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Abstract—Each new generation of smartphone features in-
creasingly powerful onboard sensor suites. A new strain of
‘sensory malware’ has been developing that leverages these
sensors to steal information from the physical environment —
e.g., researchers have recently demonstrated how malware can
‘listen’ for spoken credit card numbers through the micro-
phone, or ‘feel’ keystroke vibrations using the accelerometer.
Yet the possibilities of what malware can ‘see’ through a
camera have been understudied.

This paper introduces PlaceRaider, a novel ‘visual malware’
that allows remote attackers to engage in remote reconnais-
sance and what we call “virtual theft.” Through completely
opportunistic use of the phone’s camera and other sensors,
PlaceRaider constructs rich, three dimensional models of
indoor environments. Remote burglars can thus ‘download’
the physical space, study the environment carefully, and steal
virtual objects from the environment (such as financial doc-
uments, information on computer monitors, and personally
identifiable information). Through two human subject studies
we demonstrate the effectiveness of using mobile devices as
powerful surveillance and virtual theft platforms, and we
suggest several possible defenses against visual malware.

I. INTRODUCTION

The computational power and popularity of modern smart-
phones (now owned by nearly one in every two Ameri-
can adults [1]) have created opportunities for sophisticated
new types of mobile malware. One particularly dangerous
strain is ‘sensory malware’ [2], which opens up a new
and physically intrusive attack space by abusing the on-
board sensors of a smartphone. These sensors give malware
the ability to observe the physical environment around the
phone, allowing attackers to go beyond simply stealing
the electronic data stored on the phone to being able to
intrude on a user’s private physical space. For example,
researchers have demonstrated novel attacks in which a
smartphone’s microphone can be used to ‘hear’ sensitive
spoken information such as credit card numbers [2], while
the accelerometer can be used to ‘feel’ vibrations to infer
keystrokes typed on a computer keyboard near the phone [3].

In this paper we study the privacy implications of ‘visual
malware’, which uses the smartphone camera to observe its
unsuspecting owner’s physical space. While several interest-
ing visual attacks have been proposed recently, they require
the attacker (or their specialized hardware) to be within
visual range of the victim [4], [5], [6], [7], [8], [9]. Xu
et al. propose visual malware for smartphones that captures
and uploads video to the remote attacker [10] but leaves the
processing of this data to the attacker.

We introduce a proof-of-concept Trojan called “Place-
Raider” to demonstrate the invasive potential of visual
malware beyond simple photo or video uploads. In partic-
ular we show how PlaceRaider allows remote hackers to
reconstruct rich three-dimensional (3D) models of the smart-
phone owner’s personal indoor spaces through completely
opportunistic use of the camera. Once the visual data has
been transferred and reconstructed into a 3D model, the
remote attacker can surveil the target’s private home or work
space, and engage in virtual theft by exploring, viewing, and
stealing the contents of visible objects including sensitive
documents, personal photographs, and computer monitors.
Figure 1 illustrates how PlaceRaider can use images captured
surreptitiously during normal use of the phone to generate
3D models of the user’s environment in remarkable detail.
Our tools allow the attacker to explore the model through 3D
navigation, and then zoom into particular regions to examine
individual images. PlaceRaider thus turns an individual’s
mobile device against him- or herself, creating an advanced
surveillance platform capable of reconstructing the user’s
physical environment for exploration and exploitation.

Research challenges. The cameras and other sensors on a
smartphone can collect vast amounts of data very rapidly,
presenting a deluge of data to the attacker. For example,
a 10-megapixel camera can easily record 100 megabytes of
data per minute if taken at high rates, while other sensors like
phone-grade accelerometers have sampling rates nearing 100
Hz. This means that after implanting a Trojan on a phone,



Figure 1. Illustration of our virtual theft attack. Photos (left) are taken surreptitiously by PlaceRaider using a smartphone’s camera as its unsuspecting
owner goes throughout his or her day. These unstructured opportunistic images are used by an attacker to generate a rich 3D model of the environment
(right), providing contextual information about the environment and valuable spatial relationships between objects. These sample images and reconstructions
are taken from the human subject studies we used to evaluate PlaceRaider, and provide an accurate illustration of our attack.

an attacker has access to a rich stream of sensor data, but
with this richness comes two major challenges. First, the
large amount of data may overwhelm the storage or radio
communication capacities of the mobile device. A challenge
lies in reducing the quantity of data such that the amount of
useless or redundant information in the dataset is minimized,
while as much of the valuable information as possible is
retained. We explore the research question of how additional
sensor data (from the accelerometer or gyroscope) can be
used to reduce the amount of visual information needed to
produce accurate reconstructions.

Second, even after the visual data have been intercepted
and transferred from the device, the attacker faces the
problem of sifting through hours or days of images in order
to glean information about the environment. We propose
to employ sophisticated algorithms from the computer vi-
sion community to convert large unstructured collections
of noisy images into coherent 3D models that are easy
to understand and navigate [11], [12]. However, the recon-
struction techniques that build these models typically have
been applied only to deliberately taken, high-quality im-
agery from cooperative users with thoughtful composition,
accurate focus, and proper exposure. In this paper we study
whether reasonable 3D models can be reconstructed from
opportunistically obtained images, and whether these models
provide sufficient fidelity for an attacker to extract private
information from the target’s physical space.

Our Contributions. We make the following specific contri-
butions:

1) Introducing an invasive strain of visual malware.
Previous examples of sensory malware have had nar-

rowly targeted objectives (e.g., recovery of keystrokes
or bank account numbers). PlaceRaider is the first
example of sensory malware that threatens privacy in a
more general manner using a combination of sensors,
showing that through virtual theft a malicious actor
can explore personal spaces and exploit or steal a
plethora of sensitive information.

2) Reconstructing spaces from opportunistic images.
We show that accurate 3D models can be created from
opportunistically created photos taken by a smart-
phone camera as the device undergoes normal use. To
our knowledge, ours is the first work to apply recon-
struction algorithms to data of this type, since most
work has studied thoughtfully taken photos (e.g. ob-
tained from consumer photo-sharing sites like Flickr).
To facilitate economical computation and reduce stor-
age and network load, we develop heuristics using
image quality metrics and sensor data that quickly
identify the small fraction of images likely to contain
valuable evidence and discard the rest.

3) Developing tools to aid virtual burglary. We develop
and demonstrate a tool that allows an attacker to
visualize and navigate a victim’s space in 3D, allowing
them to quickly hone in on areas that likely contain
sensitive or private information and then retrieve tar-
geted high-resolution images.

