economy of the today’s mobile landscape. Android
platforms alone have produced staggering revenues, exceeding five
billion USD, which has attracted cybercriminals and increased
malware in Android markets at an alarming rate. To better
understand this slew of threats, we present CopperDroid, an
automatic VMI-based dynamic analysis system to reconstruct the
behaviors of Android malware. The novelty of CopperDroid lies
in its agnostic approach to identify interesting OS- and high-level
Android-specific behaviors. It reconstructs these behaviors by
observing and dissecting system calls and, therefore, is resistant
to the multitude of alterations the Android runtime is subjected
to over its life-cycle. CopperDroid automatically and accurately
reconstructs events of interest that describe, not only well-known
process-OS interactions (e.g., file and process creation), but also
complex intra- and inter-process communications (e.g., SMS
reception), whose semantics are typically contextualized through
complex Android objects. Because CopperDroid’s reconstruction
mechanisms are agnostic to the underlying action invocation
methods, it is able to capture actions initiated both from Java and
native code execution. CopperDroid’s analysis generates detailed
behavioral profiles that abstract a large stream of low-level—often
uninteresting—events into concise, high-level semantics, which
are well-suited to provide insightful behavioral traits and open
the possibility to further research directions. We carried out an
extensive evaluation to assess the capabilities and performance of
CopperDroid on more than 2,900 Android malware samples. Our
experiments show that CopperDroid faithfully reconstructs OS-
and Android-specific behaviors. Additionally, we demonstrate
how CopperDroid can be leveraged to disclose additional behaviors
through the use of a simple, yet effective, app stimulation
technique. Using this technique, we successfully triggered and
disclosed additional behaviors on more than 60% of the analyzed
malware samples. This qualitatively demonstrates the versatility
of CopperDroid’s ability to improve dynamic-based code coverage.

I. INTRODUCTION

With more than a billion Android-activated devices [25]
and over a billion of monthly-active Android users [19],
mobile platforms have clearly become ubiquitous with trends
showing such a pace is unlikely to slow down. Application

marketplaces, such as Google Play, drive this entire economy
of mobile applications (apps). For instance, with more than
50 billion downloaded apps [39], Google Play has gener-
ated revenues exceeding 5 billion USD [23] in 2013. Such
a wealthy and unique ecosystem, with high turnovers and
access to sensitive data, has unfortunately spurred an alarming
growth in Android malware. Privacy breaches (e.g., access to
address book and GPS coordinates) [47], monetization through
premium SMS and calls [47], and colluding malware to bypass
2-factor authentication schemes [12] have become real threats.
Recent studies also report how easily mobile marketplaces
have been abused to host malware or seemingly legitimate
applications embedding malicious components [46].

The nature of Android apps makes it difficult to rely on
standard, traditional, dynamic system call malware analysis
systems as is. While Android apps are generally written in the
Java programming language and executed on top of the Dalvik
virtual machine (VM) [7], native code execution is possible,
for instance, via the Java Native Interface (JNI). This mixed
execution model seems to suggest the need to reconstruct,
and keep in sync, different semantics through virtual machine
introspection (VMI) [20] for both the OS and Dalvik views,
as recently shown in [43]. More recently, Zhang et al. stressed
this concept further in [43] and pointed out that traditional
system call analysis is ill-suited to characterize the behaviors
of Android apps as it misses high-level Android-specific se-
mantics and fails to reconstruct inter-process communications
(IPC)1 and remote procedure call (RPC) interactions, which
are essential to understanding Android application behaviors.

In a significantly different line of reasoning from [17],
we observed that system call invocations remains central to
both low-level OS-specific and high-level Android-specific
behaviors. However, a naive analysis of system calls would
miss the rich semantic of Android-specific behaviors. This is
where the novelty of our approach lies; our techniques enable
seamless and automatic dissection of complex inter-process
communications resulting in the automatic deserialization of
complex Android objects. This enables us to reconstruct behav-
iors of Android applications at multiple levels of abstraction
from a single point of observation (i.e., system calls). More im-
portantly, our simplified approach makes the analysis agnostic
to the runtime system, freeing the analysis engine from playing
catch-up with each change to the system (our techniques work
transparently on systems using the Dalvik VM and ART).

1Android IPC is also known as inter-component communication (ICC) [17].
We will use IPC and ICC interchangeably throughout the text.
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Our framework, titled CopperDroid2, is an approach built
on top of QEMU [6] to automatically perform out-of-the-box
(VMI-based) dynamic analysis and reconstruct the behaviors
of Android malware. Through CopperDroid, we demonstrate
that all behaviors manifest themselves through the invocation
of system calls [17], and that we can faithfully reconstruct
Android malware behaviors regardless of whether it is initiated
from Java or native code. However, to automatically and
reliably reconstruct system call semantics, including IPC, RPC,
and (complex) Android objects, is a challenging task. In fact,
high-level Android object information is not directly available
at the system call level. Moreover, to guarantee transparency
against inner changes (or whole replacement) of the An-
droid runtime (e.g., Dalvik VM, ART), its direct introspection
must be avoided. To address this challenge, we introduce
the concept of the unmarshalling Oracle, which seamlessly
recreates complex Android objects to enrich the semantics of
the reconstructed OS- and Android-specific behaviors. This is
where the real value of CopperDroid lies. A preliminary de-
scription of CopperDroid, focused on introducing basic analysis
capabilities (e.g., system call tracking), has already appeared in
our workshop paper [36]. In this paper, we present our mature
research efforts, including the following contributions:

1) Automatic IPC Unmarshalling: We introduce Copper-
Droid and present the design and implementation of a novel,
practical, oracle-based technique to automatically and seam-
lessly reconstruct Android-specific objects involved in system
call-related IPC/ICC and RPC interactions. Our approach
avoids manual development efforts and transparently addresses
the challenge of dealing with the ever increasing number
of complex Android objects introduced in different Android
releases. The Oracle allows CopperDroid to perform large-
scale, automatic, and faithful reconstruction of Android apps
behaviors (Sections IV), suitable to enable further research,
including Android malware detection.

2) Value-based Data Flow Analysis: To abstract sequences
of related low-level system calls to higher-level semantics
(e.g., network communications, file creation) and enrich our
reconstructed behavioral profiles, we automatically build data
dependency graphs over sets of observed system calls (includ-
ing those referring to IPC/ICC and RPC mechanisms) and
perform value-based forward slicing to cluster data-dependent
system calls. This gives us the ability to automatically recreate
the resources associated with a stream of sliced system calls.
Moreover, this further simplifies the understanding of the
behavioral profiles by summarizing its semantic, and provides
access to the reconstructed resources, which can be fed back
to CopperDroid, downloaded for additional inspection, or an-
alyzed by complementary systems (Section V-B).

3) Behavioral Reconstruction: We provide a thorough eval-
uation of CopperDroid’s behavioral reconstruction capability
on more than 2,900 Android malware samples provided by
different sources [11], [30], [49]. Furthermore, our experiments
show how a simple yet effective malware stimulation strat-
egy (Section V-A) allows us to disclose an average of 25%
of additional behaviors on more than 60% of the analyzed
samples, qualitatively improving dynamic analysis behavioral
reconstruction capabilities with a very limited effort and neg-
ligible overhead (Section VI).

2Based on an informal British term for police officers as well as the metal.

