
Towards Online Spam Filtering in Social Networks

Hongyu Gao

Northwestern University

Evanston, IL, USA

hygao@u.northwestern.edu

Yan Chen

Northwestern University

Evanston, IL, USA

ychen@northwestern.edu

Kathy Lee†

Northwestern University

Evanston, IL, USA

kml649@eecs.northwestern.edu

Diana Palsetia†

Northwestern University

Evanston, IL, USA

palsetia@u.northwestern.edu

Alok Choudhary†

Northwestern University

Evanston, IL, USA

choudhar@eecs.northwestern.edu

Abstract

Online social networks (OSNs) are extremely popular

among Internet users. Unfortunately, in the wrong hands,

they are also effective tools for executing spam campaigns.

In this paper, we present an online spam filtering system that

can be deployed as a component of the OSN platform to in-

spect messages generated by users in real-time. We propose

to reconstruct spam messages into campaigns for classifica-

tion rather than examine them individually. Although cam-

paign identification has been used for offline spam analysis,

we apply this technique to aid the online spam detection

problem with sufficiently low overhead. Accordingly, our

system adopts a set of novel features that effectively dis-

tinguish spam campaigns. It drops messages classified as

“spam” before they reach the intended recipients, thus pro-

tecting them from various kinds of fraud. We evaluate the

system using 187 million wall posts collected from Face-

book and 17 million tweets collected from Twitter. In differ-

ent parameter settings, the true positive rate reaches 80.9%

while the false positive rate reaches 0.19% in the best case.

In addition, it stays accurate for more than 9 months after

the initial training phase. Once deployed, it can constantly

secure the OSNs without the need for frequent re-training.

Finally, tested on a server machine with eight cores (Xeon

E5520 2.2Ghz) and 16GB memory, the system achieves an

average throughput of 1580 messages/sec and an average

processing latency of 21.5ms on the Facebook dataset.

1 Introduction

Online social networks (OSNs) are extremely popu-

lar collaboration and communication tools that have at-

tracted millions of Internet users. Unfortunately, recent ev-

idence shows that they can also be effective mechanisms

for spreading attacks. Popular OSNs are increasingly be-

coming the target of phishing attacks launched from large

botnets [1, 3]. Two recent studies [9, 10] have confirmed

the existence of large-scale spam campaigns in Twitter and

Facebook, respectively. Furthermore, the clickthrough rate

of OSN spam is orders of magnitude higher than its email

counterpart [10], indicating that users are more prone to

trust spam messages from their friends in OSNs.

The OSN spam problem has already received atten-

tion from researchers. Meanwhile, email spam, a seem-

ingly very similar problem, has been extensively studied for

years. Unfortunately, the bulk of the existing solutions are

not directly applicable, because of a series of distinct char-

acteristics pertaining to the OSN spam. i) In any OSN, all

messages, including spam, originate from accounts regis-

tered at the same site. In contrast, email spam is not nec-

essarily sent from accounts registered at legitimate service

providers. The widely used email server reputation based

detection approaches [11, 19, 22] rely on the assumption

that the spamming SMTP servers run on bot machines, and

are thus inapplicable in OSNs. Realizing that this assump-

tion is not always true , researchers have proposed to iden-

tify accounts signed up by spammers from legitimate email

service providers [34]. ii) Spamming account identifica-

tion is also the focus of the existing OSN spam detection

work [14, 26, 31, 32]. However, the second characteris-

tic of OSN spam is that the majority of spam messages

come from compromised accounts [9, 10], rather than ac-

counts created and exclusively controlled by spammers. It

essentially means that spammers and legitimate users are

sharing accounts. Thus, identifying spamming accounts is

not sufficient to fight OSN spam. iii) Messages in OSNs,

spam or not, are generally short. The perception that legiti-

mate emails have variable size while spam tends to be small

no longer holds in OSNs. The third characteristic, along

with the previous two, obsoletes many features that used to

work well in supervised machine learning based detection

approaches, which we briefly discuss in Section 3.

It is worth noting that offline OSN analysis works suc-

cessfully reveal OSN spam messages [9, 10], but they are

not designed as online detection tools, since they either

have long lag-time or limited efficiency. We offer more de-

tailed comparison in Section 7. Meanwhile, message con-

tent based detection approaches, such as the recently pro-

posed campaign template inference [18], are expected to

perform equally well if applied to OSNs. However, they

implicitly require that all campaigns must be present in the

labeled training set in order for good detection coverage.

This requirement itself is hard to satisfy, not to mention the

difficulty of fighting campaigns that emerge in the future. In

addition, approaches based on malicious URL detection are

also applicable [27]. Nonetheless, URL obfuscation tech-

niques (e.g. , using “nevasubevu\t. blogs pot\t.\tco\tm
(take out spaces)” instead of “nevasubevu.blogspot.com”)

make it difficult for any automated tool to recognize the em-

bedded URLs in the first place.

In this paper, we present an online spam filtering sys-

tem specifically designed for OSNs and can be deployed as

a component of the OSN platform. After the initial train-

ing phase, it efficiently inspects the stream of user gen-

erated messages, immediately dropping those classified as

spam before they reach the intended recipients. The system

owns four desirable properties as an online filtering tool,

which are: i) high accuracy, ii) no need for all campaigns

to be present in the training set, iii) no need for frequent

re-training , and iv) low latency.

The key insight is that we always seek to uncover the

connection among all the messages by performing cluster-

ing on them, instead of directly inspecting each individ-

ual message without correlating it with others. The corre-

lated spam messages form spam campaigns. Although the

clustering approach has been used for offline spam analy-

sis [4, 35], it is never used for online spam filtering due to

its computational overhead. We leverage incremental clus-

tering and parallelization to address this challenge. When a

new message is generated, the system organizes it, along

with all the previously observed messages, into clusters.

The new message is then classified according to whether

or not the cluster it resides in is a spam cluster, which is

determined by all the messages in the same cluster collec-

tively.

Accordingly, the classifier is trained on a set of features

associated with message clusters instead of individual mes-

sages. We identified six such distinguishing features. They

all stem from the spammers’ need to push spam messages

to as many recipients as possible. Meanwhile, these fea-

tures grasp the commonality among spam campaigns, e.g. ,

they generate spam messages fast while lasting, rather than

the speciality of any individual campaign, e.g. , word dis-

tribution or underlying templates. Hence, spam campaigns

can still be detected even if they do not have any instance

included in the training set. In addition, the features pertain-

ing to campaigns cannot be easily maneuvered. For exam-

ple, if the spammer slows down the speed of spam message

generation, he has to pay the price of the reduced ability to

affect potential victims. As a result, these features are per-

sistent over time. After the initial training, the system can

work online for a long period of time without the need for

re-training. For the same reason, it is also harder for the

spammers to craft their sending pattern to evade detection.

We evaluate the system using 187 million wall posts col-

lected from Facebook and 17 million tweets collected from

Twitter. Experimental results show that the system yields

80.9% true positive rate and 0.19% false positive rate in the

best parameter settings. It stays accurate for more than 9

months after the initial training phase, and achieves an av-

erage throughput of 1580 messages/sec and an average pro-

cessing latency of 21.5ms on the Facebook dataset.

In summary, we frame our contributions as:

• We propose to use spam campaigns, instead of

individual spam messages, as the objects for spam

classification.

• We solve the challenge of reconstructing campaigns

in real-time by adopting incremental clustering and

parallelization.

• We identify six features that distinguish spam

campaigns from legitimate message clusters in OSNs.

• We develop and evaluate an accurate and efficient

system that can be easily deployed at the OSN server

side to provide online spam filtering.

The rest of the paper is organized as follows. We first

provide necessary background information and clarify what

will be achieved in Section 2. After that, we present the

six features to distinguish spam clusters in Section 3, illus-

trate the detailed system design in Section 4, and thoroughly

evaluate its performance in Section 5. Next, we discuss pos-

sible attempts to evade the system in Section 6 and the re-

lated work in Section 7. Finally, we conclude the paper in

Section 8.