4) Implementing and evaluating virtual theft. We im-
plemented PlaceRaider for the Android platform and
evaluated our technique through two human subject
studies. In the first study, images and sensor data are
obtained in an indoor office from human participants



during typical use of the device. Our study shows that
high-quality reconstructions of indoor spaces using
opportunistic data yields models with sufficient gran-
ularity to aid efficient exploration by malicious actors.
Our second study evaluates how effectively attackers
can understand the global structure of the dataset and
their ability to ‘steal’ items from the 3D model.

The remainder of the paper describes these contributions
in detail. In Section II we provide a high-level description
of our architecture, the adversary model and capabilities,
constraints, and a concept of operation. Section II-A details
the approach to collect and reduce data on the mobile
platform, while Section II-B describes the model generation
and data exploration methods that are necessary to exploit
the dataset. Section III evaluates our data reduction tech-
niques and the feasibility of virtual theft through human
subject studies. We discuss the implications of our results
along with limitations of such attacks, potential defenses and
future work in Section IV, before discussing related work in
Section V and concluding in Section VI.

II. OUR APPROACH

The high-level PlaceRaider architecture is shown in Fig-
ure 2. A mobile device is infected with the PlaceRaider
App, which we assume is embedded within a Trojan Horse
application (such as one of the many enhanced camera
applications already available on mobile app market places).
We implemented PlaceRaider for the Android platform,
creating ‘remote services’ that collect sensor data including
images and acceleration and orientation readings. These
remote services can run in the background, independent of
applications and with no user interface. (We implemented on
Android for practical reasons, but we expect such malware
to generalize to other platforms such as iOS and Windows
Phone.) The raw data is reduced and formatted before being
transmitted to the PlaceRaider command and control plat-
form. The 3D models are generated through this platform,
where the burglar can explore and exploit the model and
associated images.

To further illustrate how PlaceRaider works, we consider
a detailed attack scenario. Alice often works from home,
where she uses her mobile phone from time to time through-
out the day for voice calls, responding to email, and Internet
browsing. Alice’s office at home has personal documents
scattered on her desktop, including financial statements,
phone numbers and a personal check. Her office walls have
photos of her family and a wall calendar that shows her plans
for the month (including a week-long, out-of-town vacation).

Alice does not know that her Android phone is running
a service, PlaceRaider, that records photos surreptitiously,
along with orientation and acceleration sensor data. After
on-board analysis, her phone parses the collected images
and extracts those that seem to contain valuable information
about her environment. At opportune moments, her phone

discretely transmits a package of images to a remote Place-
Raider command and control server.

Upon receiving Alice’s images, the PlaceRaider command
and control server runs a computer vision algorithm to
generate a rich 3D model. This model allows Mallory,
the remote attacker, to immerse herself easily in Alice’s
environment. The fidelity of the model allows Mallory to see
Alice’s calendar, items on her desk surface and the layout
of the room. Knowing that the desktop surface might yield
valuable information, Mallory zooms into the images that
generated the desktop and quickly finds a check that yields
Alice’s account and routing numbers along with her identity
and home address. This provides immediate value. She also
sees the wall calendar, noticing the dates that the family will
be out of town, and ponders asking an associate who lives
nearby ‘to visit’ the house while the family is away and
‘borrow’ the iMac that Mallory sees in Alice’s office.

Assumptions. To make this type of attack possible, Place-
Raider makes a number of (weak) assumptions about the
target and adversary:

• Smartphone permissions. The PlaceRaider App requires
several access permissions from the Android operating
system, in particular permission to access the camera
and to connect to the network. Fortunately for Place-
Raider, all of these permissions would be needed for an
innocent enhanced camera application, so asking the
user for them is unlikely to arouse suspicion. Place-
Raider also needs permission to change audio settings
(in order to capture photos without making an audible
‘shutter’ sound, as described in Section II-A); this can
also be easily justified to the user by, for example,
advertising a feature that allows listening to music from
an unrelated application without disturbing playback
with ‘annoying’ shutter sounds. This coarse-grained
permission is perceived as innocuous and even suggests
it cannot cause harm to the user or phone [13] despite
it controlling the mute state of the device. Even if the
permissions could not be easily justified to the user,
Felt et al. found that users often disregard permission
warnings, as most popular legitimate applications use
various combinations of them [13]. No permissions are
necessary to access high-fidelity sensor data from the
accelerometers, gyroscopes, and magnetometers. Thus
we expect few barriers to packaging PlaceRaider within
an attractive camera app that will be downloaded by a
large number of users.

• Computation capability. Generating the 3D models that
we propose is very compute intensive, typically taking
several hours of processing on a multi-core machine.
Smartphone CPUs and GPUs are rapidly progressing
(with modern ARM mobile processors approaching 70



collect 
images

collect 
sensor 
data

t ax ay azϴx ϴy ϴz

anisotropic 
threshold 
reduction 3D

model 
generation

PlaceRaider
viewer

PlaceRaider mobile app PlaceRaider command and control

sensor-based
reduction

++

Figure 2. PlaceRaider architecture is depicted above. The data is collected using remote services on the mobile device. On-board preprocessing performs
gross data reduction and packaging for transmission. The model is generated off-board and is navigated with a tool that allows exploration in a realistic
3D environment that provides an easy method to mine the image set. The malicious actor can easily extract sensitive information.

gigaflops1), so this computation may soon be possible
on the phone itself, but for now we assume that
generating the models is better done off-board, on the
attacker’s servers. To avoid having to transmit huge
numbers of images to the servers, the PlaceRaider app
applies lighter-weight image and sensor analysis to
identify particularly promising images, removing re-
dundant and uninformative images before transmitting
the data to the PlaceRaider command and control center
for model generation. Performing the 3D reconstruction
on standard servers also allows us to use existing soft-
ware tools that are not currently ported to the Android
platform. Future work might include development of a
mobile-centric application.

• Adversary model and objectives. We assume that the
adversary is interested in two major objectives: 1) re-
mote reconnaissance of the the physical space through
3D reconstructions (e.g., to aid a physical burglary),
and 2) virtual theft by allowing the attacker to peruse
the victim’s physical space for valuable information
(e.g., sensitive personal and financial information). An
attacker may be interested in only one of these ob-
jectives, but in either case we want PlaceRaider to
provide an efficient method to quickly and accurately
survey an area and extract information. Any adversary
with modest computational resources who is able to
create a suitable Trojan application and disseminate
it through mobile app marketplaces can launch our
proposed attack.

1http://www.anandtech.com/show/5077/arms-malit658-gpu-in-2013-up-
to-10x-faster-than-mali400

A. On-board data collection and filtering
We now describe the functionality of the PlaceRaider

app, which collects images and sends a reduced set to the
remote command and control server. The App has three
main functions: to monitor orientation sensor data, to capture
images, and to select a subset of images likely to contain
valuable information for constructing a 3D model.