It is our belief that CopperDroid’s unified reconstruction
significantly contributes to the state-of-the-art reconstruction
of Android malware behavior. Although our system could have
been built on top of DroidScope [43], a general-purpose VM-
based out-of-the-box framework to build dynamic analysis for
Android, its source code was not available when we began our
development. Furthermore, DroidScope offers basic hooking
mechanisms and relies on keeping a synchronized 2-level VMI
(for OS and Dalvik VM semantics), which makes it complex
and harder to port onto different versions of Android OSes (for
instance, VMI-related offsets tend to vary more frequently in
the Dalvik VM rather than in the kernel). Our approach, on
the other hand, is unaffected by such changes. VetDroid [44]
presents a framework to construct permission-use behavior
graphs, which highlight how applications use permissions to
access system resources, and how such resources are utilized
by the application. Although an interesting approach, VetDroid
requires a quite intrusive modification of the Android system
(both Dalvik VM, Binder, and Linux kernel), which hampers
the ability to easily port the system to different Android
versions. In addition, VetDroid builds on top of TaintDroid
and, therefore, inherits its drawbacks [10], [37].

Conversely, CopperDroid’s unified analysis does not require
complex introspection, but only needs to collect the system
calls invoked by the processes running on the monitored
system. Hence, all analyses are performed outside the VM.
This flexibility allows our system to be largely decoupled
from any specific Android environment, enabling seamless
integration across different Android versions. For instance, we
have successfully run CopperDroid on Froyo, Gingerbread,
Jelly Bean, KitKat, and the newest Lollipop (i.e., Android
5.0) version with no modification to the Android system and
minimal, automatically-generated, alterations to CopperDroid.
This is particularly remarkable as Lollipop has substituted the
existing Dalvik’s just-in-time compiler (in all previous Android
OS versions) with the new, faster, ahead-of-time compiler ART
[34]. While all Dalvik-level based analysis engines will be
affected by this change, CopperDroid was unfazed.

The enhancements presented in this paper are central
to CopperDroid’s VMI-based system call-centric analysis—
whose automatic IPC and RPC dissection and Android-specific
objects (and thus behaviors) reconstruction are a key aspect.
Furthermore, we evaluated CopperDroid on a large and diverse
datasets to demonstrate the range of behaviors (e.g., shell
execution, IPC) it can abstract.

II. BACKGROUND: THE ANDROID SYSTEM

Android applications are typically written in the Java pro-
gramming language and then deployed as Android Packages
archive (APKs). Each application runs in a separate userspace
process [2] as an instance of the Dalvik virtual machine
(DVM) [7] and usually with a distinct user and group ID. Al-
though isolated within their own sandboxed environment, these
applications can interact with other applications and the system
through well-defined APIs. Every APK is also considered to be
a self-contained app that can be logically decomposed into one
or more components (e.g., activities, services, and broadcast
receivers). Each component is generally designed to fulfil a
specific task (e.g., GUI-related actions, notification receiver)
and is invoked either by the user or the OS.
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high-level Android-specific behaviors. Although recently ex-
plored to enforce user-authorized security policies [42], to the
best of our knowledge, CopperDroid is the first approach to
carry out a detailed analysis of such communication channels
to comprehensively characterize OS- and Android-specific
behaviors of malicious applications.

As systematically evaluating the Oracle’s reconstruction
capabilities on every possible object (over 300+ AIDL objects
alone) is a very challenging task, we introduce a representative
example which triggers the main aspects of the Oracle’s
unmarshalling capabilities. Let us consider an app that sends an
SMS as our running example. The Java code that corresponds
to the SMS behavior (e.g., creation and execution of an SMS
intent) can be seen in Figure 4 (a). Such code typically includes
a call to the sendTextMessage method of SmsManager,
with the destination number (e.g., “123456789”) and the SMS
text (e.g., “Hello”) as parameters. It is also optional to include
a PendingIntent, which is broadcasted when the message
is successfully sent to its destination.

PendingIntent objects are usually passed by reference,
rather than being directly marshalled. To keep track of such
data, CopperDroid is also aware of any creation of shared
memory (for example, to store a PendingIntent) due
to several ioctl calls sent from the client application to
the IActivityManager (specifically the getIntentSender
method). Indeed, all Binder transactions, including SMS, are
fired by invoking the two ioctl system calls, as shown in
Figure 4 (b). For example, when an SMS is sent, we would see
one ioctl to locate the SMS service and the other to invoke
the sendTextMessage method. It is the latter that is sent
to the Oracle for unmarshalling. Furthermore, if the second
ioctl includes a pass-by-reference parameter (e.g., a handle
to a PendingIntent) CopperDroid locates a third ioctl
with the actual referenced object (e.g., PendingIntent
saying “SENT”) being sent to the IAccountManager.

From a high-level perspective (e.g., Java methods), sending
an SMS by executing sendTextMessage (last line of
Figure 4 (a)), roughly corresponds to obtaining a reference
to an instance of the class SmsManager, the phone SMS
manager, and sending the SMS out by invoking the method
sendTextMessage as seen in the figure. This includes
the necessary method parameters including the destination
phone number and the text message as the method arguments.
On a lower level, this corresponds to locating the Binder
service isms and remotely invoking its sendText method
with proper arguments. From this low-level perspective, the
same actions correspond to the sender application invoking
two ioctl system calls on /dev/binder: one to locate
the service and the other to invoke its method. CopperDroid
thoroughly introspects the arguments of each binder-related
ioctl system call to reconstruct the remote invocation. This
allows us to identify the invoked method and its parameters,
and to infer the high-level semantic of the operation. In
particular, we focus our analysis on Binder transactions, i.e.,
IPC operations that actually transfer data (also responsible
for RPC). To identify them, CopperDroid parses the memory
structures passed as a parameter to the ioctl system call
and identifies Binder transactions (BC_TRANSACTION) and
replies (BC_REPLY). (see [36] and Figure 3).

However, just intercepting transactions is of limited use

PendingIntent sentIntent = PendingIntent.getBroadcast(
SMS.this, 0, new Intent("SENT"), 0);

SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage(

"123456789", null, "Hello", sentIntent, null);

(a) SMS send with PendingIntent behavior at Java level.

ioctl(0x14, BINDER_WRITE_READ, 0xbedc93e8) = 0
ioctl(0x14, BINDER_WRITE_READ, 0xbeb69508) = 0
ioctl(0x14, BINDER_WRITE_READ, 0xbeb693e8) = 0

(b) SMS send ioctls with PendingIntent behavior. The
third parameter points to a binder_write_read data structure,
which eventually leads to a binder_transaction_data data
structure, as shown in Figure 3.

BINDER_TRAN (from binder_transaction_data)::
sentIntent =

[android.app.PendingIntent = Intent("SENT")])

BINDER_REPLY (from binder_transaction_data)::
sentIntent =

[android.app.PendingIntent{Binder:
type = BINDER_TYPE_HANDLE,
flags = 0x7F|FLAT_BINDER_FLAG_ACCEPTS_FDS,
handle = 0xa,
cookie = 0xb8a58ae0}]

BINDER_TRAN (from binder_transaction_data)::
com.android.internal.telephony.ISms.sendText(

destAddr = "123456789", srcAddr = None,
text = "Hello",
sentIntent =
[android.app.PendingIntent{Binder:
type = BINDER_TYPE_HANDLE,
flags = 0x7F|FLAT_BINDER_FLAG_ACCEPTS_FDS,
handle = 0xa, cookie = 0x0}],

deliveryIntent = null

Oracle::
com.android.internal.telephony.ISms.sendText(

destAddr = "123456789", srcAddr = None,
text = "Hello",
sentIntent =

[android.app.PendingIntent("SENT")],
deliveryIntent = null

(c) Simplified SMS send (including PendingIntent) recon-
struction produced by CopperDroid and the Oracle, using the
binder_transaction_data retrieved from the ioctl.