2 Background and Goal

In this section, we provide necessary background infor-

mation and how our system can be incorporated into the

current OSN architecture. We also describe the dataset used

in this study.

2.1 Background

All current OSNs adopt the client-server architecture.

The OSN service provider acts as the controlling entity. It

stores and manages all the content in the system. On the

other hand, the content is generated by users spontaneously

from the client side. The OSN service provider offers a rich

set of well-defined interfaces through which the users can

interact with others. Currently two popular ways of interac-

tion exist. Facebook is representative of OSNs that adopt

the interaction between a pair of sender and recipient as

their primary way of interaction, although they also support

other ways. Twitter is representative of OSNs that adopt

broadcasting as their primary way of interaction.

Figure 1(a) illustrates a simplified OSN architecture. It

only depicts the components that are related to message

exchanging, while all other functionalities, e.g. , user au-

thentication, video sharing and 3rd party applications, are

omitted. In this simplified example, multiple users are in-

teracting via the message posting and viewing interface. In

Facebook-like OSNs, it represents the case that user A and

B are posting messages to user C and D, respectively. In

Twitter-like OSNs, it represents the case that user A and

B are broadcasting messages to all the followers includ-

ing user C and D, respectively, while other possible recip-

ients are omitted for simplicity. In both cases, the service

provider mediates all the interactions. The generated mes-

sages are first stored at the service provider’s side, and will

be relayed when the corresponding recipient signs in.

Unfortunately, all the content in OSNs is generated by

users and is not necessarily legitimate. The posted mes-

sages could be spam. Note that although spam traditionally

refers to massive, unsolicited campaigns trying to promote

products or services, we do not restrict ourselves to this be-

havior alone. Rather, we use the term “spam” to refer to

unsolicited campaigns that attempt to execute a variety of

attacks, including but not restricted to: i) product adver-

tisements, ii) phishing and iii) malware spreading. In the

example of Figure 1(a), user A’s account is compromised

and sends a spam message to user C, trying to direct user C

to some malicious website. Once user C signs in, the spam

message will be displayed to him, exposing him to potential

threats.

2.2 Goal

Our goal is to design an online spam filtering system that

is deployed at the OSN service provider side, as Figure 1(b)

shows. Once deployed, it inspects every message before

rendering the message to the intended recipients and makes

immediate decision on whether or not the message under

inspection should be dropped. In this particular example,

the message generated by user A is classified as spam and

is thus dropped instantly. The message from user B is legit-

imate and is stored by the service provider. Later when user

C and D sign in to the system, C will not see the dropped

spam message.

We assume the spam message originates from a compro-

mised account in the above example. We stress that this is

not an assumption that our system relies on. Rather, our sys-

tem can detect spam messages originating from both com-

promised accounts and spamming bots.

2.3 Dataset

Facebook and Twitter are two representative OSNs. We

use data collected from both sites in the study. The Face-

book dataset contains 187 million wall posts generated by

roughly 3.5 million users in total, between January of 2008

and June of 2009 [29]. For the Twitter data collection, we

first download trending topics, i.e. , popular topics, from the

website What the Trend [2], which provides a regularly up-

dated list of trending topics. We then download from Twit-

ter all public tweets that contain the trending topics while

the topics are still popular via Twitter APIs. For example,

while the topic “MLB” is trending, we keep downloading

all tweets that contain the word “MLB” from Twitter. For

each tweet we also obtain the userID that generates it along

with its friend number, i.e. , the number of users it follows.

the Twitter dataset contains over 17 million tweets related

to trending topics that were generated between June 1, 2011

and July 21, 2011. The primary form of communication in

Facebook and Twitter is called “wall post” and “tweet”, re-

spectively. From now on, we use the term “message” to

refer to both of them for the ease of description.

We need labeled spam and legitimate messages to train

and evaluate the system. For the Facebook dataset, we use

the result of one previous study [9], where 199,782 wall

posts are confirmed as spam. We further scan through the

entire dataset looking for additional wall posts that share ei-

ther identical textual description or URL with the confirmed

spam wall posts. We label the newly found wall posts as

spam, too. At last we have 217,802 wall posts labeled as

spam. For the Twitter dataset, we visit all the embedded

links. In Twitter, all the embedded links sit behind a URL

shortening service. We label a URL as malicious if the URL

shortening service stops serving the URL due to a policy vi-

olation. All Tweets containing the malicious URLs are la-

beled as spam. In total 467,390 tweets are labeled as spam.

Note that in general, we lack comprehensive ground truth.

Although all the messages labeled as spam are truly spam,

some spam might be missed and labeled as legitimate mes-

sage. Thus, we may somewhat underestimate false negative

rate (spam that the system fails to report) during the evalu-

ation, and overestimate false positive rate (legitimate mes-

sages misclassified as spam).

A B C D

To C:

Goto evil.com!

To D:

Lol so funny!!

From A:

Goto evil.com!

From B:

Lol so funny!!

Storage

Users

Interfaces

OSN Service

Provider

(a) The scenario without the deployment of our system.

A B C D

To C:

Goto evil.com!

To D:

Lol so funny!!

From B:

Lol so funny!!

Storage

Users

Interfaces

OSN Service

Provider
Online Spam

Filtering

(b) The scenario with the deployment of our system.

Figure 1: A simplified OSN architecture, only illustrating the components related to the message exchanging functionality.

User A represents the account controlled by spammers.

3 Features

We first briefly review some features used in existing

spam detection work but are not suitable for the OSN en-

vironment. After that, we investigate various features that

can potentially differentiate between spam and legitimate

clusters. Note that not all features have never been used be-

fore. For each feature, we conduct experiment with the la-

beled Facebook dataset to show their effectiveness. In this

section, we cluster the spam and legitimate messages sepa-

rately to obtain the “pure” clusters, using the approach that

is given out in Section 4, which provides the system design

detail.

We organize the features into two categories. OSN spe-

cific features are those that need social network information

to compute. General features are those that could also be

used to detect spam outside OSNs. No single feature is per-

fectly discriminative between spam and legitimate clusters.

Each single feature is likely to fail in some scenario. In-

stead, these features are used in combination to train the

best classifier.

3.1 Obsolete Features

Supervised machine learning has been a popular tool for

spam detection. Numerous features have been proposed and

work particularly well. However, OSN is a different context

where the features’ effectiveness needs a reevaluation. Note

that we do not review all the previously proposed features.

Instead, we cover the features used in two state-of-the-art

works that detect spam in email [11] and forum [23], be-

lieving those features are the most advanced ones. Next, we

present the ones found to be problematic.

Message size is a popularly used feature, because legit-

imate emails have variable sizes while spams tend to be

small. We measure the size of the spam and legitimate

messages in our dataset, and present the distribution in Fig-

ure 2. Apparently both types of messages in OSNs are

small. Their distribution heavily overlaps in the area of less

than 200 bytes. Consequently, for the majority of messages

the size is not a distinguishing feature. Two similar features

are the number of words and the average word length in

each message. We present their distribution in Figure 3 and

Figure 4, respectively. The observation is consistent with

the message size feature. Neither of them would remain

effective in OSNs.

