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Abstract—In an environment perturbed by malicious in-
terference, establishing a reliable wireless connection without
shared secrets typically relies on uncoordinated spread spectrum
methods, such as UFHSS or UDSSS. These methods offer a low-
throughput channel for the exchange of key contributions with the
goal to establish a shared secret. They, however, incur a significant
delay when confronted with adversarial jamming, in particular
when long public-key credentials must be exchanged. In this
paper, we propose and evaluate a scheme that is orders of mag-
nitude more efficient than prior proposals. Drawing on powerful
identity-based (ID-based) cryptography and exploiting a-priori
knowledge about the identities of the communication partners, the
parties can immediately and without any communication derive
a cryptographically strong seed (or key) for creating a high-
throughput, jamming-resistant channel. Even without a-priori
knowledge, our scheme still benefits from the certificate-free
authentication offered by ID-based cryptography. Additionally,
we define the notion of a secure seed establishment scheme for
anti-jamming methods and prove that our protocol satisfies this
definition. We further conduct an experimental evaluation of our
approach to demonstrate its practicality: on mobile commodity
hardware such as notebooks, tablet computers, and smart phones,
a non-optimized implementation derives shared seeds in less than
half a second.

I. INTRODUCTION

In cellular, mobile and ad-hoc communication scenarios,
wireless devices use a common frequency band and modulation
scheme for communicating and exchanging messages. Due to
the open nature of the wireless communication channel, an
attacker can easily disturb or prevent the message exchange
by jamming, also from distance. The communication partners
can circumvent jamming attacks by using spread-spectrum
techniques such as FHSS or DSSS [18], [27] as long as
they share the same secret cryptographic material (and the
attacker is not blocking the entire available frequency band at
once). For both techniques, the sender and the receiver use the
cryptographic material as seed for pseudo-random generators
that will subsequently generate the same spreading sequences.

A setup with shared secrets, however, is impractical for
large or dynamically changing sets of communication partners.
Naturally, such a shared secret setup relies on trust in all
communication parties and requires dynamic re-keying in the
event of a key compromise. In particular, the question arises
how devices that do not share any cryptographic secrets can
agree on such shared secret seeds.

Prior proposals (e.g., [19], [20], [24], [26]) require an active
public-key infrastructure and (low-throughput) communication
under jamming attacks: a priori knowledge about the respective
communication partner is not required but the communication
partners must possess valid certificates (certified public keys)
issued by the trusted third party. The drawback of these
proposals is that the seed establishment may incur a non-
negligible delay in the order of tens of seconds [24], [25],
which can be intolerable for time-critical communication as
may be required in industrial control systems, smart grids, or
alarm systems [30]. In particular, this delay depends on the
power attributed to the attacker, which must not be underesti-
mated. Additionally, previous protocols that establish a shared
secret rely on randomized protocols that are either communi-
cation intensive (e.g., UFHSS) or processing intensive (e.g.,
UDSSS) [20], which, given the nature of the wireless devices,
uses up precious resources such as battery power. Recent
work [3] already explores reducing the amount of transmitted
data by leveraging the certificate-free authorization offered by
ID-based cryptography. That work, however, only considers
the scenario where the communication partners do not know
each other’s identity a-priori.

Contribution. In this work, we address the efficient estab-
lishment of shared seeds for spread-spectrum methods. The
contributions of this work are as follows:

• We investigate the use of ID-based cryptography for
establishing seeds under jamming perils in communica-
tion settings where the communication partners know
each other’s identity. Using our scheme, the devices
derive cryptographically strong seeds without having to
communicate; these keys can later be used for coordi-
nated spread-spectrum methods. This approach makes the
seed establishment orders of magnitude faster than using
PKI- and certificate-based uncoordinated spread-spectrum
methods.
Due to the absence of communication, the proposed
method is insensitive to the attacker’s transmission and
reaction capabilities. Exploiting the power of ID-based
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cryptography, it supports dynamically changing sets
of participants without incurring any key additional
management; only the identity of the communication
partner is required. In practical scenarios, learning the
communication partner’s identity is easier than obtaining
an authenticated public key or managing a shared secret.