Figure 4: Excerpt of CopperDroid reconstructed SMS send with
PendingIntent (for send confirmation) using captured
ioctls, AIDL generated files, and correlated binder handles
generated by IActivityManager.

when it comes to understanding Android-specific behaviors.
In fact, the raw ioctl-provided Binder data that flows
throughout transactions are flattened and marshalled into a
single buffer. Moreover, every interface a client and service
agree upon has its own set of predefined methods’ signature,
and, as the Android framework counts more than 300 of these
AIDL interfaces, manual unmarshalling is unfeasible.

To understand the invoked method and the unmarshalling
procedure for its parameters, we extended CopperDroid with
the following. First, we let it identify the InterfaceToken spec-
ified in the payload (see Figure 2, Interface Token Identifier
block). This is then used to find the AIDL description, if
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available, of the interface CopperDroid needs to associate the
numeric code to the invoked method and, therein, understand
the types of its parameters. This step is necessary because,
even if Parcel methods can create easily unmarshallable
streams of bytes (including metadata to associate bytes to
types), payloads are often marshalled directly and only the
receiver knows exactly how to unmarshall them. Our solution,
therefore, parses the AIDL files (using a modified AIDL
parser) to automatically generate signatures of each method for
each interface. These signatures are specific to a given version
of Android and are used to assist in the unmarshalling process.
Such signatures are then sent to an unmarshalling Oracle
running separate from, but with the same Android OS version,
the CopperDroid emulator (see Figure 2). Along with the
AIDL signatures, marshalled data extracted from the ioctl
transaction is also sent to the Oracle to determine the values
of the method parameters through automatic unmarshalling of
binder data, as outlined next.

A. AIDL Parser

An AIDL file defines a given interface detailing its meth-
ods, parameters and return values types. The Android platform
includes an AIDL parser which, given an AIDL file, will
produce Proxy and Stub classes. The Proxy is used on the
client side and matches the method calls that a client would
call (in terms of method name, parameters and return value).
The Stub, used on the server side, utilizes the transaction
code in order to perform the appropriate actions for the given
method call. The reason for this is that all Binder calls go
through the Binder device driver as I/O controls and while the
functions on the client side (Proxy) match those in the client,
the server (Stub) needs to efficiently map a given call to its
method. The actual parcel data is held in the buffer field of
the binder_transaction_data structure (see Figure 3).

While the AIDL process works fine for marshalling data
between clients and servers during normal runtime, it is nec-
essary for CopperDroid to combine components of the Proxy
and Stub in order to unmarshall the objects post-analysis.
Furthermore, it is also necessary to implement a parcel reader
that understands how to unmarshall parameters from the mar-
shalled data. Therefore, CopperDroid includes a modified AIDL
parser that obtains the method names, parameters and return
values types (i.e., usually utilized in the Proxy at runtime) to
build a mapping between transaction codes and methods. It
then combines this information with the parcel reader class
mentioned earlier to automatically produce handling code for
a given method. CopperDroid utilizes this code to extract
the necessary information from any Binder call during later
analysis. All this automatically-generated AIDL information
is stored in multiple Python files, preserving the mapping
of all interface names to parcel data extraction routines. For
example, “com.android.internal.telephone.ISms” is mapped to
the db_parcel_ISms function call. As this process is only
needed once per Android OS version, it can be done before
analysis and does not induce overhead during analyses.

B. Oracle Input

We extract two different pieces of data per ioctl call
containing the BINDER_WRITE_READ flag. First, a blob of
marshalled parameters is taken from the buffer field, as

Data: Marshalled binder transaction and data types
(determined through the AIDL)

Result: Unmarshalled binder transactions
1 while data → marshalled do
2 determine type of marshalled item;
3 if type → primitive then
4 automatically apply correct parcelable read/create

functions;
5 append string repr. to results;
6 else
7 locate CREATOR field for reflection;
8 use java reflection to get class object;
9 for every class field do

10 if field → primitive then
11 append string repr. to results;
12 else
13 explore field recursively;
14 append string repr. to results;
15 end
16 end
17 if CREATOR → not found and buffer → binder

reference type then
18 Unmarshall Binder reference
19 end
20 end
21 end

Algorithm 1: The Unmarshalling Oracle.

can be seen in Figure 3. This is essentially the buffer minus
the InterfaceToken, placed at the front of the buffer, which is
a length-prefixed UTF-16 string. Serialized parameter values
following the token are stored and sent to the Oracle for post-
processing (Figure 2 leftmost RSP line and leftmost TCP line).
The second extracted piece of information is the numeric code
that, when united with the InterfaceToken, uniquely
identifies the method that is called by a binder transaction.

The InterfaceToken, along with the numeric code,
is used by CopperDroid to invoke the correct automatically-
generated AIDL data extraction routine (as explained above).
This routine returns the AIDL description of the interface and
enables the Oracle to understand the types of the parameters
contained in the buffer and unmarshall them. For example,
in Figure 4, the PendingIntent leads us to an actual Java
Intent type, which stores the message “SENT” and can hold
other data such as an action to perform after the SMS had been
sent (e.g., notify the user or add the sent SMS into a log).

Revisiting the SMS example, after the
ISms.sendText() method is invoked, CopperDroid
intercepts the corresponding binder transaction and uses
the InterfaceToken and the code to invoke the
correct handling function that retrieves information on the
called method. For the SMS example, these include the
method name (“sendText”), its parameters (destAddr, scAddr,
text, sentIntent, deliveryIntent), and its parameter types
(String, String, String, PendingIntent, PendingIntent). This
information is sent to the Oracle along with the marshalled
buffer—containing, among other things, the body of the
message. The Oracle uses this data to extract the value of
parameters passed to ISms.sendText().

C. Oracle Inner Workings and Output

The Oracle relies on Java reflection to unmarshall the

6



complex serialized Java objects it receives and returns their
string representations to CopperDroid to enrich its behavioral
profile with Android-specific actions. Therefore, the Oracle
must be run with the same Android OS version as the
CopperDroid emulator. However, it is worth noting that the
unmarshalling Oracle does not require the access to the app, or
malware, being analyzed in the separate CopperDroid emulator.
All information necessary to unmarshall the Binder data is
retrieved from the CopperDroid emulator and sent over to the
vanilla Android emulator running the Oracle via CopperDroid’s
behavioral reconstruction analysis, as depicted in Figure 2.

Algorithm 1 outlines the working details of the unmar-
shalling Oracle. It currently unmarshalls Binder communica-
tion objects in one of three unique ways depending on whether
the type of data is a primitive or basic type (e.g., String,
Integer), an Android class object (e.g., Intent), or a Binder
reference object (e.g., PendingIntent, Interface). As mentioned
previously, the data types are determined by CopperDroid’s
AIDL parser and the list of parameter types is sent to the
Oracle along with the marshalled parameter values. For ex-
ample, primitive or basic types are easily unmarshalled by
invoking the appropriate unmarshalling function provided by
the Parcel class (e.g., readString, readInt).

In the following, we provide additional details on the
automatic unmarshalling process.

Primitives: While iterating through the list of types and
class names (e.g., in our SMS example the Oracle would iterate
through three String types and two PendingIntent
types), if the type is identified as primitive (e.g., String) the
corresponding read function provided by the Parcel class
is used (e.g., readString()). The while loop at line 1
in Algorithm 1 would iterate through those five parameters,
while lines 3-5 are responsible for primitive types. In our
SMS example, the parameters destAddr, scAddr, and text have
primitive String types and would therefore be unmarshalled
using the correct readString() Parcel function in order
to regain the parameter values, such as the SMS text body
“Hello”.