A series of network based features, which are sender

IP neighborhood density, sender AS number and status of

sender’s service ports, have also been proposed. Although

we cannot measure them straightforwardly due to the lack

of such information in our dataset, we still find it problem-

atic to use them to detect OSN spam, because the under-

lying assumption is violated. The assumption is that spam

emails are sent out using SMTP servers running on large

number of infected ordinary end hosts, whereas legitimate

emails originate from a set of dedicated SMTP servers. As a

result, the spam senders’ IP neighborhood will be crowded

due to the botnet infection, but the IP addresses of legitimate

SMTP servers are far apart. Also because of the infection

pattern of botnet, spamming hosts tend to aggregate into

a small number of ASes, which makes sender AS number

a promising feature. At last, the spamming bots may not

listen to other service ports, but legitimate SMTP servers

will do so. Unfortunately, in OSNs both spam and legit-

imate messages are sent from ordinary end hosts. Given

the large number of OSN users, the sender’s IP neighbor-

hood is expected to be dense for both spam and legitimate

messages. In addition, there would be no difference in the

status of sender’s service ports for the two cases. At last,

spam senders may still be aggregated into a small number of

ASes. However, legitimate message senders will be mixed

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

%
 o

f
M

e
s
s
a
g
e

Message Size (Bytes)

Spam Message
Legitimate Message

Figure 2: Distribution of spam and legit-

imate message size, respectively. Each

bin is 20 bytes.

 0

 5

 10

 15

 20

 25

 30

 0 40 80 120 160 200

%
 o

f
M

e
s
s
a
g
e

of Words

Spam Message
Legitimate Message

Figure 3: Distribution of spam and legit-

imate message word count, respectively.

Each bin is 5 words.

 0

 10

 20

 30

 40

 0 10 20 30 40

%
 o

f
M

e
s
s
a
g
e

Average Word Length (Bytes)

Spam Message
Legitimate Message

Figure 4: Distribution of average word

length of spam and legitimate messages,

respectively. Each bin is 1 byte.

into the same ASes and the effectiveness of sender AS num-

ber as a feature would be seriously degraded.

3.2 OSN Specific Features

OSN users form a huge social graph, where each node

represents an individual user. In Facebook-like OSNs, a so-

cial link would connect two nodes if the two corresponding

users have mutually agreed to establish a social connection.

Two users without a social link between them cannot di-

rectly interact with each other. Twitter-like OSNs impose

looser restrictions, where a user can “follow” anyone to

establish a directed social link, so that he can receive all

the updates. Similarly, the interaction history among users

forms an interaction graph.

Sender Social Degree Recent studies suggest that the ma-

jority of spamming accounts in OSNs are compromised ac-

counts [9, 10]. Meanwhile, research on modeling epidemics

in topological networks indicates that the more edges a node

has, with a higher probability it will be infected quickly by

an epidemic [6, 36]. On the other hand, the accounts created

by spammers also have an incentive to make large num-

ber of friends to open up communication channels. Con-

sequently, we hypothesize that spamming accounts have

higher degree in the social graph than legitimate accounts.

In Twitter-like OSNs, we define the social degree of one

node as the number of other nodes it “follows”, since this

number is controlled by the account itself. In Facebook-like

OSNs, there is no ambiguity as edges are not directed.

Figure 5 shows that our intuition is roughly correct. The

average social degree of spamming accounts is 59.2. It is

about 50% higher than that of legitimate accounts, which

is 40.8. Given such an observation, it is tempting to use

the message sender’s social degree as one feature. Un-

fortunately, the compromised spamming account will send

a mixture of spam and legitimate messages. Hence in

many cases spam and legitimate messages share the same

sender and will naturally have exactly the same value of the

sender’s social degree. However, after being organized into

 0

 20

 40

 60

 80

 100

 0 150 300 450 600

%
 o

f
U

s
e

rs
 (

C
D

F
)

Social Degree

Spamming Account
Legitimate Account

Figure 5: Cumulative distribution of the social degree of

spamming and legitimate accounts, respectively.

clusters, the average senders’ social degree of the clusters

becomes an effective feature. The main reason is that all

senders in spam clusters are spamming accounts, while this

is very unlikely to be true for legitimate clusters. As a re-

sult, spam clusters are expected to exhibit higher average

senders’ social degree. Figure 6 confirms this expectation.

It does not depict the clusters whose senders’ social degree

is not available in the dataset. Despite some overlapping

in the lower left region, the solid curve representing spam

clusters is to the right of the dashed curve representing le-

gitimate clusters. About 80% of legitimate clusters have an

average senders’ social degree of less than 400. In contrast,

this value is larger than 400 for about 50% of spam clusters.

Interaction History Although one account may establish

a large number of social links in the social graph, it only

interacts with a small subset of its friends [29]. However,

its behavior is expected to deviate from this pattern once the

account is compromised and under the control of spammers,

since the spammers desire to push spam messages to as

many recipients as possible. Consequently, a sudden burst

that the accounts start to interact with the friends that they

do not, or rarely, interact with before becomes a strong sig-

nal indicating spamming activities. Note that this intuition

 0

 20

 40

 60

 80

 100

 0 300 600 900 1200 1500

%
 o

f
C

lu
s
te

rs
 (

C
D

F
)

Average Social Degree

Spam Clusters
Legitimate Clusters

Figure 6: Cumulative distribution of average senders’ social

degree of spam and legitimate clusters, respectively.

 0

 20

 40

 60

 80

 100

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

%
 o

f
C

lu
s
te

rs
 (

C
D

F
)

Interaction History Score

Spam Clusters
Legitimate Clusters

Figure 7: Cumulative distribution of interaction history

score of spam and legitimate clusters, respectively.

applies specifically to Facebook-like OSNs, since messages

are always broadcast to all followers in Twitter-like OSNs.

We use the notion of “interaction history score” to quan-

tify this intuition. The kth interaction between a user pair

is weighted 1/k, so that messages sent between user pairs

that rarely interact are given heavier weight values. As k in-

creases, the message weight between frequently interacting

user pairs decreases. We define the interaction history score

of a cluster as the sum of the message weight within the

cluster. Naturally, the spam clusters are expected to have

higher score because larger number of less frequently in-

teracting user pairs is contained. Figure 7 plots the CDFs

of this score for spam and legitimate clusters, respectively.

For the 20% clusters with the lowest scores, the expectation

is not always true. However, spam clusters indeed exhibit

higher score for the rest of the cases. Note that the x-axis

is in log scale. The score of spam clusters is usually several

times higher.

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000

%
 o

f
C

lu
s
te

rs
 (

C
D

F
)

Cluster Size

Spam Clusters
Legitimate Clusters

Figure 8: Cumulative distribution of spam and legitimate

cluster size, respectively.

3.3 General Features

We find four additional features effective to discriminate

between spam and legitimate clusters. These features do not

need the social graph or the interaction graph to compute,

and could also apply to spam detection problems outside

OSNs. They are denoted as the general features.

Cluster Size Although each spamming account might not

generate large number of spam messages, the spam cam-

paign as a whole must contain large number of spam mes-

sages in order to be prosperous. Figure 8 plots the CDFs

of the size, measured as the number of message contained,

for spam and legitimate clusters, respectively. We observe

that about 50% of spam clusters’ size is less than 10, which

causes the overlapping part of the two curves. On the other

hand, large spam clusters exhibit a big difference in size

comparing with legitimate clusters. The overlapping of size

of small clusters does not make this feature invalid. The rea-

son is that small spam clusters only have minor impact on

the system’s detection performance. Instead, the big clus-

ters are those that matter. As an extreme example, it is still

acceptable even if the system correctly identifies 10% of

spam clusters of size 1,000 while missing the remaining

90% of spam clusters of size 10.

Average Time Interval Known as the “bursty” property,

most spam campaigns involve coordinated action by many

accounts within short periods of time [30]. The effect is that

messages from the same campaign are densely populated in

the time period when the campaign is active. Consequently,

if we compute the intervals between the generation time of

consecutive messages in each cluster, the spam clusters are

expected have shorter intervals than the legitimate clusters.

From a statistical prospective, the median interval would

nicely quantify the “bursty” property, and is robust to out-

lier values. However, it is expensive to maintain during run-

time, as the complete list of intervals must be recorded and

 0

 20

 40

 60

 80

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

%
 o

f
C

lu
s
te

rs
 (

C
D

F
)

Average Time Interval (sec)

Spam Clusters
Legitimate Clusters

Figure 9: Cumulative distribution of average time interval

of spam and legitimate clusters, respectively.