• We characterize the security of our ID-based seed es-
tablishment scheme for anti-jamming purposes: first, we
introduce the notion of a secure seed establishment
scheme (a variant of the eCK model for authenticated key
exchange); second, we prove that our proposed scheme
fulfills this definition.

• We experimentally demonstrate the efficiency of our
approach by evaluating running times of a prototypical
implementation on commodity mobile devices, in partic-
ular smart phones and notebooks.

Outline. We begin with a presentation of the key idea of
our proposal and its positioning with respect to other work
(Section II). We then present our system model and motivate
our attacker model (Section III). Thereafter, we present our
seed establishment scheme (Section IV). Then we define the
notion of a secure seed establishment scheme and prove
that our scheme satisfies this notion (Section V). We con-
tinue with illustrating the efficiency of our scheme with a
prototype implementation on mobile devices and commodity
notebooks (Section VI). Finally, we describe related work
(Section VII) and conclude (Section VIII).

II. OVERVIEW AND KEY IDEA

This paper addresses the problem of establishing shared se-
crets under jamming attacks between communication partners
that do not share cryptographic material. The solution space
to this problem contains several dimensions: (1) the required
knowledge about the communication partner (e.g., in terms
of name, identity, and certificates), (2) the a-priori infrastruc-
ture setup, (3) the amount of communication needed for the
establishment of the secret seed, and (4) the computational
complexity and time needed by the communication parties for
establishing the seed. In other words, possible solutions to this
problem are determined in terms of what needs to be known,
received, and computed.

The problem above has previously been addressed as anti-
jamming key-establishment dependency [26]. In this paper, we
refer to it as seed establishment. Existing solutions (e.g., [24]–
[26]) break the dependency cycle by enabling anti-jamming
communication without shared secrets, as depicted by Fig-
ure 1 (a). They achieve this by transmitting the messages
of a standard (e.g., Diffie-Hellman-based) key-establishment
scheme on randomized frequency channels. As part of the in-
frastructure setup, these schemes require a trusted third party to
certify the public keys of the involved communication parties
to enable authentic key contributions. These certificates must
be either communicated while the key is being established, or
they must be pre-shared before the communication phase. In
the latter case, potentially large numbers of certificates are to
be stored. In both cases, the communication over randomized
frequency channels takes significant time and the overall time
needed for the seed establishment is strongly dominated by

the presence of a jammer

Anti−jamming comm.
based on UFH

Shared secret key
(spreading code)

Key establishment in

Dependency Chain

(a)

Anti−jamming comm.
(FHSS or DSSS) (spreading code)

Shared secret key

the presence of a jammer
Key establishment in

Dependency Chain

(b)

Figure 1. Positioning of this work. (a) Existing solutions [10], [25], [26]
break the anti-jamming key-establishment dependency cycle by not relying
on shared secrets. (b) Under the assumption that the communication partners
have a-priori knowledge about each other’s identities, they can establish
a cryptographically strong key without any communication using our ID-
based approach, i.e., break the dependency cycle as shown above. This
significantly speeds up the setup of shared secrets and faces neither jamming
nor interference.

the inefficient uncoordinated communication under jamming.
We note that these problems are not solved by one-way com-
munication or broadcast scenarios [20], where certified public
keys are also required for digital signature and authentication
purposes.

Identity-based cryptography. We investigate the use of ID-
based cryptography for settings in which the communication
partners know each other’s identity. In these settings, ID-
based cryptography allows us to construct a seed establish-
ment scheme that does not need any prior communication—
therefore the name zero-communication seed establishment.
This breaks the anti-jamming key-establishment dependency
cycle by not relying on communication between the involved
parties, as shown in Figure 1 (b). Identity-based schemes allow
for dynamic network extensions and communication to new
devices without requiring modifications to already established
devices.