Monitoring sensor data. In the Android API, sensor de-
notes functionality related to the accelerometers, gyroscopes,
magnetometers, or other miscellaneous sensors that a phone
possesses. Surprisingly, as we mentioned in Section II, no
permissions are necessary to access such sensor data. We
implemented a remote service that uses an event-driven
listener that is called whenever sensor data changes. Android
offers different degrees of refresh rates. We chose the fastest
rate, which logs phone orientation and acceleration data at
rates approaching 100Hz for the devices that we tested.
Incoming data is tagged with a system time-stamp and
logged.

Surreptitiously taking images. While Android cameras are
capable of recording video or still images, we avoided video
recording given the larger file sizes and additional power
consumption that result. Using the Android camera without
alerting the user or interrupting their interaction with the
Android device poses a greater challenge than sensor data
collection. The operating system imposes two requirements
for use of the camera that try to prevent the camera from
operating without alerting the user. The first is the photo
preview feature, which provides a real-time display on the
screen of what the camera is recording. This preview feature
provides some measure of security to users as they expect

http://www.anandtech.com/show/5077/arms-malit658-gpu-in-2013-up-to-10x-faster-than-mali400
http://www.anandtech.com/show/5077/arms-malit658-gpu-in-2013-up-to-10x-faster-than-mali400


that whenever the camera is on, the preview is shown.
Conversely, users expect that the camera is inactive when the
preview is not shown. The phone’s preview requirement can
be circumvented relatively easily: the API requires that the
preview be initialized with a Surface object prior to taking
photos, but this can be satisfied by calling the method with
a null object which in effect creates the surface with no
visible area. The second requirement is that a shutter sound
is played whenever a photo is taken. The playback of this
sound cannot be prevented without root access to the phone,
but again there is a simple workaround: we mute the speaker
immediately before a photo is taken and restore the volume
afterwards, so that playback of the shutter sound occurs but
at a volume level of zero.

Modern Android devices provide a range of tunable cam-
era parameters. While many of these phones boast camera
resolutions of over 8 megapixels, such large images provide
a large cost for computational handling and storage. We
found that 3D models can be effectively reconstructed at
much lower resolutions, as illustrated for one sample scene
in Figure 3. Higher-resolution images do create more detail
in the 3D model, but most of this detail is redundant infor-
mation. We thus elected to record images at 1 megapixel,
finding it to be a good trade-off between image size and
model granularity. To obtain images that are as high quality
as possible, we configure the camera for high shutter speeds
in order to preserve as much image detail as possible
even when the camera is moving. We configure the service
to take photos at scheduled intervals via a timer, which
we set to approximately 1 photo every 2 seconds in our
implementation.

Data reduction and transmission. Because images are taken
surreptitiously and opportunistically, a large majority of the
images are likely to be either of very low quality (e.g.
completely dark photos while the phone is resting on a desk,
or very blurry images when the phone is moving rapidly)
or to be redundant (e.g. many duplicated pictures of exactly
the same static scene). Such photos are not useful for the
attacker, and thus we apply lightweight heuristics on the
phone in order to identify and discard these uninformative
images. The objective is to find a minimal subset of images
that both preserves sufficient fidelity of the subsequently
generated model and valuable information such that virtual
theft can be realized. This data reduction conserves phone
storage space and network bandwidth, and reduces the
attacker’s computational requirements for constructing the
3D models.

To filter out blurry and poorly exposed images that are
unlikely to be useful to an attacker, we want to compute a
light-weight quality measure for a single image. Estimating
quality metrics algorithmically is a difficult problem that
has been studied extensively in the computer and human
vision communities. Here we use an algorithm based on a

measure of an image’s anisotropy, which is the variance of
the entropy of pixels as a function of the directionality [14].
We implemented this anisotropy-based quality method in
PlaceRaider, allowing the malware to estimate the quality of
captured images and discard images having a quality score
less than some threshold value Tq .

After removing low-quality images based on the quality
threshold we further reduce the image set by removing
groups of successive images that are nearly identical. These
groups of redundant images are typically quite common
because in normal mobile device usage there are periods in
which there is little physical movement of the phone. We use
the phone’s orientation sensors to detect times during which
the phone is at rest or moving very little. The orientation
sensor provides a time series of absolute 3D orientation
vectors (specifying camera viewing direction parameterized
by vectors on the unit sphere); let Θt = (θxt, θyt, θzt) denote
the orientation vector at time t. Taking finite differences, we
can then approximate the angular velocity at time t as

∆Θt = ||Θt+1 −Θt||.

Each image i taken by our camera is associated with a
time-stamp value ti that represents the capture time logged
by the system. We partition the images (ordered by times-
tamp) into groups of consecutive photos such that all images
in the group have corresponding values of ∆Θt less than a
threshold Tθ. Then we keep only the highest quality image
(according to the anisotropy metric) from each partition.

The architecture of Android devices introduces a practical
complication to this approach, however; there is a lag be-
tween the hardware capture timestamp and the image times-
tamp due to the time required by the system to create the
JPEG image. This means that sensor timestamps and image
timestamps are misaligned by some unknown offset. For our
test phones we estimated the lag to be nondeterministic but
approximately normally distributed with a mean of 450 ms
and standard deviation of 50 ms. To estimate the sensor data
associated with an image, we take the mean of all the sensor
samples which are within one standard deviation away from
the mean of the actual sensor timestamp (ti′ = ti − 450).
This amount of lag will likely vary from phone to phone
depending on hardware and operating system versions; in a
real attack, the malware could calibrate itself by estimating
phone motion using an optical flow algorithm [15] and
compare this to sensor data, estimating the lag from a few
minutes of data.

The effectiveness of this two-step reduction process de-
pends on suitable values of Tq and TΘ. In Section III
we detail our method of finding suitable values for these
parameters and an evaluation of the data reduction approach
on empirical data.



Figure 3. The leftmost image depicts an actual photograph taken at 6MP. The images to the right display perspectives of models generated from images
down-sampled at .3MP, 1MP, and 4MP. It is clear that models generated from higher-resolution images offer greater granularity, but not so much to reveal
more objects.

B. Off-board reconstruction and exploitation

The final objective of PlaceRaider is to siphon images
from a user’s surroundings such that reconnaissance and
virtual theft can occur in an efficient manner. While the
stolen image set alone can provide valuable information,
viewing images individually by hand is cumbersome and
time-consuming with large image sets. We propose the
reconstruction of these images into a 3D model that gives an
attacker a single coherent view of an environment, allowing
her to navigate and explore the space in a natural way.