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

%
 o

f
C

lu
s
te

rs
 (

C
D

F
)

Average Number of URL

Spam Clusters
Legitimate Clusters

Figure 10: Cumulative distribution of average number of

URLs per message of spam and legitimate clusters, respec-

tively.

sorted. Alternatively, we quantify this property using the

average time interval, which is much more “lightweight”,

since only the starting time, ending time and the total num-

ber of messages in the cluster are needed to calculate its

value. Figure 9 plots the CDFs of average time interval of

spam and legitimate clusters, respectively. The x axis is

in log scale so that the figure is readable. It shows that the

average time interval of legitimate clusters is orders of mag-

nitude larger than that of spam clusters.

Average URL Number per Message Spammers always

solicit some action from the recipients, e.g. , to click a link,

in order for economic benefit ultimately. As the most com-

monly adopted practice, spam messages are embedded with

URLs that the spammers want to advertise. In contrast, le-

gitimate messages do not contain URLs in most of the case.

Hence, we use the average number of URLs per message

in each cluster as one feature. Figure 10 plots the CDFs of

this feature for spam and legitimate clusters, respectively. It

shows that more than 80% of benign clusters do not contain

any URL. Only about 2% benign clusters contain more than

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

%
 o

f
C

lu
s
te

rs
 (

C
D

F
)

Number of Unique URLs

Spam Clusters
Legitimate Clusters

Figure 11: Cumulative distribution of number of unique

URLs contained in spam and legitimate clusters, respec-

tively.

one URL in each message on average. In comparison, about

80% of malicious clusters contain at least one URL in each

message on average.

Unique URL Number URL blacklist has been exten-

sively used nowadays. As an attempt to evade blacklist

based detection, spammers have evolved to embed differ-

ent URLs in messages from the same campaign, with each

URL being used less frequently, so that some, if not all, of

the spam URLs will not be blacklisted. This type of spam

campaigns will inevitably contain large number of unique

URLs. On the other hand, legitimate clusters are not likely

to exhibit the same behavior. Figure 11 plots the CDFs

of the number of unique URLs contained in spam and le-

gitimate clusters, respectively. The curve representing le-

gitimate clusters embraces the y axis, which is consistent

with the fact that many legitimate messages do not contain

URL. On the contrary, about a half of the spam clusters have

multiple URLs. The most diverse cluster uses 486 different

URLs.

4 System Design

In this section, we present the detailed design of the on-

line spam filtering system. Section 4.1 first introduces the

system overview. After that, Section 4.2 and Section 4.3

present the incremental clustering module and the super-

vised machine learning module, respectively. Finally, Sec-

tion 4.4 illustrates an extension on the basic design that ex-

ploits parallelism to boost the system throughput.

4.1 Overview

Figure 12 shows the system design overview. The intu-

ition is that spam campaigns are generated using templates

and that messages in the same campaign shall retain certain

similarity among them. After a clustering process, spam

Computed

Features

Time

Past Messages

msg msgmsg msg msg msg...

Current Message

Incremental Clustering

Clusters
Trained

Classifier

Detection

Results

Decay over Time

Figure 12: The system design overview.

messages in the same campaign will reside in the same clus-

ter or only a small number of clusters. Note that we do not

depend on the system to agglomerate an entire campaign

into one single cluster, which is impractical due to the vari-

ation brought by the spam template. However, because the

total number of messages in a spam campaign is very large,

each spam cluster will still contain significant number of

messages. In addition, the clusters formed by the spammes-

sages will exhibit different characteristics comparing to the

legitimate clusters as Section 3 shows. Hence, they can be

differentiated using supervised machine learning.

Accordingly, the two major components in the system

are the incremental clustering module and the supervised

machine learning module. The first module maintains a col-

lection of disjoint clusters such that each message that has

been processed in the past is present. The second module is

essentially a trained classifier that makes binary decisions.

When the system receives a new message, it first incremen-

tally updates the clustering result with minimal computa-

tional overhead. The new message may form a new clus-

ter by itself, be incorporated into one existing cluster or

even trigger the merge of multiple existing clusters. In the

first case, the system directly marks the message as “legit-

imate” without invoking the classifier, because the average

time interval feature cannot be calculated with only 1 mes-

sage. This implicit limitation will cause a false negative

only when the newmessage is the first one in a spam cluster,

which happens very rarely. In any other case, the values of

the six features of the cluster that the new message resides

in are (re-)calculated. The other clusters are intact. After

that, the trained classifier accepts these values and decides

whether these values represent a spam cluster. Note that

if the classifier outputs “spam”, it will only trigger a spam

alarm on the current message, rather than all the messages

in the cluster. Since it is an online system, the decision on

the previous messages in the same cluster has already been

made and is not changed.

A practical concern is that the hardware resource is al-

ways limited. It is not affordable to keep track of all the

messages observed in the past. In addition, recent messages

should be given heavier weight that influences the clusters’

feature values. To address these two concerns, the clusters

that the system maintains decays exponentially over time.

More specifically, once after the system has processed w
messages, it shrinks the six feature values associated with

each cluster by a factor of a, where w and a are two impor-

tant system parameters to determine the decaying speed. If

a cluster’s size is shrunk to a value below a threshold t, it
is permanently removed and all the resources it takes up are

freed.

4.2 Incremental Clustering

The ability to do incremental clustering is the key to

the system. The first design choice we must make is to

define the distance between two messages. Naturally, us-

ing semantic similarity will result in more accurate clus-

tering result as messages in the same campaign are more

likely to have small distance. However, semantic analysis

involves heavier computational overhead that is not accept-

able for a real-time system. Alternatively, we choose text

shingling [7] as the basic tool to calculate the distance be-

tween messages. Text shingling is initially proposed to ana-

lyze web page similarity in huge volume and is sufficiently

lightweight. In the shingling process, the original message

is disassembled into fixed-length substrings, each of which

is called a “shingle”. We sort the hashed shingle and use the

first 20 of them to represent each message. For the messages

with less than 20 shingles, the system does not cluster them

and directly marks them as legitimate if they do not contain

any URL, since they are too short to carry out attacks. The

similarity between a message pair is estimated by its resem-

blance score, defined as the ratio of shared shingles to all

unique shingles. Two messages are deemed as “similar” if

their resemblance score surpasses a predefined threshold.

We augment the original text shingling with URL com-

parison as an adaptation to the specific application of spam

detection. URLs embedded in the spam messages represent

the spammers’ goal. Hence two spam messages sharing the

same embedded URL shall come from the same campaign,

although their textual description might be quite different

judged by text shingling due to the usage of templates. To

sum up, two messages are considered as “similar” if their

resemblance score is sufficiently large or their embedded

URLs are identical. They will reside in the same cluster if

either condition is satisfied. A similar method was also used

by Zhuang et al. [35] to analyze email spam traces offline.

We use a hash table to store the text shingling result, in-

dexed by the shingles. It keeps track of all the messages

that contain the corresponding shingle. Meanwhile, we use

another hash table to store the result of URL comparison.

It is indexed by the URLs and each element is a list of

messages that contain the corresponding URL. When a new

message arrives, it is disassembled into shingles and all the

previously observed messages with identical shingles can

be conveniently identified. The same holds for the URL

comparison. In this way, the system does not need to com-

pare the new message with all observed messages sequen-

tially. Instead, it directly looks up the hash tables at the

location of matching shingles and URLs, thus minimizing

the overhead.

For the purpose of incremental clustering, our system

maintains a set of disjoint clusters. Upon the arrival of a

new message, it first creates a cluster containing a single

element, the new message itself. Next, all clusters that con-

tain a message that is “similar” to the new message must

be found and merged with the new cluster, while the other

clusters stay intact. We build a Union-Find data structure to

accommodate this need. A Union-Find data structure sup-

ports three operations very efficiently, which are i) creating
a new set, ii) finding the set containing a given element

and iii) merging two sets. In addition, the system needs

to eliminate clusters from time to time because of the ex-

ponential decaying. This operation is not supported by the

standard Union-Find data structure. As a result, we enhance

it to provide the functionality to return all the elements of a

given cluster.