Class objects: To unmarshall a class instance, the Oracle
application requires Java reflection (see lines 6-7 in Algorithm
1). This method allows the Oracle to dynamically retrieve a
reference to the CREATOR field, implementing the Android
Parcelable interface. Any of such object must implement
this interface, and therefore must have the CREATOR field,
in order to be written to and read from a Parcel. Once
this has been achieved, the Oracle can begin reading the
remaining class data: in our example in Figure 4, the class
data of an Android Intent (sent as a PendingIntent)
entails the phrase “SENT” [13]. Once we have obtained the
CREATOR field, the Oracle can obtain a reference to it, and
invoke its createFromParcel() method in order to unmarshall
the new object and read in its data. Once either a primitive or
class type has been unmarshalled, the Oracle creates a string
representation of the object by invoking its toString()
method, if any, or alternatively recursively inspecting each
field through Java reflection (see Section IV-D). The string
representation is then appended to an output string list, and
the marshalled data offset is updated to point to the next item
to be unmarshalled next. Additionally, the Oracle iterates to
the next parameter primitive or class type on the given list.

IBinder objects: As mentioned previously, certain types
of Binder objects are not marshalled and then sent via
IPC directly, but instead a reference to the object, stored
either in the caller memory address space or in a shared
memory space (i.e., ashmem), is sent instead. In this case,
if the object is neither a primitive nor directly marshalled
(see Algorithm 1, line 17), the Oracle verifies whether the
data contains a binder reference object. This requires pars-
ing the first four bytes of the marshalled object looking
for IBinder reference types. These reference types deter-
mine whether the referenced object is a Binder service (i.e.,
BINDER_TYPE_(WEAK_)BINDER—a transaction sending a
handle and service name to the IServiceManager), a
Binder proxy (i.e., BINDER_TYPE_(WEAK_)HANDLE—to
send objects from clients including IInterface classes rep-
resented as a binder object), or a file descriptor of an ashmem
region (BINDER_TYPE_FD, although the other types may
also send fds with the appropriate flags). Normally the Binder
reference keeps the object from being freed; however, if the
type is weak, the existence of the reference does not keep the
object from being removed, unlike a strong reference.

For instance, referring to our running example in Figure 4,
a PendingIntent can be used to broadcast whether the
SMS was successfully sent or not. By reconstructing this
Intent the Oracle can understand whether the SMS was
successfully sent. However, this Intent is not actually sent
over the IPC channel directly, but is rather sent as a handle
reference. Therefore the Oracle unmarshalls the ioctl call,
just as the receiving process would have in real-time, obtaining
a reference. Such a reference may contain an address or, as
is the case here, a handle to the PendingIntent that can
be seen with value “0xa” in our Oracle reconstructed SMS
in Figure 4 (c). When sending the IPC communication to the
server, Binder passes along the information necessary for the
receiving process to seamlessly retrieve the data.

With the referenced-based parceling used by Binder, the
Oracle needs to retrieve live ancillary data from the system
in order to be able to map the references to the data. To
this end, CopperDroid keeps track of these references in real-
time, whether they are sent via handle or via a file descriptor.
In the latter case, data from ashmem regions—created via
specific ioctl and mmap system calls—are retrieved by
CopperDroid and unmarshalled by the Oracle. Furthermore,
CopperDroid tracks certain calls which register a given allo-
cation (either in the caller space or shared via ashmem) and
obtains the handle that is assigned for the given allocation. For
example, in Figure 4 there is a transaction (BINDER_TRAN)
for registering the sentIntent and corresponding response
(BINDER_REPLY) with the handle. However, to extract such
information, CopperDroid needs to identify the file descrip-
tor or binder handle (e.g., the marshalled binder reference)
passed as a reference in the binder transaction. To avoid
using ad-hoc extraction procedures and to rely on automatic
mechanisms, CopperDroid relies on the support provided by
the unmarshalling code generated by the AIDL parser to
extract the primitive types and handles/references in the binder
transaction.

Thus, whenever CopperDroid intercepts a binder trans-
action that uses handle-referenced memory (caller allocated
or ashmem), it can quickly extract the reference at run
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time. For instance, as mentioned earlier in Figure 4 (a),
when an app creates a PendingIntent, it does so by calling
the IActivityManager::getIntentSender method,
which returns a handle specific to that data (the handle is re-
turned in the standard flat_binder_object structure for
references). In order to extract the references, CopperDroid uti-
lizes two additional fields (i.e., offsets_size field and the
offsets pointer), in the binder_transaction_data4.
The offsets_size field is the size (in bytes) of the
offsets array, comprised of pointer sized values each cor-
responding to a given reference.

If, when unmarshaling a given binder transaction, the
type (based on the code generated by the AIDL parser)
is a binder type, then the offsets array is used to lo-
cate the offset within the transaction data of the specific
flat_binder_object. The offsets are in the same order
as the types in the parcelable object. Referring to the SMS
example as shown in Figure 4, the sentIntent is the first
reference and should thus be the first entry (position 0) in the
offsets array and, if the deliveryIntent were not null,
it would be the second entry in the offsets array (position
1) and the offsets_size field would be 8 (bytes) on a 32-
bit ARM system. With this information, CopperDroid identifies
and captures the corresponding caller allocated memory region,
ashmem region, or any other memory region which contains
the actual marshalled object. The marshalled data is then sent
back to the Oracle for the final unmarshalling procedure5.

D. Recursive Printing

The purpose of printing recursively is to thoroughly inspect
each field in every object to produce as much information as
possible. Normally this means every sub class (or bundle)
is explored until a primitive can be found and printed or
stored for further analysis by CopperDroid. To do this, the
string representation of each primitive is appended to the
output string list, and the marshalled data offset is updated to
point of the next unmarshalled item. Additionally, the Oracle
iterates to the next type, or class name, on the given list. Once
the Oracle has completed unmarshalling all the parameters,
the final output can be returned to CopperDroid. Figure 4(c)
presents an excerpt of a simplified Oracle output corresponding
to a reconstructed send SMS behavior. For simplicity, we only
include essential details, filtering out less relevant flags and
empty fields.

V. OBSERVED BEHAVIORS

We manually examined the results of CopperDroid’s anal-
yses (i.e., system call invocations tracking, Binder analysis,
and complex Android objects reconstruction) on a number
of randomly selected Android malware extracted from the
samples sets at our disposal [11], [30], [49]. Figure 5 shows
the insights of our examination, which allowed us to identify
six macro classes of behaviors. Each class contains one or
more behavioral models, which is defined by a set of actions.
Actions are traced through CopperDroid and can belong to any

4These are not shown in the simplified payload Figure 3.
5A limitation of our current implementation is that we can only automat-

ically inspect and unmarshall parameters of methods contained in interfaces
of which we have the AIDL files. Bound services that do not use AIDL, e.g.,
ActivityManager, are manually unmarshalled.

Figure 5: Hierarchical map of behaviors.

level of behavior abstraction (e.g., OS- and Android-specific
behaviors). Interestingly, some behaviors are well-known and
shared with the world of non-mobile malware. Others, such as
those under the “Accessing Personal Info” class, are instead
inherently specific to the mobile ecosystem.

Every terminating class in the map corresponds to a behav-
ioral model that can be expressed by an arbitrary number of
actions, depending on its specific complexity. The complexity
of these elements vary greatly. Some are defined as a single
system call, such as execve. Others, such as “SMS Send”
or those under “Access Personal Info”, are defined as a set
of transactions of the Binder protocol. Yet others are defined
as multiple consecutive system calls. For instance, outgoing
HTTP traffic is modeled as a graph with a connect system
call, followed by an arbitrary number of send-like system
calls, whose payload is parsed to detect HTTP messages,
possibly interleaved by unrelated non-socket system calls.
Terminating classes do not forcibly correspond to just one
of the aforementioned models, but may also contain a set of
them. To clarify, consider the examples shown in Figure 6
which illustrate how CopperDroid recognizes actions triggered
by both these snippets of code as belonging to the class “Install
APK”, despite the differences in the manner in which these
actions are achieved (an execve system call rather then a
Binder transaction).