Generating the model. ‘Structure from motion’ (SfM) is a
well-studied problem in computer vision that generates a 3D
model of a scene from a set of images taken from a moving
camera. Recent work in SfM has introduced techniques that
work on unstructured collections of images in which the
motion parameters of the cameras are not known [11], [16].
The basic approach is to find points in images that are
highly distinctive, so that 2D image points corresponding
to the same 3D point in the original scene can be identified
across different images. These (noisy) point correspondences
induce constraints on the 3D structure of the scene points
and the position and orientation of the camera that took
each image. Performing 3D reconstruction thus involves
solving a very large non-linear optimization problem to
find camera poses and scene configurations that satisfy the
constraints to the greatest degree possible. In this paper, we
used an existing SfM software package, the Bundler toolkit,2

to generate sparse 3D point clouds from our images [16].
SfM produces a relatively sparse reconstruction consisting
of just the most distinctive scene points. To create a denser
reconstruction, we follow up SfM with a multiview stereo

2http://phototour.cs.washington.edu/bundler/

algorithm, the Patch-based Multiview Stereo (PMVS) soft-
ware of Furukawa and Ponce [17]. We made some changes
to these tools to facilitate our work-flow and analysis, but
the core algorithms and parameters were left unchanged.

Exploiting the model. The workflow just described generates
a model (a ‘point cloud’) that is comprised of a collection of
points, or vertices, each described with a three-dimensional
location and color, and stored in the Stanford Polygon3

(PLY) format. This format is understood by a variety of
existing viewers. We used MeshLab4 which is a popular
open-source viewer.

Exploration of even moderate-quality models generated
with this approach yields reliable identification of gross
features including walls, doors, windows, ceilings, pieces
of furniture, and some smaller items. Higher-quality models
that are built from commensurately high-quality images
make it possible to read text on documents and identify small
objects including keys and mobile devices. However, there
are limitations, as even high-quality models will fall short
of the detail contained in the images from which the models
were based.

To explore the models more powerfully and facilitate the
extraction of information, we developed a tool that allows
users to select vertices in a 3D model and then shows the
raw images from that region of interest in the model. To
do this, we developed a MeshLab plugin that captures the
selected vertices and then invokes a modified version of
the open source image viewer JExifViewer.5 Our modified
viewer uses the PMVS patch file to extract the reference
images associated with each of the selected vertices. These

3http://local.wasp.uwa.edu.au/∼pbourke/dataformats/ply/
4http://meshlab.sourceforge.net/
5http://jexifviewer.sourceforge.net/

http://phototour.cs.washington.edu/bundler/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/ply/
http://meshlab.sourceforge.net/
http://jexifviewer.sourceforge.net/


images are presented to the user in the order of coverage,
showing the image that contains the greatest fraction of
selected vertices first. This allows the attacker to easily
identify images that have the greatest impact on the region
of interest in the model. JExifViewer allows for convenient
viewing of images with rotation and zooming capability to
provide the user with a powerful interface for the presented
images. Figure 4 demonstrates the appearance of a sample
model from afar, zoomed in, and the extraction of high-
resolution imagery.

III. EVALUATION

In this section we evaluate PlaceRaider and its potential
to help carry out virtual theft. Our analysis explores three
key questions. First, we test whether image sets captured
opportunistically from smartphone cameras are sufficient
to build 3D models of indoor spaces. To do this we
conducted a human subjects study in which unsuspecting
people carried out normal tasks on a smartphone that
has been compromised with PlaceRaider. Second, we test
whether the light-weight filtering techniques developed in
Section II-B, involving computing image quality scores and
analyzing smartphone orientation sensor data, can be used
to effectively reduce the size of the collected image set
without sacrificing important visual information. Finally,
we test the capability of an independent set of human
participants to extract sensitive information from the models
(about a physical environment they have never personally
visited) using the PlaceRaider viewer utility. In accordance
with university policy, prerequisite institutional review board
(IRB) approval was granted for both human subject studies.

A. Collecting opportunistic images

We designed a method to collect data comprised of
images and sensor information from human participants
using a smartphone with a Trojan application running in
the background. The phone was an HTC Amaze running the
unmodified Android 2.3.3 operating system. The experiment
was conducted in the office of a university colleague who
was not affiliated with our study; this room is of typical
size and layout for an academic office (as shown in Fig-
ure 1). To preserve the anonymity of the owner of the test
office, we removed objects having personally identifiable
information, replacing them with other (simulated) sensitive
features including personal checks, various barcodes, mock
personal documents, and other personal effects. Lighting was
typical overhead fluorescents with some sunlight through the
window.

The PlaceRaider Trojan was installed on the phone and
configured to take a photograph every two seconds. The
camera was set with shutter priority so as to minimize
motion blur and the resolution was set to 1 megapixel.
The study consisted of 20 separate data collection events

in the same office environment, using 20 participants re-
cruited from a university campus. The test protocol led the
participants through a series of activities designed to be
representative of typical smartphone use, including Internet
browsing, talking on the phone, and using basic applications.
Participants were unaware of the nature of the study or the
details of what data were being collected. (As described
in Section II-A, the PlaceRaider application disabled the
Camera preview and shutter sound so that the user was not
aware of our sensory collection effort.) In accordance with
Institutional Review Board procedures, the participants were
debriefed on the details of the study afterward.

As the study was self-paced, collection time varied by
participant. Moreover, the PlaceRaider application occa-
sionally stopped taking photos and sensor measurements
and restarted using a watchdog timer, which led to further
variation in the size of image sets (ranging from 115 to
1,520 images, with a mean of 864). For 4 of 20 test sets,
sensor data was missing due to technical problems with the
app. Nevertheless, all 20 datasets are useful to our study
because missing data and degradation in observation quality
is reflective of the real world. The first column of Table I
summarizes the data collected by our study.

B. Generating 3D models

Once the data was collected from the human subjects
study, we generated 3D models from each of the 20 raw
image sets using the Bundler and PMVS software, as
described in Section II-B, and then evaluated the quality
of the resulting 3D models. Unfortunately, quantitatively
measuring the accuracy of 3D models is notoriously difficult
unless ground truth is available in the form of high-fidelity
laser scans [11]. We do not have such ground truth, so we
instead evaluated the models subjectively. To do this, we
identified several important features of the original scene,
and then for each 3D model manually evaluated whether
each feature had been faithfully constructed. Our features
were: 4 walls, 1 countertop, 1 door, 3 chairs, 1 window,
1 bookshelf, 1 white board, 1 armoire, 2 posters, 2 LCD
monitors, 2 desks, and a large cardboard computer box.