4.3 Supervised Machine Learning

While clustering provides a division of the observed

messages, our system needs to make decision on each in-

coming message that flags it as either a spam or a legitimate

message. The supervised machine learning module is es-

sentially a trained classifier that makes this binary decision.

Two classifier candidates, support vector machine

(SVM) [8] and decision tree [21], are widely used in

the literature. Decision tree has the advantage that the

trained classifier is simple to understand and fast. The

time complexity to make a prediction on a new test point

is O(log(N)), where N is the number of nodes in the

trained tree. Such efficiency is a desirable property for

an online system. On the other hand, SVM is reported to

achieve good accuracy on a wide variety of problems such

as handwriting recognition, face detection, text categoriza-

tion, etc. However, the classification process of new data

points gets slower if the training set is large. We test both

classifiers on our dataset and decision tree yields better ac-

curacy, i.e. , higher true positive rate and lower false positive

rate. Consequently, we pick decision tree as the classifying

module in the system.

4.4 Parallelization

Our system needs to achieve high throughput as an on-

line spam filtering tool. The basic design shown in Fig-

ure 12 spends the majority of running time on incremental

clustering. Consequently, accelerating the clustering pro-

cess can greatly enhance the throughput.

Parallelization is a natural choice to achieve such a goal,

but it seems to be counterintuitive in our specific case at the

first glance, since incremental clustering is a sequential pro-

cess, in the sense that the clustering process of the n + 1th

message is based on the clustering result of the first nth

messages. Our solution is to compute the incremental clus-

tering result for the next k messages, instead of the next one

message, simultaneously. For each one of the next k mes-

sages, we compare its similarity to the observed messages

and decide which existing clusters it should be merged into.

The computation for one message is independent from oth-

ers. Accordingly, k threads are executed at the same time

with each thread handling one message. Note that only the

message similarity comparison is parallelized. All other op-

erations, such as cluster merging, remain sequential to avoid

conflict among threads.

The parallel design might slightly alter the clustering re-

sult comparing to the sequential case, but it will not notice-

ably affect the detection result. Without loss of generality,

we analyze the potential alteration under the scenario of two

threads, t1 and t2, processing two messages, m1 and m2, in

parallel. The only situation when the clustering result dif-

fers must satisfy two conditions: i) m1 and m2 are simi-

lar, ii) there does not exist a previously observed message

m0, such that m0 is similar to both m1 and m2. In this

situation, a sequential execution will cluster m1 and m2 to-

gether immediately, but a parallel execution will not do so.

The reason is that t1 is unaware of m2 and cannot find any

previously observed message that is similar to m1. Hence

m1 is left in a separate cluster containing only itself. The

same applies to m2. However, their corresponding clusters

will be merged once a third message, m3, which is simi-

lar to both m1 and m2, has been processed. In the context

of spam message detection, the above scenario maps to the

case that the first two spam messages from the same cam-

paign are handled by the system in parallel. Given the lim-

ited number of spam campaigns, this scenario shall happen

very rarely. For legitimate messages, such inconsistency in

the clustering process will not affect the detection result at

all since any clusters with size of 1 will be assumed to be

legitimate.

5 Experiment

5.1 Methodology

We evaluate the system on a server machine that has

eight cores (Xeon E5520 2.2Ghz) with Hyper-Threading

and 16GB memory. We sort all the messages according to

their timestamps and divide them into the training set and

the testing set. The training set includes the first 25% of

spam messages and all the legitimate messages in the same

time period. The testing set contains the remaining mes-

sages.

The system has multiple tunable parameters (Sec-

tion 4.1). W and a control the speed of cluster decay.

The choice of their value is mainly constrained by the hard-

ware resource, as lower decaying speed results in more re-

source consumption and slower processing speed. We pick

100,000 and 0.2 as the value of w and a in the experiments,

respectively, according to our hardware resource limit. We

also tested faster decaying speed by setting a as 0.5, but

only found very slight change in the detection result. We

pick 3 as the value of t, the size threshold to eliminate a

cluster, since a small value reduces the risk of removing a

live spam cluster from the system.

In the training phase, we first feed the incremental clus-

tering module with the training set, and record the feature

values for all spam and legitimate clusters. We use all 6 fea-

tures for the Facebook dataset. We use the 5 features other

than interaction history score for the Twitter dataset, since

interaction history score is not applicable for the broadcast

interaction in Twitter. Next, We use the extracted feature

values to train the classifier. We only use the clusters whose

size is at least 5 for training. After that, the system is fed

with the testing set. We conduct all the experiments obey-

ing the time order, so that the experimental results can re-

semble the system performance in real-world deployment

accurately.

5.2 Clustering Resemblance Threshold

The detection is based on the clustering of spam mes-

sages. Hence, the resemblance threshold used in the clus-

tering process could potentially affect the detection result.

Recall that the resemblance of a message pair is the ratio

of shared shingles to the total number of distinct shingles,

which represents the “similarity” between the message pair.

In order to understand how to pick the best threshold, we

study the resemblance value among spam and legitimate

message pairs, respectively.

We first divide the Facebook dataset into the spam set

and the legitimate message set. The division is trivial us-

ing the label of each message. After that, we compute

the resemblance value of all the spam message pairs and

 85

 88

 91

 94

 97

 100

 0 0.2 0.4 0.6 0.8 1

%
 o

f
M

e
s
s
a

g
e

 P
a

ir
s
 (

C
D

F
)

Message Resemblance

Spam Message
Legitimate Message

Figure 13: The distribution of resemblance value among

spam and legitimate message pairs in the Facebook dataset,

respectively.

the legitimate message pairs, respectively, by repeating the

clustering process. Figure 13 shows the cumulative dis-

tribution of such value. The curve for legitimate message

pairs embraces the y axis. For both types of message pairs,

most of them have a very small resemblance value, meaning

that they are almost totally dissimilar. This is expected be-

cause legitimate messages are spontaneously generated and

are different to others naturally. For spam messages, many

campaigns exist in our dataset and the message pairs across

different campaigns are also very different. However, the

curve for spam message pairs exhibits a sudden rise at the

right most part, showing that some message pairs are very

similar, which are those belonging to the same spam cam-

paigns. The legitimate message pairs do not exhibit such a

pattern due to the spontaneous nature. Despite this differ-

ence, it is apparent that both curves are flat in the middle. It

suggests that comparably very few message pairs have the

resemblance value falling in the middle area. Consequently,

the system is insensitive to the threshold value as long as the

value is not too small or too large, since varying the thresh-

old would not significantly affect the clustering result. At

last we pick 0.5 as the threshold used in all the experiments.

5.3 Accuracy

The accuracy of a detection system is characterized by

two metrics, true positive rate (TPR) and false positive rate

(FPR). True positive rate shows the detection completeness.

It is defined as the number of instances correctly classified

as spam divided by the total number of spam instances.

False positive rate reflects the detection error on the legit-

imate messages. It is defined as the number of instances

incorrectly classified as spam divided by the total number

of legitimate instances. In this section we evaluate the over-

all accuracy (Section 5.3.1), the accuracy of different fea-

 55

 60

 65

 70

 75

 80

 85

 90

 0 0.2 0.4 0.6 0.8 1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

False Positive Rate (%)

(10:1)

(4:1)

(1:1)

(1:4)

(1:10)

(10:1)(4:1)(1:1)

(1:4)
(1:10)

Facebook data
Twitter data

Figure 14: The overall detection accuracy subjecting to the

varying spam to legitimate message ratio in the training set.

ture sets (Section 5.3.2) and the accuracy over time (Sec-

tion 5.3.3) to show that our system can indeed provide sat-

isfactory accuracy guarantee.

We use the C4.5 decision tree library provided by Quin-

lan [20].