A. App Stimulation

Traditional executables have a single entry point, while
Android applications may have multiple. Most apps have a
main activity, but ancillary activities may be triggered by the
system or by other apps and the execution may reach them
without flowing through the main. In such a scenario, a simple
install-then-execute dynamic analysis may miss a number of
interesting behaviors. This problem has long been affecting
traditional dynamic analysis approaches as non-exercised paths
are simply unanalyzed. If such paths host additional behaviors,
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execve(’pm’,[’pm’, ’install’, ’-r’, ’New.apk’], ... );

(a) App installation via direct system call (OS-specific behavior).

Intent intent = \
new Intent(Intent.ACTION_VIEW);

intent.setDataAndType(
Uri.fromFile(

new File("/mnt/sdcard/New.apk")),
"application/vnd.android.pack...");

startActivity(intent);

(b) App installation via Binder transaction (e.g., Intent specific).

Figure 6: App installation via direct system call and Binder
(Android-level) transaction.

then any dynamic analysis would fail unless proper, but
generally expensive and complex exploration techniques are
adopted [8], [31]. In addition, this problem is exacerbated by
the fact that mobile applications are inherently user driven and
interaction with applications is generally necessary to increase
coverage. For instance, let us consider an application that
operates as a broadcast receiver for SMS RECEIVED events.
After installation, the application would only react to the
reception of SMS showing no additional interesting behaviors.

To qualitatively address dynamic code coverage issues,
CopperDroid implements a technique to artificially stimulate
the analyzed malware with a number of valid and interesting
events based on the malware’s Manifest. For example, injecting
events such as phone calls and reception of SMS texts would
lead to the execution of any application registered broadcast
receiver. Another example that comes from our experience with
Android malware is the BOOT_RECEIVED intent, that many
samples use to start execution as soon as the victim system
is booted (much like \CurrentVersion\Run registry keys
on Windows systems).

The Android emulator offers the possibility to inject a
considerable number of artificial events to stimulate a running
application. These range from very low-level hardware-related
events (e.g., loss of the 3G signal) to higher-level ones (e.g.,
incoming calls, SMS). CopperDroid could adopt a fuzzing-
like stimulation strategy and trigger all the events that could
be of interest for the analyses. That would unfortunately be
of limited effect because of the underlying Android security
model and permission system. Instead, CopperDroid leverages
static information extracted from the app to carry out a fine-
grained targeted stimulation strategy. To this end, CopperDroid
examines each APK Manifest to extract events and permission-
related information to drive the malware stimulation. Further-
more, an application has the ability to dynamically register a
broadcast receiver for custom events at run-time. CopperDroid
is able to intercept such operations and add a proper stimula-
tion for the newly registered receiver.

To perform its custom stimulation, CopperDroid leverages
the Android emulator’s capabilities to inject a number of
artificial events into the emulated system. In particular, it
leverages MonkeyRunner, a tool that provides an out-of-the-
box API to control an Android device or emulator, through the
Python programming language [3]. A summary of the main

# Stimulation Parameters

1 Received SMS Text, from number
2 Incoming call From number, duration
3 Location update Geospatial coordinates
4 Battery status Amount of battery
5 Phone Reboot
6 Keyboard input Typed text

Table I: Main stimulations and parameters.

OutputStreamWriter out =
new OutputStreamWriter(

openFileOutput("samplefile.txt",
MODE_WORLD_READABLE));

out.write("Data write", 0, 10);

(a) File access behavior at Java level.

open("files/samplefile.txt", 0x20241, 0x180) = 0x1c
read(0x3f, 0x470bec04, 0xf) = 0xf
...
write(0x1c, "Data write", 0xa) = 0xa

(b) File access behavior at system call level.

FS_ACCESS::Creation of "sampefile.txt"
(link, ancillary info: 10 (bytes))

(c) Reconstructed file access behavior.

Figure 7: CopperDroid behavior reconstruction of a file access.

events CopperDroid handles is reported in Table I, which also
shows the parameters that can be customized for each event.

B. Value-based Data Flow Analysis

We extended CopperDroid with the ability to abstract a
stream of related low-level events to a more meaningful high-
level behaviors and to recreate resources (e.g., files, network
communications) associated with an application to enrich Cop-
perDroid’s behavioral reconstruction analyses (see Figure 7(c),
e.g., FS_ACCESS and NET_ACCESS).

To this end, CopperDroid performs a value-based data flow
analysis by building a system call-related data dependency
graph and def-use chains. In particular, each observed sys-
tem call is initially considered as an unconnected node. A
forward slicing algorithm then inserts edges for every inferred
dependence between two calls. As the slicing proceeds, both
nodes and edges are annotated with the system call argument
constraints; these annotations are essential in the creation of
our def-use chains. Def-use chains, where each call is linked
by def-use dependencies, are formed when the output value by
one system call (the definition, e.g., open, dup, dup2) is the
input value to a following (non-necessarily adjacent) system
call (the use, e.g., write, writev). Therefore, by building a
data dependency graph over the set of observed system calls,
and performing forward slicing, we can recreate file system-
related events and the actual resources involved. Our analysis
retains deleted files (unlink) and multiple versions of the
resources with identical file names. Although we focus this
discussion on file system-related system calls, a similar process
holds and has been implemented for network-related calls.
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VI. EVALUATION

Our experimental setup is as follows. We ran unmodified
Android images on top of the CopperDroid-enhanced emulator.
Each clean image was customized to include personal infor-
mation, such as contacts, SMS texts, call logs, and pictures
to mimic, as closely as possible, a real device. Each analyzed
malware sample was installed in the image and traced via Cop-
perDroid until a timeout was reached (10 minutes by default).
At the end of the analysis, a clean execution environment
is restored to prevent corruptions and side-effects caused by
installing multiple malware samples in the same system. To
limit noisy results, each sample was executed and analyzed
six times: three times without stimulation and three times with
stimulation; single execution results were then merged.

We evaluated CopperDroid on three datasets: two publicly
available [11], [49] and one provided by McAfee [30]. These
datasets are composed of 1,226, 395 and 1,365 samples,
respectively, counting more than 2,900 samples overall.

A. Effectiveness

To evaluate the effectiveness of CopperDroid’s stimulation
approach, we proceeded as follows. First, we analyzed all
the samples without external stimulation. Then, we performed
the stimulation-driven analysis of the same malware sets, as
outlined in Section V-A. A summary of the effects of the
stimulation on the three datasets is presented in Table II;
details of the analysis on the first two datasets were presented
in our preliminary workshop work [36], while results on the
McAfee dataset are reported in Table VI (see Appendix A). As
Table II shows, the results of our analysis on the new McAfee
dataset are consistent with our previous and preliminary results
(see Table II and [36]): 836 out of 1365 (61%) McAfee
samples exhibited additional behaviors (see Section V for what
we consider to be a behavior) and, on average, the number
of additional behaviors was roughly 6.5, out of an average
number of exhibited behaviors of 22.8, observed during non-
stimulated executions6. Of course, it is important to understand
whether an observed behavior is new or if it refers to a similar,
previously-observed action (e.g., same network communication
with a different timestamp). Our current approach is simple:
We consider pseudorandom or ephemeral values observed
in specific behaviors (e.g., the above mentioned timestamp
parameter, or a pseudorandom ID characterized by high a byte
entropy) to refer to an already observed behavior and therefore
to not contribute to the percentage of additional behaviors
observed due to app stimulation. All the other behaviors are
considered to be new or additional and therefore contribute to
the aforementioned percentage. Future work includes building
on recent and promising hierarchical similarities [26] to better
discern among new or additional behaviors.