We first ran Bundler and PMVS on each of the 20 raw
image sets, without performing the image filtering proposed
in Section II-B. The Xn columns of Table I present these
results. We observe that the size of the reconstructed models
varies across users, from over 800,000 3D points in the
largest model to 0 points in the smallest model (which
indicates that the 3D reconstruction failed to solve for any
of the structure of the scene), with a mean of about 180,000
points. The subjective quality scores also varied significantly,
from a score of 20 (indicating a perfect reconstruction
according to our criteria) to 0 (again indicating that no useful
model was generated), with a mean score of 6.2. Moreover,
30% of the models scored higher than 10, indicating that a
majority of the scene was successfully reconstructed.



Figure 4. The PlaceRaider exploration tool with a sample model. Users can navigate the 3D model using a point cloud viewer (left), and select some
areas of particular interest (shown in the left panel as a red box). The PlaceRaider tool finds images that contribute to the selected region, presenting a list
of matching images (top right); in this case, the image is detailed enough to clearly show the account numbers on a check (bottom right).

These results suggest that faithful 3D models of a space
can often be generated from opportunistically captured im-
ages. This is a somewhat surprising result because most
Structure from Motion approaches were designed for use
with deliberately composed images. For example, some
approaches assume that images have a low in-plane rotation
twist angle (i.e. were taken such that the camera was level
with respect to the ground) [11]. As Figure 1 shows the
images used in our study are often of very low quality,
with high twist angle, motion blur, poor focus, and random
composition. The accuracy of the test models generated from
these photographs demonstrates the ability of the feature
detection and feature-key-matching algorithms to contribute
to model generation despite the poor photography inherent
to opportunistic image collection.

Reducing the image sets. As described in Section II-A,
we also investigated whether we can reduce the size of the
photo collections by filtering out low-quality images on the
smartphone itself in order to prevent having to store and
transmit unnecessary images. This lightweight filter attempts
to remove low-quality images using the anisotropic metric
and redundant images by using the camera’s orientation
sensor to detect periods of low camera movement.

These techniques each require a threshold (the minimum
quality score Tq and the maximum change in orientation
direction Tθ), which intuitively trades off between the size
of the image set and the quality of the resulting model. To
estimate reasonable values for these thresholds, we took the
model for one of the test subjects (#11, chosen because
it had the largest number of images), and then examined
the 730 (of 1,520) images that were not used by the 3D

reconstruction algorithm (either because they were discarded
as outliers or because they contained redundant information).
We found that most images with quality scores q less than
0.0012 were discarded by the PMVS process, so we set Tq to
this value. Applying this threshold to image set #11 resulted
in a 50% reduction in the number of images compared to the
raw image set and eliminated 80% of the images that would
have been discarded by 3D reconstruction. For the threshold
on orientation angle changes, we conservatively set Tθ = 8◦

based on the fact that the 3D reconstruction algorithm
recommends at most 15◦ separation between camera viewing
directions [18]. This process further reduced the image set
for test #11 by 26.7%.

Having estimated these thresholds based only on one
image set, we then applied the same two filtering techniques
with these same thresholds on all 20 datasets, and then
used Bundler and PMVS on these reduced datasets. The
X ′n columns of Table I show the results. On average the
filtering removes about 73% of images from the raw dataset,
reducing the mean photo collection size from 864.05 to
232.5 across the 20 test subjects. The number of points in
the resulting 3D models also decreases, from about 181,000
to 127,000, but the model quality scores remain almost the
same (and actually very slightly increased by an average of
0.15 features). Thus in spite of great reductions in the size of
raw image datasets, the quality of the models were generally
not compromised. This means that PlaceRaider can store and
transmit only about 27% of the images collected and still
provide an attacker with the same degree of information
about the environment.



Table I
SUMMARY OF IMAGE DATASETS COLLECTED BY 20 HUMAN PARTICIPANTS AND THE 3D MODELS THAT WERE OBTAINED, USING BOTH THE RAW

IMAGE SETS (Xn) AND REDUCED SETS (X′n). THE PRE-PMVS COLUMNS SHOW THE IMAGES INPUT TO THE SPARSE 3D RECONSTRUCTION
ALGORITHM, PMVS SHOWS THE NUMBER OF IMAGES USED BY THE DENSE MULTI-VIEW STEREO ALGORITHM, WHILE MODEL QUALITY SCORE IS

THE NUMBER OF FEATURES VISIBLE IN THE MODEL (WHERE HIGHER SCORES ARE BETTER). TID’S MARKED WITH ‘*’ DENOTE TESTS WHERE
REDUCTION WAS PERFORMED WITHOUT THE SENSOR-BASED METHOD.

TID ‖pre-PMVS image set‖ ‖PMVS image set‖ ‖model vertices‖ model quality score
n Xn X ′n change Xn X ′n change Xn X ′n change Xn X ′n change
1 1365 244 -82.1% 187 46 -75.4% 142k 17k -88.1% 2 0 -2
2 1305 243 -81.4% 195 69 -64.6% 99k 51k -48.2% 4 10 6
3 1214 432 -64.4% 773 362 -53.2% 813k 607k -25.3% 19 19 0
4 778 126 -83.8% 21 14 -33.3% 33k 26k -21.5% 3 4 1
5 449 39 -91.3% 207 4 -98.1% 192k 0k -100.0% 3 0 -3

*6 162 83 -48.8% 82 70 -14.6% 60k 48k -19.3% 3 1 -2
7 974 490 -49.7% 370 198 -46.5% 393k 271k -31.1% 10 8 -2

*8 446 254 -43.0% 63 61 -3.2% 57k 71k 24.2% 4 6 2
9 719 124 -82.8% 289 61 -78.9% 206k 142k -30.9% 11 15 4

10 541 92 -83.0% 87 21 -75.9% 56k 32k -42.9% 5 5 0
11 1520 353 -76.8% 790 251 -68.2% 796k 546k -31.4% 20 20 0
12 1378 157 -88.6% 99 5 -94.9% 83k 2k -97.2% 4 0 -4

*13 1445 729 -49.6% 444 353 -20.5% 354k 399k 12.8% 19 18 -1
14 1059 150 -85.8% 2 2 0.0% 0k 0k 0.0% 0 0 0

*15 846 558 -34.0% 162 160 -1.2% 86k 99k 15.4% 4 6 2
16 446 62 -86.1% 58 7 -87.9% 11k 21k 86.3% 0 3 3
17 414 42 -89.9% 47 11 -76.6% 7k 0k -100.0% 0 0 0
18 762 162 -78.7% 36 49 36.1% 21k 68k 217.1% 0 1 1
19 115 17 -85.2% 7 2 -71.4% 1k 0k -100.0% 0 0 0
20 1343 293 -78.2% 229 86 -62.4% 209k 145k -30.6% 13 11 -2
µ 864.05 232.50 -73.2% 207.40 91.60 -49.5% 181k 127k -20.5% 6.20 6.35 0.15
σ 447.28 193.22 17.9% 230.43 113.68 37.5% 240k 184k 73.9% 6.74 6.93 2.43