5.3.1 Overall Accuracy

We first test the overall detection accuracy, using all appli-

cable features and the complete dataset. An accurate de-

tection system desires high true positive rate and low false

positive rate simultaneously. Unfortunately, parameter tun-

ing usually causes these two metrics to increase or decrease

at the same time. We are forced to face the trade-off be-

tween them. We decided to tune the classifier to emphasize

low false positive rate while maintaining a reasonably high

true positive rate.

As suggested by Zadrozny et al. [33] and used by

Thomas et al. [27], we adjust the ratio of spam to legitimate

message in the training set by random sampling to tailor the

performance, where a larger ratio indicates a stronger ten-

dency to classify a message as spam. We use the ratios of

10:1, 4:1, 1:1, 1:4 and 1:10. Regardless of the ratio in the

training set, the full testing set is used. Figure 14 shows the

detection accuracy. For the Twitter dataset, the two rates

grow in consistency with the ratio in the training set. Both

rates minimize when the ratio is 1:10, and maximize when

the ratio is 10:1. A 1:1 ratio in the training set results in a

reduction of false positive rate by about 20%, comparing to

a 10:1 ratio. On the other hand, the true positive rate de-

creases very slightly and reaches 69.8% at this ratio. A 1:4

ratio or a 1:10 ratio results in a substantial drop in both true

positive rate and false positive rate. After all, we still favor

the 1:1 ratio for the twitter data. The detection accuracy of

the Facebook dataset exhibits irregularity. A 4:1 ratio yields

the lowest false positive rate (0.19%) and a relatively high

true positive rate (80.9%). For the remainder of the evalua-

Feature Set Features Contained TPR FPR

Social Degree
OSN Specific

Interaction History
38.3% 0.30%

Cluster Size

Average Time Interval
General

Average URL Number
80.8% 0.32%

Unique URL Number

Table 1: The detection accuracy using each of the two fea-

ture sets with the Facebook dataset.

tion, we conduct all experiments over the Facebook dataset

at a 4:1 ratio in the training set and all experiments over the

Twitter dataset at a 1:1 ratio.

5.3.2 Accuracy of Different Feature Sets

As stated in Section 3, we divide our features into two sets:

the OSN specific features and the general features. To un-

derstand their significance to the system, we train the classi-

fier exclusively using each feature set, test the detection ac-

curacy and present the result in Table 1. The ratio of spam

to legitimate message in the training set is 4:1. Since the

Facebook dataset uses the complete 6 features, we conduct

this experiment using the Facebook dataset. The general

features achieve a true positive rate of 80.8%, which is sim-

ilar to the result of using all features. Unfortunately, the

false positive rate increases by more than 50%. On the other

hand, the OSN specific features lead to a lower true positive

rate (38.3%). We do not mean to compare between these

two sets and decide which one gives better performance.

Rather, the result shows that the detection accuracy would

be significantly degraded in the absence of either feature

set. Using their combination keeps the high true positive

rate while reducing the false positive rate.

5.3.3 Accuracy Over Time

Spam campaigns are not persistent. Criminals will promote

new campaigns on a continuous basis. As a result, it is im-

portant to evaluate how much time it takes before the clas-

sifier becomes out of date and needs to be re-trained. We

carry out the evaluation using the Facebook dataset, because

it contains messages generated throughout a time period of

one year and a half. In comparison, the Twitter dataset is

collected in a much shorter period of time and is not suit-

able for this type of evaluation. We use 4:1 as the ratio

of spam to legitimate message in the training set. We dis-

sect the testing set into 3-month time periods and study how

the detection accuracy changes over time. We use the same

trained classifier on the first 9 months of testing data, and

measure the true positive rate as well as the false positive

rate in each period. We only present the result in the first

 0

 20

 40

 60

 80

 100

0-3
3-6

6-9
 0

 0.02

 0.04

 0.06

 0.08

 0.1
T

ru
e

 P
o

s
it
iv

e
 R

a
te

 (
%

)

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

 (
%

)

of Months after Initial Training

TPR
FPR

Figure 15: The detection accuracy on the Facebook dataset

over time.

9 months, because after 9 months the spam becomes very

sparse in our dataset and the true positive rate is not repre-

sentative. However, we do observe a significant rise in the

false positive rate after 9 months, suggesting that our sys-

tem may need re-training after such a long time to further

reduce the false positive rate. Figure 15 shows the experi-

mental result.

The false positive rate remains extremely low for all 3

periods. The period between 3 and 6 months after training

incurs the highest false positive rate, which is about 0.04%.

It shows that our system misclassifies very few legitimate

messages as spam, even if the training takes place up to 9

months before the time of classification. The true positive

rate in the first period and the third is a bit lower. We find

that it is caused by campaigns heavily adopting obfuscation

that results in large number of small clusters instead of small

number of big ones. This type of campaign does not appear

in the second period. It demonstrates that the features we

select indeed capture the commonality among spam cam-

paigns, so that they remains effective even if the campaigns

being classified do not present in the training data. These

findings indicate that our system can remain accurate with-

out the need for re-training for a long period of time, which

minimizes the maintenance cost after deployment.

5.4 Resilience against Stealthy Attack

One of the spammers’ common attempts to evade detec-

tion is to carry out stealthy attack. Under stealthy attack, the

speed of spam generation is reduced so that the anti-spam

system cannot acquire sufficient instances to learn the spam

pattern. To simulate such an attack, we randomly remove

certain proportion of spam messages , ranging from 20%

to 80%, from both dataset. The effect is the same as if the

spammers generate spam messages at a reduced speed. The

legitimate messages are untouched. After that, we repeat

 0

 20

 40

 60

 80

 100

0.2 0.4 0.6 0.8
 0

 0.2

 0.4

 0.6

 0.8

 1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
%

)

F
a

ls
e

 P
o

s
it
iv

e
 R

a
te

 (
%

)

Removed Spam Ratio

TPR (FB)
FPR (FB)
TPR (TW)
FPR (TW)

Figure 16: The detection accuracy on the Twitter dataset

under stealthy attack.

the overall accuracy test on the modified dataset, choosing

4:1 and 1:1 as the ratio of spam to legitimate messages in the

training set for Facebook and Twitter dataset , respectively.

Figure 16 illustrates the result. In the Twitter experiment,

the true positive rate and the false positive rate exhibit very

slight difference comparing with the experiment using the

original dataset in all test cases. In the Facebook experi-

ment, the true positive rate and the false positive rate de-

crease moderately when we remove 20%, 40% and 60% of

spam messages. The reason is that as spam becomes more

sparse in the dataset, more spam clusters become indistin-

guishable from legitimate message clusters. When we re-

move 80% of spam messages, the system does not handle

it gracefully as the true positive rate drops to 49% and the

false positive rate rises to 0.44%. The results show that ex-

cept for the Facebook experiment when we remove 80% of

spam messages, stealthy attack slightly decreases the sys-

tem’s the true positive rate. Nonetheless, the false positive

rate does not increase, which means that the system is still

“safe” against legitimate messages under such attack.

5.5 Run Time Performance

The run time performance is critical, since our system

must not be the bottleneck that slows down the OSN plat-

form if deployed. The training time is only a few seconds

in all the experiments. In addition, we measure the latency

and throughput to demonstrate that our system can respond

to an incoming message very quickly and that it can inspect

large number of messages per second.

Latency The latency is measured as the time between

when the system receives a message and when the system

outputs the inspection result. We process all the messages

sequentially in this experiment. Figure 17 shows the cumu-

lative distribution of the system latency, measured in mil-

liseconds. The average and median latency for the Face-

 0

 20

 40

 60

 80

 100

 0 100 200 300 400 500

%
 o

f
m

e
s
s
a
g
e
s
 (

C
D

F
)

Latency (ms)

Facebook data
Twitter data

Figure 17: The cumulative distribution of the system la-

tency, measured in milliseconds.

book dataset is 21.5ms and 3.1ms, respectively. The aver-

age and median latency for the Twitter dataset is 42.6ms

and 7.0ms, respectively. Even for the Twitter dataset that

results in comparatively longer processing delay, the whole

inspection process for over 90% of messages is completed

within 100ms. Given that modern browsers spend several

hundred milliseconds before they start to render ordinary

webpages [17], the system latency is sufficiently low. An

OSN user would not feel any noticeable additional delay

due to the deployment of our system.