One particular aspect in the construction of the scheme
is how to overcome the static nature of ID-based established
seeds. We solve this by introducing time in the seed establish-
ment. As a consequence, two consecutively-generated seeds
will be distinct. In particular, we will show that a seed for a
given time is uncorrelated to all previously-established seeds.

We note that seed establishment without communication is
not a property that can exclusively be achieved by means of
identity-based cryptography. Since ID-based cryptography sig-
nificantly reduces the storage requirements (identities require
much less space than identities together with the corresponding
public key and associated certificate), and the sharing of iden-
tities requires one order of magnitude fewer communication,
it, however, constitutes an ideal choice.

In the setting where the communication partners do not
know each other’s identity, ID-based schemes still remove the
necessity to store and transmit public keys and certificates
because only the identity of the communication partner must be
known before the payload exchange can take place [3]. Since
the communication time is the major delay in anti-jamming
key-establishment scenarios, ID-based schemes speed up the
key-establishment process by one order of magnitude: while
the exchanged certificates in UFHSS or UDSSS are several
hundreds and sometimes thousands of bytes in size [26], the
identities required in our setting are merely a few tens of bytes
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in size. If the identities need to be exchanged, this approach
can be categorized as shown in Figure 1 (a).

III. MODEL AND NOTATION

We next describe the system and attacker models that our
scheme is based on, followed by a description of the notation
that we use while detailing the scheme in Section IV.

System Model. We consider the following identity-based
setting: two devices want to communicate with each other
and know the identity of the communication partner. This
identity consists of a unique name or string, such as an e-
mail address, a MAC address, or any other unique identifier.
This identifier may be publicly known and does not need to
be kept secret. We do not assume any shared cryptographic
material between the two parties. The advantage of storing the
identity of the communication partner instead of storing shared
pairwise secrets is that the identity is public, long-term, and
typically rather short. More precisely, the identity usually does
not change and it may even be possibly to dynamically derive it
or to share it by public out-of-band channels. We let the devices
have loosely synchronized clocks, e.g., via GPS, such that they
can agree on overlapping time frames. Moreover, we assume
that all information (on groups, generator elements, pairing,
etc.) of an identity-based cryptographic scheme is public and
shared among all communication parties.

Furthermore, we require the existence of a trusted central
private key generator (PKG), which generates for every party
A with the unique identifier IDA a secret key skA. We assume
that every participating party is aware of its identity and of her
secret key skA. Typically, the distribution is done in a set-up
phase where every party receives her secret key with the help
of the trusted PKG. In practice, this can be achieved by the
device manufacturer or by an initial registration step conducted
at the commissioning of a device.

Threat Model. We grant the attacker the capabilities to
record and eavesdrop on the communication between the
communication parties. In particular, the attacker may use a
broadband receiver or multiple partial band receivers for this
purpose. We, however, impose the standard restriction that
(coordinated) FHSS communication could be used to counter
jamming attacks if keys were securely shared. This implies that
the attacker is not powerful enough to perform a broadband
jamming attack; in other words, we assume that the frequency
spectrum is sufficiently large such that the attacker cannot
block the complete transmission spectrum.

Furthermore, we let the attacker dynamically corrupt and
in turn impersonate devices. More precisely, the attacker can
corrupt any device at any time. Once a device is corrupted,
the attacker obtains all cryptographic material stored on that
device, thus enabling the attacker to act on behalf of that
device.

Notation. We describe a setting with a symmetric pairing. In
Appendix A, we detail the setting with an asymmetric pairing.
Following the setup of Boneh and Franklin’s identity-based
encryption scheme [2], we use two groups G1 and GT of prime
order q and a symmetric bilinear pairing e : G1 ⇥G1 ! GT .

By g we denote the designated generator of G1. In the fol-
lowing, we use the convention that operations in the subgroup
G1 of the elliptic curve are written in additive notation (i.e.,
we write a · g and g+ g rather than g

a and g · g, respectively)
and operations in the target group GT are written in the usual
multiplicative form.