Table III reports the overall breakdown of the observed
behaviors (see Figure 5) on McAfee dataset. Each row identi-
fies the class of behavior and how many samples over the total
exhibited at least one occurrence of such behavior, without and
with stimulation, respectively. As can be observed the two most
influenced behavioral class are Access Personal Information
and Make/Alter Call. The first is triggered by a non-negligible

6Solutions to quantitatively improve code coverage may be built on top of
symbolic execution (e.g., [1], [9]), but unfortunately they do not scale well.

Malware Incr. Behav. Avg. Std.
Dataset (Samples) Increment Dev

Genome 752/1226 (60%) 2.9/10.3 (28.1%) 2.4/11.8
Contagio 289/395 (73%) 5.2/23.6 (22.0%) 3.3/19.8
McAfee 836/1365 (61%) 6.5/22.8 (28.5%) 9.5/30.1

Table II: Summary of stimulation results, per dataset.

Behavior Class No Stimulation Stimulation

FS Access 889/1365 (65.13%) 912/1365 (66.81%)
Access Pers. Info. 558/1365 (40.88%) 903/1365 (66.15%)
Network Access 457/1365 (33.48%) 461/1365 (33.77%)
Exec. Ext. App. 171/1365 (12.52%) 171/1365 (12.52%)
Send SMS 38/1365 (2.78%) 42/1365 (3.08%)
Make/Alter Call 1/1365 (0.07%) 55/1365 (4.03%)

Table III: Overall behavior breakdown of McAfee dataset.

number of samples that receive an incoming message sent by
CopperDroid stimulation technique (and exhibits an access to
the user’s personal information, otherwise hidden). The latter
is mostly due to a set of malware that, whenever a call is
received, hide its notification to the user. Table V, instead
gives a more detailed overview of single behavioral subclasses
(defined in Section V) and if—and how—they are influenced
by stimulation.

Lastly, we also ran a number of malware samples with
no, selective, and full stimulation. This experiment aimed at
qualitatively gathering which individual stimulus induced what
amount of incremental behavior, and whether combinations of
stimulation are more effective than individual triggers. Again,
these stimulations are tailored to each malware by analyzing
their Manifest to determine what triggers were possible due
to the permission scheme. We deliberately chose Android
malware samples that in our experiments had the highest,
average and lowest incremental behavior both percentage wise
and amount wise. If several families had the same maximum
amount of incremental behavior we choose the one with
the highest percentage incremental behavior and vice versa.
Lastly we determined the best representative sample from
each family based on the amount and diversity of behaviors.
The results of various stimulations on these malware samples
can be seen in Table IV. With the table we can begin to
see correlations between different stimuli and behaviors. As
Table IV shows, our selective stimulations was able to disclose
a number of additional previously-unseen (e.g., YZHC SMS
stimulation showed access of personal account information)
or already-observed (e.g., SHBreak showed 113 additional
generic execution) behaviors.

B. Performance

In this section we present an evaluation of CopperDroid
overhead through a number of different experiments conducted
on a GNU/Linux Debian 64-bit system equipped with an
Intel 3.30GHz core (i5) and 3GB of RAM. Benchmarking a
multi-layered system, such as Android, in conjunction with a
complex technique, such as CopperDroid (and in an emulated
environment), can be a rather complicated task. For exam-
ple, traditional benchmarking suites based on measuring I/O
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Sample Behavior Behavior Behaviors Incr. Behavior Incr. Behavior Incr. Behavior
Family Class Subclass No Stim. Type Stim. SMS Stim. Loc. Stim.

YZHC

Network Access HTTP 4 - - N/A
DNS 1 - - N/A

Exec External App

Generic 3 +10 (+433%) - N/A
Shell 1 +3(+400%) - N/A

Priv. Escalation 2 - +2(+100%) N/A
Install APK 4 - - N/A

Access Personal Info Account - - +1(⊥) N/A
FS Access Write 414 - - N/A

zHash

Network Access HTTP 2 +2 (+100%) +5 (+350%) N/A
DNS - - +1 (⊥) N/A

Exec External App

Generic 1 +12 (+1300%) +3 (+400%) N/A
Shell 1 +3 (+400%) - N/A

Priv. Escalation 4 - - N/A
Install APK 4 - - N/A

Access Personal Info Account 2 - - N/A
FS Access Write 163 - +255 (+257%) N/A

SHBreak

Network Access HTTP 3 - N/A N/A

Exec External App
Generic 2 +113 (+5750%) N/A N/A

Shell 1 +22 (+2500%) N/A N/A
Install APK 4 +4 (+100%) N/A N/A

FS Access Write 195 +353 (+281%) N/A N/A

Droid KungFu

Network Access HTTP 13 - N/A -

Exec External App
Generic 1 +2 (+300%) N/A +1 (+200%)

Shell 1 - N/A -
Install APK 4 - N/A -

FS Access Write 3 +197 (+6667%) N/A +144 (+4800%)

Fladstep

Network Access HTTP 15 - N/A N/A

Exec External App
Generic 3 +17 (+633%) N/A N/A

Shell 1 +5 (+500%) N/A N/A
Install APK 4 - N/A N/A

FS Access Write 171 +80 (+47%) N/A N/A

Table IV: Incremental behavior induced by various stimuli, N/A means stimulus not possible based on Manifest.

operations are affected by caching mechanisms of emulated
environments. On the other hand, CPU-intensive benchmarks
are meaningless against the overhead of CopperDroid, as it
mainly operates on system calls.

To address such issues, we performed two different bench-
marking experiments. The first is a macrobenchmark that tests
the overhead introduced by CopperDroid on common Android-
specific actions, such as accessing contacts and sending SMS
texts. Because such actions are performed via the Binder
protocol, these tests give a good evaluation of the overhead
caused by CopperDroid’s Binder analysis infrastructure. The
second set of experiments is a microbenchmark that measures
the computational time CopperDroid needs to analyze a subset
of interesting system calls.

To execute the first set of benchmarks, we created a
fictional Android application that performs generic tasks, such
as sending (SEND_SMS) and reading (SMS) texts, accessing
local account information (GET_ACC), and reading all contacts
(CONTACTS). We then ran the test application for 100 itera-
tions and collected the average time required to perform these
operations under three different settings: on an unmodified
Android emulator (i.e., without CopperDroid—baseline), on a
CopperDroid-enhanced emulator with CopperDroid configured
to monitor the test application (the common setting when
analyzing a piece of malware—CD (targeted)), and on a
CopperDroid-enhanced emulator with CopperDroid configured
to track system-wide events (CD (full)). Results are reported
in Figure 8 (A). As can be observed, the overhead introduced
by the targeted analysis is relatively low, respectively ≈ 26%,
≈ 32%, ≈ 24% and ≈ 20%. On the other hand, system-

wide analyses increase the overhead considerably (>2x). This
is due to the of the number of Android components that are
concurrently analyzed.

The second set of experiments measure the average time
CopperDroid requires to inspect a subset of interesting system
calls. This experiment collected more than 150,000 system
calls obtained by running apps and subjecting them to arbitrary
(and artificial) workloads. As tracking a system call requires
to intercept entry and exit execution points, we report such
measures separately in Figure 8 (B) (the average times are
0.092ms for entry and 0.091ms for exit).

