

Zero-Communication Seed Establishment for Anti-Jamming Techniques

Kim Pecina and Esfandiar Mohammadi

(CISPA / Saarland University, Germany),

Christina Pöpper

(HGI / Ruhr-University Bochum, Germany)

Feb 23rd, 2014

Wireless Communication

Wireless communication is applied in more and more domains for monitoring, support, and control

- Industry and industrial infrastructure
- Critical infrastructure
- Vehicle/traffic communication

Vehicular Networks (VANETs)

Jamming Attacks

DoS-attack, part of more sophisticated attacks

Jamming devices are easy/cheap to obtain

starting at ~ 100\$

Common countermeasure:

- Evade the jammer by using spread-spectrum techniques (FH, DSSS)
- Common anti-jamming techniques rely on pre-shared secret codes (output of a seeded/keyed PRNG)

Setting up Shared Secret Keys

Key Pre-Loading

- Clean solution whenever applicable
- Pre-loading the keys suffers from distribution, revocation, and scalability problems

Ad-hoc Key Establishment

- Key-establishment protocols using public key cryptography solve most of these problems
- But they assume the existance of jamming-resilient communication
 - → Devices need to communicate to establish shared keys

Key Establishment in the Presence of Jammers

Anti-Jamming Key-Establishment Dependency [26]

[26] Strasser et al.: Jamming-resistant key establishment using Uncoordinated Frequency Hopping. IEEE Symposium on Security and Privacy (S&P), 2008.

Key Establishment in the Presence of Jammers

- Communication-based solutions (using PKC):
 - UFH [25,26], UDSSS [19],RD-DSSS [15], DSD-DSSS [14],ZPK-DSSS [10], ...

Key establishment in the presence of a jammer

Dependency Chain

Anti-jamming comm. Shared secret key based on UFH (spreading code)

- Solutions using ID-based cryptography:
 - This work
 - **–** [3]

Key establishment in the presence of a jammer

[3] Capar, Goeckel, Paterson et al.: Signal-flow based analysis of wireless security protocols. Information and Computation, 2013.

Solution Space

Dimensions of the solution space:

on the example of PKC-based UFH [26]

Our Proposal

- Use identity-based cryptography
 - Public key is derived from the communication partner's ID (public, long term, rather short)
 - E.g., email address, MAC address, license plate number
 - Overcome static nature of the established keys by using time information

Prerequisite

- Trusted central private key generator (PKG)
- IDs are known / can be obtained visually
- Result
 - Efficient seed establishment without communication

ID-based Approach

Setup phase (before the start of AJ communication)

 Public key = hash of the ID, mapping strings to group elements (on an elliptic curve)

$$-\operatorname{pk}_A := h(\operatorname{ID}_A) = a \cdot g$$
, i.e., $a := \operatorname{dlog}_g(\operatorname{pk}_A)$

• The (trusted) private key generator generates for all parties their private keys (using a master secret s):

$$-\operatorname{sk}_A := s \cdot \operatorname{pk}_A = sa \cdot g$$

Key generation for subsequent AJ communication (basic idea):

- $e(\operatorname{sk}_A,\operatorname{pk}_B)=e(as\cdot g,b\cdot g)=e(g,g)^{abs}=e(\operatorname{sk}_B,\operatorname{pk}_A)$ where $e(\cdot,\cdot)$ is the bilinear pairing $e:\mathbb{G}_1\times\mathbb{G}_1\to\mathbb{G}_T$ for two groups
- For providing unpredictability, we add the current time frame:

$$\mathcal{S}_{(A,B)} := f(e(\operatorname{sk}_A, \operatorname{pk}_B), tf) = f(e(g,g)^{abs}, tf)$$

Further Contents

Cryptographic security analysis

- Security notion based on the eCK model [13] for a (mutually authenticated) secure key
- Proof that the established seed is pseudo-random (in the random oracle model)
 - Adversary can request the challenge and compromise parties
- Definition of a Pseudo Random Seed Challenger PRSCh $_b(1^{\eta})$ against the pseudo-randomness of the seed establishment
 - Adjusted to a setting with timeframes
 - Worst case assumption: adversary can decide when a new timeframe begins
- [13] LaMacchia, Lauter, and Mityagin, "Stronger security of authenticated key exchange," in Proceedings of the International conference on Provable Security, ProvSec. 2007

Implementation Details

- Implementation in Java
 - Java API for hash function (SHA-256) and standard ms time
- Cryptographic operations
 - jPBC library [4], released under the LGPL v3 licence
- Elliptic curves

_	Symmetric ¹	TYPE-I (Type-A
	embedding	degree	k = 2

RSA	η	r	p	$ \mathbb{F}_{\mathbf{q^2}} $
1024	80	160	512	1024
2048	112	229	1099	2198
3072	128	260	1599	3198

- Security parameter η bit, bit sizes $r = 2\eta$ (\mathbb{G}_1), p (elliptic curve base field)

Recommendations [12]

 Source code and executables are available at http://sps.cs.uni-saarland.de/zcaj:

Android APK & Jar file

- [4] De Caro and Iovino: jPBC: Java pairing based cryptography. In Proceedings of ISCC, 2011, http://libeccio.dia.unisa.it/projects/jpbc/download.html
- [12] Koblitz and Menezes, "Pairing-based Cryptography at High Security Levels", 2005.

Implementation Results

Application of the ID-based Approach

Application

- When IDs are known / can be obtained, but the set of potential partners is too large to store shared keys for each
 - Often communication does not happen with random parties
- When IDs are not known, they must be authentically obtained using AJ communication
 - Whenever IDs are shorter than public keys, the ID-based approach can still provide benefits (shorter messages) [3]

http://novotek-tankfarm

Conclusion and Open Questions

- Securing wireless communication is crucial for numerous applications
 - Industrial communication, infrastructure-critical communication, smart grids, etc.
- Jamming attacks are serious threats and hard to counter
- We investigated the use of ID-based cryptography for anti-jamming key establishment
- Open problem:
 - How to generally identify the desire for AJ communication
 (w/o visual channels or scheduled transmissions): When? Who?

Thank you for your attention