Table II
SUMMARY STATISTICS FOR THE COARSE FEATURE IDENTIFICATION TASK BY HUMAN PARTICIPANTS. THE MEAN AND STANDARD DEVIATION OF

COUNTS ARE DELINEATED BY SEARCH METHOD AND FEATURE TYPE. THE coarse eval score IS THE SUM OF LISTED IDENTIFIABLE FEATURES (13)
SUBTRACTED BY THE ABSOLUTE VALUES OF INDIVIDUAL IDENTIFICATION ERRORS, INCLUDING BOTH THE NUMBER OF FEATURES THAT WERE NOT

CATALOGED AS WELL AS CATALOGED FEATURES THAT WERE NOT PRESENT IN THE ACTUAL ENVIRONMENT.

coarse eval
walls floor ceiling doors windows desks tables chairs score

number of features in space 4 1 1 1 1 1 1 3 13
raw image browsing µn=8 3.75 2.50 1.50 3.75 1.25 2.13 1.13 5.00 0.75
raw image browsing σn=8 2.82 1.31 0.93 1.67 1.04 1.64 0.99 2.62 5.95

model navigation µn=10 3.90 1.00 1.00 1.30 0.50 1.00 0.90 2.20 11.20
model navigation σn=10 0.32 0.00 0.00 0.48 0.53 0.00 0.32 0.63 1.32

C. PlaceRaider model and viewer evaluation

The results in the last section suggest that 3D models
produced by PlaceRaider could provide useful surveillance
information about a space, but these evaluations were con-
ducted by only one of the authors and are thus not neces-
sarily unbiased. For a more objective test of how much an
attacker unfamiliar with an environment could learn from our
3D models, we developed a visualization tool and conducted
a second human subjects study in which we measured the
ability of human participants to conduct virtual theft. As we

described in Section II-B, this visualization tool was created
by adding a plug-in to MeshLab, an open-source tool for
viewing 3D models. This tool allows the user to navigate
the 3D point cloud model and to select particular points
of interest. Meshlab then displays the raw images used to
reconstruct that part of the scene.

We presented the largest of our datasets (#11) to two
groups of human participants (none of whom were familiar
with the physical office that had been modeled). The first set
of participants (N1 = 8) navigated the raw image set (1,520



images), without access to the model, by simply examining
the images one-by-one. The second set of subjects (N2 =
10) had access to a 3D model generated from the reduced
set of images (353 in all) using our method described in
Section II-B. We asked each group of participants to perform
two tasks, a coarse search for basic information about the
space, and a fine search for specific sensitive details:

• Coarse Search. In the Coarse Search phase, the partici-
pant was told to catalog the presence of unique objects
or features from a defined list, using either the set of
individual images or the single model. These features
are listed in Table II. The objective of this phase was
to assess the ability of participants to understand the
context and global structure of the physical space.
In this phase an objective score is assigned based
on the ability of participants to catalog the features.
The ‘coarse eval score’ represents how closely the
participants were able to identify the 13 features in
the room, and was calculated as the sum of listed
identifiable features (13) subtracted by the absolute
values of individual errors. These errors can be due
either to under-counting (e.g. claiming one wall when
four are in the room) or over-counting (e.g. claiming
nine walls when only four are in the room).

• Fine Search. In the Fine Search phase, the participant
was asked to act like a burglar looking for valuable
information. The participant was given a list of items
to look for, including financial documents, barcodes
and QR codes, and other private information that have
been planted in the original test space. One group of
participants performs this search with solely the raw
image set, while the other group of participants browses
the model and queries regions of interest for targeted
images using the utility that we developed and describe
in Section II-B. To motivate the participants to find
as much information as possible, the participants were
compensated by a cash payment that was commensurate
with the number of objects that they successfully iden-
tified. An objective score for this phase was assigned to
each participant based on the ability to extract sensitive
information from the image set that they were provided.

Each phase was preceded by a training activity in which
the participant was presented with a training dataset to
familiarize himself with our user interface and the process
of information search.

Results. Table II presents the results for the Coarse Search
phase. The group using the 3D model scored 11.2 on average
with a standard deviation of 1.32 features. The group using
only the raw image set scored much lower at about 0.75
(with standard deviation of 5.9). The difference in means be-
tween the two groups was statistically significant (p < 0.002
according to Welch’s t-test) and demonstrates that coarse
feature identification and the aggregate relationship among

an image set is greatly aided by use of a 3D model. An
example of this is attempting to count the number of unique
walls in our large collection of images; using the model
it is obvious that the structure is a single room with four
walls, but it is much more difficult if one must analyze
over a thousand images individually (and subjects counted
anywhere from 1 to 9 walls during this evaluation). Since
many indoor walls are featureless surfaces, two different
images of the same wall, under different lighting conditions,
viewing angles, and positions, may be easily interpreted as
images of two different walls without the context of a 3D
model.

Table III presents the results for the Fine Search phase. In
this phase, the group using the model successfully identified
5.20 or 37.1% of the listed sensitive features on average,
while the group using the raw image set found 4.94 or 35.3%
of the sensitive features. This difference is not statistically
significant, and thus we found no penalty or benefit in using
the model to search for fine features using our PlaceRaider
navigation utility. Viewed alternatively, using the model and
the greatly reduced image set, there is no observable loss
in the ability to extract fine features using our PlaceRaider
implementation as compared to the raw data that is available
from a mobile camera. Nevertheless the model is of clear
benefit for spatial awareness, and we posit that it will
perform much better for supporting navigation and virtual
theft in larger spaces or multiple rooms.

IV. DISCUSSION

We first discuss how PlaceRaider can be improved from
an attack perspective and then we discuss various possible
defenses against such visual malware.

A. Improvements to the attack

Our implementation of PlaceRaider was focused on prov-
ing the concept of ‘virtual theft.’ There are numerous areas
where improvements to the attack can be made and effi-
ciency increased. We describe several such possibilities in
this subsection.