Throughput In order to test the throughput, we feed

the system with the testing set as fast as possible. Due

to the hardware limitation (8 physical cores with Hyper-

Threading), we execute 16 threads simultaneously. We di-

vide the total number of messages processed by the system

by the total running time to calculate the average through-

put. The throughput on the Facebook and the Twitter dataset

is 1580 messages/sec and 464 messages/sec, respectively.

6 Discussion

Spammers continuously rival anti-spam solutions. Al-

though our system is demonstrated to be robust against

stealthy attacks, other approaches might be adopted to

evade it. One possible way is to tamper with the cluster-

ing process by reducing the syntactic similarity among mes-

sages from the same campaign. We have observed such at-

tempts in both of our datasets. In the Facebook dataset,

spam campaigns start to include obfuscation in the textual

message, e.g. , using “profil imaage” instead of “profile im-

age”. In the Twitter dataset, almost all spam tweets con-

tain random meaningless words, which we suspect to be

obtained from a collection of popular words. Nonetheless,

our system defeats these attempts and yields good detection

accuracy. Meanwhile, obfuscation and embedded random

chunks decrease the message readability as well as trigger

the recipients’ suspicion, which lowers the underlying con-

version rate. Another way to evade the system would be

to manipulate the features of spam clusters, for the purpose

of making them indistinguishable from legitimate clusters.

It is not too difficult to do this for each individual feature.

For example, spammers may use fake accounts with lower

social degree to tamper with the “sender social degree” fea-

ture. In addition, they may only send spam to the friends

that the compromised accounts frequently interact with to

tamper with the “interaction history” feature. They may

also send spam with longer time interval to tamper with

the “average time interval” feature. However, manipulating

any individual feature is likely to have very limited effect,

since our system uses all six features in combination. Even

though deliberate spammers in theory may manipulate all

the features simultaneously, they have to pay a heavy price

for doing so. In the previous three examples, the spam re-

cipient population becomes much smaller, and the speed of

spam generation becomes slower by orders of magnitude.

If we can force spammers to do that, it is already a vic-

tory. The third evasion technique is to produce image-based

spam. Our current design does not work for image-based

spam.

7 Related Work

We discuss prior related work by organizing them into

two general categories: studies of spamming problem in

OSNs and in other environments.

Spam Studies in OSNs. Stein et al. present the

framework of the adversarial learning system that performs

real-time classification on read and write action in Face-

book [25]. However, the lack of details, e.g. , the fea-

tures and policies used, and performance results prevent us

from further comparison. Two offline studies have revealed

large-scale spam campaigns in Twitter and Facebook, re-

spectively [9, 10]. Designed as offline analysis tools, none

of them can be directly used for online spam detection. [10]

is based on URL blacklists which have too long lag-time to

protect a significant number of users. [9] uses a similar clus-

tering technique. However, it needs to operate on the com-

plete set of messages, and its efficiency limits the cluster-

ing to be performed on the 2 million messages with URLs.

In comparison, we adopt incremental clustering and par-

allelization to enable the system to inspect messages only

based on other messages observed in the past, as well as

to increase the scalability. Also, we develop the feature

set to distinguish spam cluster that can be efficiently com-

puted online. Thomas et al. [27] propose to filter malicious

URLs in OSNs in real-time, which can be used to identify

malicious messages later. While their approach does deep

analysis of the URLs’ landing pages, our approach uses an

alternative information source for the investigation, i.e. , the

message content. Song et al. propose to use sender-receiver

relationship to classify twitter messages [24]. Stringhini et

al. [26] , Lee et al. [14] and Yang et al. [31] use ma-

chine learning techniques to detect spamming bots in OSNs,

which are accounts created by spammers and used exclu-

sively for spamming. Yardi et al. use a collection of ad-hoc

criteria to identify spamming bots on Twitter [32]. In com-

parison, our detection focuses on spam messages instead of

accounts, so that we can secure OSNs from spams generated

by both spamming bots and previously legitimate accounts

that have been compromised. Additionally, Benevenuto et

al. [5] and Markines et al. [16] apply supervised machine

learning to detect spammers in Youtube and social book-

marking sites, respectively. These websites do not focus on

communications among users. Instead, their key function-

ality is video and bookmark sharing. Hence, the feature set

used for machine learning is very different.

Other Spam Studies. There is a large body of prior work

studying the characteristics of email spam [4, 12, 13, 35].

However, few of them can potentially be used as online de-

tection tools. Researchers propose to enhance IP blacklists

by correlating IP addresses according to their email sending

history, network-level information, blacklisting history and

so on, in order to discover spamming IP addresses that are

not yet blacklisted [19, 22, 28]. As discussed previously,

sender reputation based approaches are not suitable for

OSN spam detection. Pitsillidis et al. extract the underly-

ing templates to match future spams [18]. Li et al. propose

to enhance Bayesian filter by adjusting the weight of spam

keywords using personal social network information [15].

Both approaches detect campaigns that have been contained

in the training set. Our approach does not have such a re-

striction. Xie et al. generate regular expression signatures

for spamming URLs [30]. In addition, Thomas et al. use a

comprehensive list of features to determine whether a given

URL directs to spam in real-time [27]. The above two ap-

proaches essentially detect spamming URLs. In compar-

ison, our approach can detect spam messages even if no

URL can be recognized in them due to the obfuscation tech-

niques.

8 Conclusions

In this paper, we describe our work to provide online

spam filtering for social networks. We use text shingling

and URL comparison to incrementally reconstruct spam

messages into campaigns, which are then identified by a

trained classifier. We evaluate the system on two large

datasets composed of over 187 million Facebook wall mes-

sages and 17 million tweets, respectively. The experimental

results demonstrate that the system achieves high accuracy,

low latency and high throughput, which are the crucial prop-

erties required for an online system. In addition, the system

is able to remain accurate for more than 9 months after the

training phase, which shows its very low maintenance cost

after deployment. For more information, please refer to the

project web page at http://list.cs.northwestern.edu/.

Acknowledgments

We express our sincere thanks to the anonymous re-

viewers for their valuable feedback. The authors de-

noted with † are supported by NSF award numbers CCF-

0621443, OCI-0724599, CCF-0833131, CNS-0830927,

IIS-0905205, OCI-0956311, CCF-0938000, CCF-1043085,

CCF-1029166 , and OCI-1144061.

References

[1] Users of social networking websites face malware and

phishing attacks. Symantec.com Blog.

[2] What the trend. http://www.whatthetrend.

com/.

[3] Zeus botnet targets facebook. http:

//blog.appriver.com/2009/10/

zeus-botnet-targets-facebook.html.

[4] ANDERSON, D. S., FLEIZACH, C., SAVAGE, S.,

AND VOELKER, G. M. Spamscatter: characterizing

internet scam hosting infrastructure. In Proceedings of

16th USENIX Security Symposium on USENIX Secu-

rity Symposium (Berkeley, CA, USA, 2007), USENIX

Association, pp. 10:1–10:14.

[5] BENEVENUTO, F., RODRIGUES, T., AND ALMEIDA,

V. Detecting spammers and content promoters in on-

line video social networks. In Proc. of SIGIR (Boston,

Massachusetts, USA, July 2009).

[6] BOGUÑÁ, M., PASTOR-SATORRAS, R., AND

VESPIGNANI, A. Epidemic spreading in complex net-

works with degree correlations.