We let h : {0, 1}⇤ ! G⇤
1 denote a cryptographic hash

function that takes as input arbitrary strings and maps them to
G⇤

1. Throughout the paper, we use the usual convention that
G⇤ := G \ {0}, where 0 is the neutral element of the group
G w.r.t. the group operation. We write e R G to denote that
the element e is drawn uniformly from the group G.

The public key pkA of a communication party A with name
IDA is pkA := h(IDA) = a · g, i.e., a := dlogg(pkA) is the
discrete logarithm of pkA with respect to the base g. In general,
it is infeasible to compute a; we only use the existence of
a to derive and show equalities between elements. The PKG
computes A’s secret key as skA := s · pkA = sa · g, where
s R Z⇤

q is the PKG’s master key.

IV. OUR ZERO-COMMUNICATION SEED ESTABLISHMENT
SCHEME

Our scheme establishes a cryptographically strong seed for
anti-jamming techniques, such as FHSS or DSSS without any
communication by using techniques from identity-based en-
cryptions [2]. We first give an overview of our seed establish-
ment (Section IV-A) and then present its details (Section IV-B).

A. Overview

Based on the ID-based setup and the communication parties
knowledge of their own secret keys (skA for party A), the
scheme that we propose allows two communication parties
to output a cryptographically strong seed, i.e., a seed that
is computationally indistinguishable from a randomly chosen
seed. We consider the case where the parties’ secret keys are
solely used for the seed establishment.

The basic idea for the seed generation for two parties A

and B is standard and in its core looks as follows:

e(skA, pkB),

where skA is A’s secret key, pkB is B’s public key, e(·, ·)
is the bilinear pairing, s is the PKG’s master key, g is the
group generator, and a and b are given by A’s and B’s public
key, respectively. Using the properties of the bilinear map, we
derive that

e(skA, pkB) = e(as · g, b · g) = e(g, g)abs.

This simple seed generation has the serious drawback that
only one unique seed can be generated per pair of devices.
Although this seed already has strong cryptographic properties,
it is insufficient for our applications scenario where devices
keep their identities for long times and re-keying is cumber-
some or even impossible. Being able to generate only one seed
is particularly problematic because broadband attackers may
be able to listen on all FHSS frequencies and can thus learn
large fractions of the pseudo-random sequence. If, in future
communication attempts, the communication partners keep on
reusing the same seed, the attacker can successfully jam the
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communication by jamming the previously-learned frequency
sequence.

One solution is to use a fresh nonce for every seed [3]. Such
an approach, however, inherently requires communication.
Another remedy is to let each device store a state for every
communication partner it interacted with, e.g., the state of
the pseudo-random generator. In both solutions, two com-
municating parties do not re-use frequencies and an attacker
cannot gain an advantage by eavesdropping and storing the
used communication frequencies. Storing a state for every peer,
however, is expensive and would destroy the storage advantage
gained by deploying ID-based cryptography.

We choose storage over communication but significantly
relax the storage requirements and only stipulate that devices
store a state for every communication peer for a certain
short time frame, e.g., two hours. In this way, within a time
frame, the frequencies derived are pseudo-random. Across two
time frames, our seed establishment scheme ensures that the
seeds derived in different time frames are uncorrelated, i.e.,
information obtained in one time frame cannot be used to
obtain information in a future time frame.

For A and B to agree on a time frame tf , we exploit
loosely synchronized clocks. The time frames may vary in
length and depend on the precision of the synchronicity of the
devices’ clocks and on the storage available on the devices. It
is, however, crucial that the time frames are absolute (such as
“January 24, 2014, 2 p.m. - 4 p.m., UTC+1”) and not periodic
(such as “today, 2 p.m. - 4 p.m.”): periodically reoccurring
time frames cause established seeds to be equal and, therefore,
enable an attacker that recorded previously-used frequencies to
mount a successful jamming attack. For reasons of simplicity,
we make the time frame enumerable, i.e., there is an initial
time frame and for every time frame tf there is a successor
tf + 1.