Improved stealthiness. Our implementation of PlaceRaider
was a proof of concept where limited measures were taken
to achieve a state of stealthiness; further improvements
would be necessary to foil detection by a savvy user.
Collecting sensor data at a high rate of capture can be power
intensive. At the highest rate of collection (approximately
1,800 photos per hour), our PlaceRaider implementation can
run for approximately four hours on our test device. This
compares to an 11-hour standby time when no applications
are running (i.e. the phone is in an idle state). Our worst-
case power draw is comparable to engaging in phone calls or
watching videos. Taking photos at a lower rate of collection
or implementing an algorithm that intelligently varies the
rate of collection rate based on context, would offer an im-
mediate improvement. Similar improvements can be made to



Table III
SUMMARY STATISTICS FOR HUMAN PARTICIPANT PERFORMANCE ON THE FINE FEATURE IDENTIFICATION TASK. THE MEAN AND STANDARD

DEVIATION OF COUNTS ARE DELINEATED BY SEARCH METHOD AND FEATURE TYPE. THE fine eval score IS THE SUM OF IDENTIFIABLE FEATURES (14)
PRESENTED BY THE INDIVIDUAL SUBJECTS.

bar docu- certif- white desk fine
checks codes ments icates monitor board surface photo eval score

number of features in space 2 3 3 2 1 1 1 1 14
raw image browsing µn=8 0.80 0.95 1.20 0.85 0.50 0.40 0.10 0.40 5.20
raw image browsing σ2

n=8 0.67 0.72 0.67 0.34 0.47 0.52 0.32 0.52 1.21
model navigation µn=10 1.00 0.25 1.00 1.00 0.63 0.63 0.00 0.44 4.94
model navigation σ2

n=10 0.60 0.46 0.60 0.65 0.44 0.52 0.00 0.42 2.15

obfuscate network and CPU use in order to avoid detection
by the end user or applications that seek to identify nefarious
activity on the phone.

Targeted PlaceRaider. While providing a very general
and powerful surveillance capability, our implementation of
PlaceRaider relies solely on human vision for the extraction
of detailed valuable information. A desired capability might
include autonomous (machine) identification and extraction
of sensitive data. Existing computer vision methods in object
recognition and image matching [19] could be employed to
look for a pre-defined set of objects of interest, as could
optical character recognition or bar code recognition to glean
text and other sensitive data from the scene. In doing this
an interesting question is whether the 3D context provided
by our reconstructions could improve object recognition over
baseline algorithms that simply scan through the raw images.

Improving PlaceRaider data reduction. While we were able
to demonstrate successful data reduction averaging more
than 73%, many of the images in the reduced sets still
had poor quality and high redundancy. There are at least
two possible potential methods to improve data reduction
using orientation and acceleration data. The first involves
utilizing the acceleration data that is already logged, but not
utilized, by the PlaceRaider app. If proper signal processing
were applied to the acceleration data, it might be possible to
infer instantaneous movement at the time of image capture.
Such a capability would allow velocity thresholds to be
applied to images, ignoring images likely to have significant
motion blur. A second method to improve data reduction
would be removal of redundant images at the global level.
Our current implementation removes redundant images by
looking only at local temporal neighbors. An alternative
approach would be to use the camera gyroscopes to record
where the camera has pointed before, and to take photos
only when it is oriented towards new, unseen directions.
Such approaches will become more feasible as smartphones
incorporate increasingly accurate sensors.

While the anisotropic quality metric was effective at
reducing the size of our image sets, manual inspection of
the subsets revealed regular occurrences of grossly under-

or over-exposed images. An improvement of our reduction
technique could target luminance distributions of images,
thus targeting and discarding additional poor quality images.
We leave exploration of this and the other suggested data
reduction improvements for future work.

Improving the 3D models. In the past, large-scale structure-
from-motion algorithms typically have been used for outdoor
scenes using images purposefully taken by photographers.
In Section III we showed that Bundler and PMVS success-
fully generated models on our opportunistically collected
images of indoor spaces. This new domain raises interest-
ing computer vision questions about how to improve 3D
model generation with more difficult image collections. One
possible direction is to explore alternative algorithms for
feature identification and comparison that would work better
in indoor spaces (where illumination is more variable and
distinct features are less common because of the many plain
surfaces). It would also be interesting to use recent work that
uses stronger assumptions about a scene, for example that
the scene has many flat planes, to produce more accurate
models for indoor scenes [20]. We leave this exploration for
future work.

Another interesting direction is to understand why the
datasets from some of our 20 test subjects produced much
better models than others. In some cases this can explained
simply by the size of the datasets, but in other cases there are
clearly other unknown factors at work. These may relate to
the lighting conditions in the room at different times of the
day, or to the smartphone usage habits of different people
(e.g. the amount they move while using the phone, or how
often their fingers accidentally cover the smartphone lens).

B. Defenses

We have shown that virtual theft is a compelling threat
to privacy. Visual malware is a nascent area that requires
more research. While existing work has established visual
attacks — we discuss some in Section V — PlaceRaider
introduces a threat that requires a different defense. While
evaluation of defenses is outside of the scope of this paper,
we offer these possible solutions for seeding future work.



Permissions and defense. We detailed the set of Android
permissions needed by PlaceRaider in Section II. Previous
work has shown that permission sets can be partitioned
by splitting malware functionality and permissions among
multiple applications and using covert channels to communi-
cate [2]. Such covert channels are limited in channel capacity
and preclude their use for transmitting image or other sensor
data between applications. This limitation allows us to safely
assume that PlaceRaider can only be employed when the
user accepts the application permissions at installation. Static
permission checking can be performed automatically, but
again, since common camera apps require similar permis-
sions, we do not expect such mechanisms to provide a
successful defense [21], [22]. This points to the obvious
recommendation that users should be cautious about what
they install, and download apps only from trusted software
developers. In general, users should be suspicious of apps
that have access to the camera and the Internet.

Persistent shutter sound. We described in Section II-A the
measures that Android devices take ‘to require’ a shutter
sound when taking photographs and our trivial, but effective,
method to circumvent this by muting the speaker. An in-
ability to prevent the shutter sound would foil PlaceRaider’s
attempts to control the camera without detection. A persis-
tent shutter sound, possibly with dedicated hardware that
is impervious to overrides by software, is a recommended
approach that would provide a complete defense against
PlaceRaider. This obviously requires initiatives by hardware
manufacturers.

Permissions for sensors. Current Android and iOS operating
systems require no permissions to access acceleration or
gyroscope data despite the high rates of collection and
accuracy that they possess. An explicit permission to use
the sensor resources would not prevent virtual theft, as
PlaceRaider only uses this data to further reduce the image
set, but would increase the security of mobile devices;
existing work has demonstrated attacks using accelerometers
to analyze keystrokes [3], [23], [24]. While we offer this as
a defense, it would only minimally — if at all — preserve
privacy, as there would be no prevention of the collection
and transmission of images.