VII. RELATED WORK

In this section we cite and compare similar works related
to CopperDroid. First off, DroidScope [43] is a framework
to create dynamic analysis tools for Android malware that
trades off simplicity and efficiency for transparency: as an
out-of-the-box approach, it instruments the Android emulator,
but it may incur high overhead (for instance, when taint-
tracking is enabled). DroidScope leverages a 2-level VMI [20]
to gather information about the system and exposes hooks and
a set of APIs, which enabled the development of plugins to
perform both fine and coarse-grained analyses (e.g., system
call, single instruction tracing, and taint tracking). In contrast
with CopperDroid, DroidScope offers a set of instrumentation
points that analyses can build upon to intercept interesting
events and does not perform any behavioral analysis per-se.
For example, a tool leveraging DroidScope can intercept every
system call executed on an Android system, but would still
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A B

Figure 8: Binder Macrobenchmark (A) and System Call Microbenchmark (B).

Behavior Class Subclass No Stim. Stim

Network Access
Generic 483 489
HTTP 309 318
DNS 416 416

FS Access Write 889 912

Access Personal Info.

SMS 32 266
Phone 510 559
Accounts 51 672
Location 143 147

Exec. External App.

Generic 132 132
Priv. Esc. 103 103
Shell 73 73
Inst. APK 8 8

Send SMS — 38 42

Make/Alter Call — 1 55

Table V: Behavior breakdown on the Android malware samples
provided by McAfee.

need to do its own VMI to inspect the parameters of each call.
Following this principle, CopperDroid could have been built
on top of DroidScope, but at the time we implemented it, the
DroidScope framework was not publicly available. Moreover,
the main focus of our research is not to illustrate how to build a
framework or a clever VMI technique for Android systems, but
rather to point out how a proper system call-centric analysis—
which still includes a thorough IPC and RPC Binder-related
protocol analysis as well as automatic and seamlessly complex
Android object reconstructions—and stimulation technique can
comprehensively expose Android malware behaviors.

Enck et al. presents TaintDroid [14], a framework to enable
dynamic taint analysis for Android applications. TaintDroid’s
main goal is to track how sensitive information flow between
the system and applications, or between applications, to au-
tomatically identify leaks. Because of the complexity of the
Android system, TaintDroid relies on different levels of instru-
mentation to perform its analyses. For example, to propagate
taint information through native methods and IPC, TaintDroid
patches JNI call bridges and the Binder IPC library. TaintDroid
is both extremely effective, as it allows it to propagate tainting
between many different levels, and efficient, as it does that with
a very low overhead. Unfortunately, the price to pay is low
resiliency and transparency: modifying internal components of
Android inevitably exposes TaintDroid to a series of detection

and evasions techniques [10], [37], [38]. For instance, even
applications with standard privileges can detect TaintDroid’s
presence by calculating checksums over instrumented and
readable components. Moreover, TaintDroid cannot track the
taintedness of native code. Conversely, applications that can
escalate their privileges can go even further: identifying and
disabling TaintDroid’s hooks and analysis. Furthermore, the
decision to modify internal components exposes TaintDroid to
the issues deriving from constantly adapting the analysis code
to highly-mutable architecture as the Android OS.

AppsPlayground [35] performs a much granular stimula-
tion than CopperDroid, but its full capabilities require non-
negligible modifications to the Android framework (e.g., to
capture image identifiers in GUI elements). It also does not
analyze native code (with the exception of specific and known
low-level signatures, such as known root exploits), and inte-
grates a number of well-known techniques (e.g., TaintDroid),
inheriting their limitations, e.g. non-negligible modification of
the Android runtime and limited taint-tracking when analyzing
malicious apps [10]. PuppetDroid [21] (as AppsPlaygrounds)
is an interesting approach to stimulate Android apps with
stimulation traces gathered from crowdsourcing. It is more
effective than CopperDroid with respect to stimulation, but
limited to the subset of apps for which there exists a similar
recorded stimulation trace. The downside, however, is that
the overhead of PuppetDroid is significantly high whereas
CopperDroid does not require any modification to the Android
OS (nor runtime).This avoids dealing with the ever-evolving
Android runtime system.

DroidBox is a dynamic, in-the-box, Android malware an-
alyzer [40] that leverages custom instrumentation of the An-
droid system and kernel to track a sample’s behavior through
TaintDroid’s taint-tracking of sensitive information [14]. Using
TaintDroid and instrumenting Android’s internal components
makes DroidBox prone to the problems of in-the-box analyses:
malware can detect, evade, or even disable them.

Andrubis [28] is an extension to the Anubis dynamic
malware analysis system to analyze Android malware [5],
[24]. According to its web site, it is mainly built on top of
both TaintDroid [14] and DroidBox [40] and it thus shares
their weaknesses (mainly due to operating “into-the-box”). In
addition, Andrubis does not perform any stimulation-based
analysis, limiting its effectiveness in discovering interesting
Android-specific behaviors.

DroidMOSS [46] relies on signatures to detect malware in
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app markets. Similarly, DroidRanger [48] and JuxtApp [22]
identify known mobile malware repackaged into other apps.
Although successful, signature-based techniques does limit the
detection effectiveness to only known malware. In [15], Enck
et al. studied Android permissions found in a large dataset of
Google Play apps to understand their security characteristics.
Such an understanding is an interesting starting point for
designing techniques to enforce security policies [42] and
avoid the installation of apps requesting a dangerous combi-
nation [16] or an overprivileged set of permissions [18], [33].
Although promising, the peculiarity of Android apps (e.g., a
potential combination of Java and native code) can easily elude
policy enforcement or collude to perform malicious actions
while maintaining a seemingly legitimate appearance. This
clearly calls for continuous research in this direction.

Aurasium [42] is a technique (and tool) that enables fine-
grained dynamic policy enforcement of Android apps. To
intercept relevant events, Aurasium instruments single apps,
rather than adopting system-level hooks. Working at the ap-
plication level, however, exposes Aurasium to easy detection
or evasion attacks by malicious Android applications. For
example, regular applications can rely on native code to detect
and disable hooks in the global offset table, even without
privilege escalation exploits. Aurasium’s authors state that their
approach can prevent such attacks by intercepting dlopen
invocations needed to load native libraries. It is however
unclear how benign and malicious code can be distinguished,
as this policy cannot be lightheartedly delegated to Aurasium’s
end-users. Conversely, CopperDroid’s VMI-based system call-
centric analysis is resilient to such evasions.

Google Bouncer [29], as its name suggests, is a service
that “bounces” malicious applications off from the official
Google Play (market). Little is known about it, except that it
is a QEMU-based dynamic analysis framework. All the other
information come from reverse-engineering attempts [32] but
they are too scarce to properly compare it against our approach.

SmartDroid [45] leverages a hybrid analysis that statically
identifies paths that lead to suspicious actions (e.g., accessing
sensitive data) and dynamically determines UI elements to
take the execution flow down those identified paths. To this
end, the authors instrument both the Android emulator and
Android’s internal components to infer which UI elements
trigger suspicious behaviors. They also evaluated SmartDroid
on a testbed of seven different malware samples and found
it vulnerable to obfuscation and reflection, which make it
hard—if not impossible—to statically determine every possible
execution path. Conversely, CopperDroid’s dynamic analysis is
resilient to static obfuscation and reflection.

To overcome the limits of dynamic analysis (e.g., code or
path coverage), Anand et al. proposed a concolic-based solu-
tion [1] to automatically identify events an application reacts to
by generating input events for smartphone applications. While
no learning phase is required, such a solution has two main
drawbacks: it is based on instrumentation (i.e., easy to detect)
and is extremely time-consuming (i.e., up to hours to exercise
a single application). Although an interesting direction to ex-
plore further, that approach is ill-suited to perform large-scale
malware analysis. As described in Section V-A, CopperDroid
relies on a simple-yet-effective stimulation technique that is

able to improve basic dynamic analysis coverage and discover
additional behaviors with low overheads.