Inspired by Ryu et al. [21], a first approach might be to
derive the shared seed as e(skA, pkB)

f(tf ) for two parties A

and B, and a time frame tf where f is a mapping from strings
to exponents. While this approach can be modified to derive
keys that provide forward-secrecy, these seeds are insecure
in our setting because we assume that the attacker can learn
all seeds: merely using e(skA, pkB)

f(tf ) allows the attacker
to compute e(skA, pkB), since f , tf , and the prime group
order are publicly known and an attacker can simply compute
the tf -th root of e(skA, pkB)

f(tf ). As a result, this approach
allows the attacker to predict seeds that are used in future
communications.

We remedy this problem and propose the following seed
establishment protocol. It combines the efficiency of the ap-
proach by Ryu et al. and, at the same time, prevents attackers
from deriving future seeds. The core idea is to use a second
cryptographic hash function1

f : {0, 1}⇤ ! {0, 1}2⌘ and
compute the seed

S(A,B) := f(e(skA, pkB), tf ) = f(e(g, g)abs, tf )

as the established shared session seed, where ⌘ denotes the

1To achieve ⌘ bit security, we choose the output length to be 2⌘. This
accommodates the general attack against hash functions based on the birthday
paradox.

security parameter and f(x, y) denotes the application of f to
the standard encoding of the pair that contains x and y.

B. The Seed Establishment Scheme

Formally, let GGen be a group generator algorithm that
takes as input a security parameter ⌘ and draws a randomly
chosen generator for a group G1 of prime order q in order
of 2⌘ , a description of a non-degenerate bilinear mapping
e : G1 ! GT , and two hash functions f : {0, 1}⇤ ! {0, 1}2⌘
and h : {0, 1}⇤ ! G1 such that e(g, g) is a generator for
a multiplicative group GT for the designated generator g.
Note that GT is also of prime-order q. Then GGen outputs
hq, g, e, f, hi.

The PKG’s setup phase algorithm MGen(1⌘). The master
key generation algorithm MGen takes as input a security
parameter ⌘. MGen(1⌘) runs the group generator algorithm
GGen obtaining hq, g, e, f, hi and chooses a random master
key s 2 Z⇤

q uniformly at random. Let par := hq, g, e, f, hi be
the global parameters. Then, MGen(1⌘) outputs hpar , si.

A user’s setup algorithm Gen(par , IDA, s). The setup algo-
rithm Gen for a user A takes as input the global parameters
par , the user’s unique name IDA, and the master secret key s.
Gen(par , IDA, s) outputs skA := s · pkA = s · h(IDA) 2 G⇤

1.

The seed establishment procedure Seed(par , skA, IDB , tf ).
The seed establishment algorithm Seed run by user A to estab-
lish a seed with user B takes as input the global parameters
par , the secret key of the caller skA, the unique name IDB

of the peer B, and the time frame tf . Seed(par , skA, IDB , tf )
outputs f(e(skA, pkB), tf ).

For the sake of illustration, we depict the correctness of
our construction and show that A and B derive a shared seed:

S(A,B) := f(e(skA, pkB), tf ) = f(e(sa · g, b · g), tf )
= f(e(g, g)abs, tf ) = f(e(sb · g, a · g), tf )
= f(e(skB , pkA)), tf ) =: S(B,A).

Enabling duplex communication. Duplex communication
can be enabled by using different seeds for the two directions.
The idea is to encode the direction as input to the outer hash
function f : let A and B be the communicating parties. Then,
we use for the communication from A to B the key S!

(A,B) :=
f(e(skA, pkB), tf , IDA, IDB) and for the communication from
B to A the seed S!

(B,A) := f(e(skB , pkA), tf , IDB , IDA).