Hardware protections. One possibility is to enhance the
operating system architecture to allow photographs and
video to be captured only when a physical button is pressed.
Such a mechanism may prevent surreptitious capture of
photographic data, but may prevent novel uses of the camera
by legitimate applications.

PlaceRaider detector. There is no logical motivation for
users to intentionally take poor-quality photos that have
any combination of improper focus, motion blur, improper
exposure, or unusual orientations/twist. Just as PlaceRaider
can use methods to parse images to maximize quality, the

Android operating system can potentially assess each photo
at time of capture, or over longer periods of time, and ask
the user to confirm that they desire these images. Such an
approach might frustrate PlaceRaider attempts to perform
long-running image collection.

PlaceRaider differs from most legitimate camera appli-
cations in that individual photos are taken without input
from the user interface. The API could possibly be modified
such that certain security-related methods would require
invocation linked to user input. For example, Roesner et
al. [25] propose ‘user-driven access control’ where resource
monitors could mediate access to phone resources. While
this approach may prevent stealthy recording of images,
in the longer term it would prevent novel applications of
opportunistically gathered imagery. For example, in the
future wearable-computing glasses (such as those proposed
by Google’s Project Glass [26]) may become popular in
documenting one’s life visually. Memoto [27] has already
proposed one such so-called “Lifelogging” pendant-camera
that takes pictures every 30 seconds to help people “remem-
ber every moment.”

Physical camera discipline. Successful virtual theft requires
that the mobile phone, in physical control of the user, be
in a position to take photographs. Organizational policies
against possession of camera-containing devices — such
policies are commonly in place in sensitive areas — and
personal discipline can both serve to prevent disclosure of
sensitive images despite the capability of malicious apps.
Some devices (iOS-based, but not Android) allow the camera
to be disabled through a high-level setting that essentially
disables any application that would use the camera.

V. RELATED WORK

Sensory malware. The prevalence of malware on mobile
platforms is the focus of considerable research. Recent work
shows more than 1,200 active variants of malware in the
Android ecosystem that are largely impervious to attempts
to prevent their exploitation [28]. An emerging threat is
that of sensory malware, which works by leveraging the
varied sensors of mobile devices. Demonstrations include
using microphones to obtain dialed or spoken account infor-
mation [2] and keyloggers that operate via structure-borne
vibrations measured through an accelerometer [3], [23], [24].
Despite recent attention given to sensory malware, there is
a notable absence of examples that recruit the camera. One
example is the Stealthy Video Capturer [10]. This approach,
while now dated and not reflective of the current generation
of mobile devices, does present a clever method to collect
image data in a stealthy manner. This type of system applied
to modern Android devices would bear resemblance to the
data collection segment of PlaceRaider. Where PlaceRaider
differs is that we seek sampling of image data at a lower
rate (0.5 frame per second vs. video frame rates) and for



longer periods of time. Further, our efforts to reduce data and
generate unified structures (3D models) to describe personal
spaces further differentiate PlaceRaider as previous work did
not attempt to make sense of the data that is collected.

Imaging privacy attacks. Imaging attacks are unique in that
they require a line of sight — direct or indirect via diffrac-
tion, reflection, and refraction — between the attacker and
the target source (victim). In standard parlance, “standoff”
refers to the physical distance between the attacker and target
source. The preponderance of documented imaging attacks
offer varying standoff distances, but are asymptotically lim-
ited to physical visual limitations. These examples of visual
attacks on privacy require dedicated, and often advanced,
imaging devices. One category of these attacks seeks to
spy on active electronic displays. This can be accomplished
with photomultipliers [4] or long focal-length optics that
can even extract information from reflections of the source
image [5], [6]. Keylogging via imaging can be accomplished
using techniques similar to the aforementioned attacks [7] or
with thermal cameras [8]. A particularly unique visual attack
can physically copy mechanical keys using images of target
keys [9]. While all of these attacks are compelling, they
require use of methods where attackers (or their specialized
hardware) are in optical range (the physical vicinity) of the
victim. PlaceRaider has a unique property in that it allows
standoff distances limited only by the reach of the Internet,
yet remains intimately close to the victim by leveraging the
victim’s own camera and sensors.

Defenses. Several security enhancements have been pro-
posed for Android. We encourage the reader to review
Bugiel et al.’s report [29] for a thorough review of these
approaches. In general, these approaches can check permis-
sions at installation time [21], [22], monitor runtime permis-
sion usage [30], regulate inter-application communication
to defeat confused deputy attacks [22], [31], [32], [33],
mitigate covert channels [29], and track the flow of sensitive
data [34], [35].

As detailed in Section II, PlaceRaider can be deployed
in a legitimate-looking camera application as a Trojan, as
they share like permissions, and does not rely on covert
communication. As such, there is no need for escalating
privileges, so the bulk of existing defenses aimed at en-
forcing granted permissions offer little protection against
PlaceRaider. However, context-sensitive permission checks
during runtime might be an effective defense against Trojans
attempting to steal private data. Porscha [36] can provide
such granular control for content that originates external
to the phone, but does not provide protection provisions
for data generated by the phone as would be necessary for
PlaceRaider. Systems like CRePE [37] can provide greater
levels of protection but cannot work without modifications
to existing Android middle-ware.

Cai’s framework for defending against sensory malware
attacks offers several promising methods to thwart malicious
apps [38]. Because PlaceRaider’s behavior is comparable
to legitimate camera apps and only requires communica-
tion to the PlaceRaider command and control server, this
defensive approach would be inadequate. The sole behav-
ioral differences between PlaceRaider and legitimate camera
applications from the system’s perspective are the rate of
data collection and frequent transmission of images to an
off-board server. This might make PlaceRaider subject to
detection via Cai’s proposed information flow tracking, but
ceasing the function of PlaceRaider on the basis of its
behavior would also work to keep many legitimate camera
apps from operating. VirusMeter [39] is an application
that seeks to identify malicious applications through their
anomalous power profiles. This approach would only be
effective against PlaceRaider if the rate of activity was high
enough to result in an anomalous power profile. To avoid
detection, PlaceRaider can simply lower rates of collection
and activity.

VI. CONCLUSION

In this paper we introduced a new general threat to the
privacy and physical security of smartphone users that we
call “virtual theft.” We conceptualize a mode of attack
where opportunistically collected data is used to build 3D
models of users’ physical environments. We demonstrate
that large amounts of raw data can be collected and define
novel approaches that can be used to improve the quality of
data that is sent to the attacker. We offer PlaceRaider, an
implementation of a virtual theft attack and through human
subject studies demonstrate that such attacks are feasible and
powerful. An ancillary contribution is our work addressing
the use of existing Structure from Motion tools in indoor
spaces with poor-quality images.
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