VetDroid is a dynamic analysis platform for reconstructing
sensitive behaviors in Android apps from a permissions use
perspective [44]. Zhang et al. points out that traditional system
call analysis is not appropriate for characterizing the behaviors
of Android apps as it misses high-level Android-specific se-
mantics and fails at reconstructing IPC and RPC interactions.
Contrary to this, we have shown that CopperDroid’s unified
system call-centric analysis is able to automatically and seam-
lessly reconstruct IPC and RPC interactions as well as complex
Android objects, generating insightful behavioral profiles.

Finally, one study recently used the insights of the Cop-
perDroid workshop paper to manually discover vulnerabilities
in the Android IPC [4].

VIII. CONCLUSION

We proposed CopperDroid, a VM-based dynamic system
call-centric analysis and stimulation technique to both uni-
formly, and automatically, reconstruct behaviors of Android
malware. In particular, we show how a careful dissection of
system calls coupled with the ability to automatically track and
deserialize IPC and RPC interactions, typically contextualized
through complex Android objects, is key to the reconstruction
of both OS- and Android-specific behaviors from a unique,
well-known, (system level) observation point. Not only is this
simplicity more transparent to changes in the Android runtime
system and its inner details, but it also makes the approach
agnostic to the underlying action invocation mechanisms (e.g.,
Java or native code). We evaluated the effectiveness and
performance of CopperDroid on more than 2,900 real world
Android malware, showing that a simple, external, stimulation
contributes to the discovery of additional behaviors.

We believe the novelty of CopperDroid’s analyses opens
the possibility to reconsider rich and unified system call-based
approaches as effective techniques to build upon to mitigate
Android malware threats.

AVAILABILITY

CopperDroid and information about our ongoing project-
related research are available at:

http://s2lab.isg.rhul.ac.uk/projects/mobsec/

where users can reach out to a publicly-available version of
CopperDroid and submit APK files to be analyzed. Analysis
results include behavioral profiles available in a number of
different formats (e.g., HTML and JSON, for easy parsing)
and additional ancillary information (e.g., network traffic,
reconstructed files and executables, complete system call traces
with behavior reconstruction).

ACKNOWLEDGMENTS

This research has been partially supported by the UK
EPSRC grant EP/L022710/1 and by a generous donation from
Intel Security (McAfee Labs). We are equally thankful to the
anonymous reviewers’ comments and Timothy Leek (and An-
drew Davis), our shepherd, for their invaluable comments and
suggestions to improve the paper. We also thank Alessandro

13



Reina, Santanu Dash, Johannes Kinder, Igor Muttik, and Alex
Hinchliffe for their valuable suggestions and discussions on
the work.

REFERENCES

[1] S. Anand, M. Naik, H. Yang, and M. Harrold, “Automated concolic
testing of smartphone apps,” in Proc. of FSE, 2012.

[2] Android, “Android developer reference,” http://developer.android.com/
reference/packages.html.

[3] ——, “Monkeyrunner,” http://developer.android.com/tools/help/
monkeyrunner concepts.html.

[4] N. Artenstein and I. Revivo, “Man in the binder: He who controls ipc,
controls the droid,” 2014.

[5] U. Bayer, C. Kruegel, and E. Kirda, “Ttanalyze: A tool for analyzing
malware,” in Proc. of EICAR, 2006.

[6] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc.
of USENIX ATC, 2005.

[7] D. Bornstein, “Dalvik VM internals,” in Google I/O, 2008.
[8] D. Brumley, C. Hartwig, Z. Liang, J. Newsome, D. Song, and H. Yin,

“Automatically identifying trigger-based behavior in malware,” Botnet
Detection, 2008.

[9] C. Cadar, D. Dunbar, and D. R. Engler, “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
OSDI, 2008.

[10] L. Cavallaro, P. Saxena, and R. Sekar, “On the limits of information flow
techniques for malware analysis and containment,” in DIMVA, 2008.

[11] Contagio Mobile, “Mila Parkour,” http://contagiominidump.blogspot.
com.

[12] D. Desai, “Malware Analysis Report: Trojan: AndroidOS/Zitmo,”
Semptember 2011, http://www.kindsight.net/sites/default/files/android
trojan zitmo final pdf 17585.pdf.

[13] A. Developers, “Parcelable,” http://developer.android.com/reference/
android/os/Parcelable.html.

[14] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and
A. Sheth, “Taintdroid: an information-flow tracking system for realtime
privacy monitoring on smartphones,” in USENIX OSDI, 2010.

[15] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri, “A study of
android application security,” in USENIX Security, 2011.

[16] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in ACM CCS, 2009.

[17] ——, “Understanding android security,” IEEE Security and Privacy,
vol. 7, no. 1, pp. 50–57, Jan. 2009. [Online]. Available: http:
//dx.doi.org/10.1109/MSP.2009.26

[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proc. of CCS, 2011.

[19] S. Fiegerman, “Android now has 1 billion active users,” Jun 2014.
[20] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection

Based Architecture for Intrusion Detection,” in Proc. of NDSS, 2003.
[21] A. Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and S. Zanero, “Pup-

petdroid: A user-centric ui exerciser for automatic dynamic analysis of
similar android applications,” CoRR, vol. abs/1402.4826, 2014.

[22] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among android applications,”
in Proc. of DIMVA, 2012.

[23] M. Hibben, “Apple ios vs. android: The wealth of ecosystems,” Jun
2014.

[24] Iseclab, “Anubis,” http://anubis.iseclab.org.
[25] R. King, “Google readies android ’kitkat’ amid 1 billion device activa-

tions milestone,” Sep 2013.
[26] D. Kirat, G. Vigna, and C. Kruegel, “BareCloud: Bare-metal Analysis-

based Evasive Malware Detection,” in 23rd USENIX Security Sympo-
sium (USENIX Security 14). USENIX Association, 2014.

[27] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda,
“AccessMiner: Using system-centric models for malware protection,”
in Proc. of CCS, 2010.

[28] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer, “Andrubis - 1,000,000 Apps Later:
A View on Current Android Malware Behaviors,” in Proceedings of
the the 3rd International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (BADGERS), 2014.

[29] H. Lockheimer, “Bouncer,” http://googlemobile.blogspot.it/2012/02/
android-and-security.html.

[30] McAfee, “Mcafee,” http://www.mcafee.com.
[31] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple execution

paths for malware analysis,” in Proc. of the IEEE Symposium on
Security and Privacy, 2007.

[32] J. Oberheide and C. Miller, “Dissecting the Android’s Bouncer,” Sum-
merCon, 2012, http://jon.oberheide.org/files/summercon12-bouncer.pdf.

[33] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks
of android apps,” in ACM CCS, 2012.

[34] B. PETROVAN, “Xposed framework creator weighs in on
lollipop, art, and xposed,” http://www.androidauthority.com/
xposed-framework-lollipop-540928/.

[35] V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic secu-
rity analysis of smartphone applications,” in Proceedings of the Third
ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’13. New York, NY, USA: ACM, 2013.

[36] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors,” in Proceedings of the 6th European Workshop on System
Security (EUROSEC), Prague, Czech Republic, April 2013.

[37] G. Sarwar, O. Mehani, R. Boreli, and M. A. Kaafar, “On the effective-
ness of dynamic taint analysis for protecting against private information
leaks on Android-based devices,” in SECRYPT, Jul. 2013.

[38] A. Slowinska and H. Bos, “Pointless tainting?: evaluating the practical-
ity of pointer tainting,” in EuroSys, W. Schröder-Preikschat, J. Wilkes,
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