[7] BRODER, A. Z., GLASSMAN, S. C., MANASSE,

M. S., AND ZWEIG, G. Syntactic clustering of the

web. Comput. Netw. ISDN Syst. 29 (September 1997),

1157–1166.

[8] BURGES, C. J. C. A tutorial on support vector ma-

chines for pattern recognition. Data Min. Knowl. Dis-

cov. 2 (June 1998), 121–167.

[9] GAO, H., HU, J., WILSON, C., LI, Z., CHEN, Y.,

AND ZHAO, B. Y. Detecting and characterizing social

spam campaigns. In Proceedings of the 10th annual

conference on Internet measurement (New York, NY,

USA, 2010), IMC ’10, ACM, pp. 35–47.

[10] GRIER, C., THOMAS, K., PAXSON, V., AND

ZHANG, M. @spam: the underground on 140 charac-

ters or less. In Proceedings of the 17th ACM confer-

ence on Computer and communications security (New

York, NY, USA, 2010), CCS ’10, ACM, pp. 27–37.

[11] HAO, S., SYED, N. A., FEAMSTER, N., GRAY,

A. G., AND KRASSER, S. Detecting spammers with

snare: spatio-temporal network-level automatic repu-

tation engine. In Proceedings of the 18th conference

on USENIX security symposium (Berkeley, CA, USA,

2009), SSYM’09, USENIXAssociation, pp. 101–118.

[12] KANICH, C., KREIBICH, C., LEVCHENKO, K., EN-

RIGHT, B., VOELKER, G. M., PAXSON, V., AND

SAVAGE, S. Spamalytics: An empirical analysis of

spam marketing conversion. In Proc. of the ACM Con-

ference on Computer and Communications Security

(October 2008).

[13] KREIBICH, C., KANICH, C., LEVCHENKO, K., EN-

RIGHT, B., VOELKER, G., PAXSON, V., AND SAV-

AGE, S. Spamcraft: An inside look at spam campaign

orchestration. In Proc. of LEET (2009).

[14] LEE, K., CAVERLEE, J., AND WEBB, S. Uncovering

social spammers: social honeypots + machine learn-

ing. In Proceeding of the 33rd international ACM SI-

GIR conference on Research and development in in-

formation retrieval (New York, NY, USA, 2010), SI-

GIR ’10, ACM, pp. 435–442.

[15] LI, Z., AND SHEN, H. SOAP: A Social Network

Aided Personalized and Effective Spam Filter to Clean

Your E-mail Box. In Proceedings of the IEEE INFO-

COM (April 2011).

[16] MARKINES, B., CATTUTO, C., AND MENCZER, F.

Social spam detection. In Proc. of AIRWeb (2009).

[17] MOSHCHUK, A., BRAGIN, T., DEVILLE, D., GRIB-

BLE, S. D., AND LEVY, H. M. Spyproxy: execution-

based detection of malicious web content. In Pro-

ceedings of 16th USENIX Security Symposium on

USENIX Security Symposium (Berkeley, CA, USA,

2007), USENIX Association, pp. 3:1–3:16.

[18] PITSILLIDIS, A., LEVCHENKO, K., KREIBICH, C.,

KANICH, C., VOELKER, G., PAXSON, V., WEAVER,

N., AND SAVAGE, S. Botnet Judo: Fighting Spam

with Itself . In Proceedings of the 17th Annual

Network and Distributed System Security Symposium

(NDSS) (San Diego, CA, USA, March 2010).

[19] QIAN, Z., MAO, Z. M., XIE, Y., AND YU, F. On

Network-level Clusters for Spam Detection . In Pro-

ceedings of the 17th Annual Network and Distributed

System Security Symposium (NDSS) (San Diego, CA,

USA, March 2010).

[20] QUINLAN, J. R. Ross quinlan’s personal homepage.

http://www.rulequest.com/Personal/.

[21] QUINLAN, J. R. Induction of decision trees. Mach.

Learn. 1 (March 1986), 81–106.

[22] RAMACHANDRAN, A., FEAMSTER, N., AND VEM-

PALA, S. Filtering spam with behavioral blacklisting.

In Proceedings of the 14th ACM conference on Com-

puter and communications security (New York, NY,

USA, 2007), CCS ’07, ACM, pp. 342–351.

[23] SHIN, Y., GUPTA, M., AND MYERS, S. Prevalence

and mitigation of forum spamming. In Proceedings of

IEEE International Conference on Computer Commu-

nicationi (INFOCOM) (Shanghai, China, 2011), IEEE

Computer Society.

[24] SONG, J., LEE, S., AND KIM, J. Spam filtering in

twitter using sender-receiver relationship. In Proceed-

ings of the 14th International Symposium on Recent

Advances in Intrusion Detection (RAID’11)) (Septem-

ber 2011).

[25] STEIN, T., CHEN, E., AND MANGLA, K. Facebook

immune system. In Proceedings of the 4th Workshop

on Social Network Systems (SNS’11) (New York, NY,

USA, 2011), ACM.

[26] STRINGHINI, G., KRUEGEL, C., AND VIGNA, G.

Detecting spammers on social networks. In Proceed-

ings of the 26th Annual Computer Security Applica-

tions Conference (New York, NY, USA, 2010), AC-

SAC ’10, ACM, pp. 1–9.

[27] THOMAS, K., GRIER, C., MA, J., PAXSON, V., AND

SONG, D. Design and Evaluation of a Real-Time URL

Spam Filtering Service. In Proceedings of the IEEE

Symposium on Security and Privacy (May 2011).

[28] WEST, A. G., AVIV, A. J., CHANG, J., AND LEE,

I. Spam mitigation using spatio-temporal reputations

from blacklist history. In Proceedings of the 26th

Annual Computer Security Applications Conference

(New York, NY, USA, 2010), ACSAC ’10, ACM,

pp. 161–170.

[29] WILSON, C., BOE, B., SALA, A., PUTTASWAMY,

K. P., AND ZHAO, B. Y. User interactions in social

networks and their implications. In Proceedings of

the ACM European conference on Computer systems

(2009).

[30] XIE, Y., YU, F., ACHAN, K., PANIGRAHY, R., HUL-

TEN, G., AND OSIPKOV, I. Spamming botnets: sig-

natures and characteristics. In Proc. of SIGCOMM

(2008).

[31] YANG, C., HARKREADER, R., AND GU, G. Die free

or live hard? empirical evaluation and new design for

fighting evolving twitter spammers. In Proceedings of

the 14th International Symposium on Recent Advances

in Intrusion Detection (RAID’11)) (September 2011).

[32] YARDI, S., ROMERO, D., SCHOENEBECK, G., AND

BOYD, D. Detecting spam in a twitter network. First

Monday 15, 1 (2010).

[33] ZADROZNY, B., LANGFORD, J., AND ABE, N.

Cost-sensitive learning by cost-proportionate exam-

ple weighting. In Proceedings of the Third IEEE In-

ternational Conference on Data Mining (Washington,

DC, USA, 2003), ICDM ’03, IEEE Computer Society,

pp. 435–.

[34] ZHAO, Y., XIE, Y., YU, F., KE, Q., YU, Y., CHEN,

Y., AND GILLUM, E. Botgraph: large scale spam-

ming botnet detection. In Proceedings of the 6th

USENIX symposium on Networked systems design and

implementation (Berkeley, CA, USA, 2009), USENIX

Association, pp. 321–334.

[35] ZHUANG, L., DUNAGAN, J., SIMON, D. R., WANG,

H. J., AND TYGAR, J. D. Characterizing botnets

from email spam records. In Proceedings of the 1st

Usenix Workshop on Large-Scale Exploits and Emer-

gent Threats (Berkeley, CA, USA, 2008), USENIX

Association, pp. 2:1–2:9.

[36] ZOU, C. C., TOWSLEY, D., AND GONG, W. Mod-

eling and simulation study of the propagation and de-

fense of internet e-mail worms. IEEE Trans. Depend-

able Secur. Comput. 4 (April 2007), 105–118.