V. SECURITY ANALYSIS

In this section, we characterize the security of seed es-
tablishment schemes by introducing the notion of a secure
seed establishment scheme for anti-jamming methods. We
first informally describe the attacker model and then formally
define the challenger; this definition precisely describes how
we formalize the attacker for our threat model from Section III.
Thereafter, we show that the scheme described in Section IV
indeed constitutes a secure seed establishment scheme.
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upon (initialize)
hpar , si  MGen(1⌘);
tf := 0;
send par to E

upon (nextTimeframe)
tf := tf + 1;
send tf to E

upon (initialize, IDP )
if registered [IDP ] = ? then
skP  Gen(par , s, IDP );
set registered [IDP ] := 1
send ready to E

upon (compromise, IDP )
if IDP 62 challengeSet then
c[IDP ] := 1;
send skP to E

upon (computeSeed, IDP , IDQ)
if seed [IDP , IDQ, tf ] = ? then
d

tf

 Seed(par , skP , IDQ, tf )
seed [IDP , IDQ, tf ] := d

tf

send seed [IDP , IDQ, tf ] to E

upon (challenge, IDP , IDQ)
set challengeSet := {IDP , IDQ}
if seed [IDP , IDQ, tf ] = ? ^

c[IDP ] = ? ^ c[IDQ] ?
then

if b = 1 then
seed [IDP , IDQ, tf ] R GT

else
d

tf

 Seed(par , skP , IDQ, tf )
seed [IDP , IDQ, tf ] := d

tf

send seed [IDP , IDQ, tf ] to E

The actions compromise, computeSeed, and challenge require that the involved parties IDP and, if applicable, IDQ are
registered. For the sake of readability, we do not explicitly write these two if statements into the code.

Figure 2. Pseudo-randomness seed challenger PRSChb(1⌘)

A. Preliminary Remarks

Intuitively, we use a standard reduction technique to show
that any attacker that wins against the challenger can be used
to break the well-known decisional bilinear Diffie-Hellman
problem. Since we assume that this problem is hard, we
conclude that no attacker exists.

Our security notion for a seed establishment closely re-
sembles the security notion of a secure key exchange in the
eCK model [13]. On a high level, the main difference to
the eCK model is that we do not allow any communication
between the participating parties. In the spirit of the eCK
model, we introduce the notion of a session. One session
corresponds to one time frame. Our security definition for
the seed establishment requires that the established seed is
pseudo-random. More precisely, we require that the seeds of
one session are indistinguishable from randomly chosen bit
strings, in particular the seeds should be unpredictable based
on past sessions.

Here and throughout the remainder of this paper, we use
the convention that variables such as seed are written in lower-
case letters. Some variables are parameterized, for instance, by
user identifier or by the time frame. We use square brackets
to denote the parameters, e.g., seed [IDP , IDQ, tf ]. Initially, all
variables for all parameters are set to ?. Functions are denoted
by capitalized strings with the usual parenthesis notation, e.g.,
Seed(par , skP , IDQ, tf ).

B. The Notion of a Secure Seed Establishment

We consider a probabilistic and polynomially bounded
(ppt) attacker E . The attacker determines the number of
parties involved in the game. This number can be dynamically
changed. We grant the attacker the knowledge of all seeds that

were established in the system, i.e., all seeds from all con-
current sessions. We stress that this is an unrealistically strong
attacker: a real-life attacker is able to use a broadband receiver
to determine the frequency sequence used in a communication.
Our attacker, however, not only knows all these sequences but
also the input to the pseudo-random generator that resulted
in these sequences. Furthermore, we grant the attacker the
power to arbitrarily compromise users at any point in time.
These users will immediately release their secret key. The only
exception are the users that are challenged by the attacker.
These users cannot be compromised since this trivially breaks
any security property.

Challenger definition. In Figure 2, we formally define the
seed challenger PRSChb(1⌘) against the pseudo-randomness
of the seed establishment scheme. The attacker can start the
game by sending (initialize) and the attacker can advance
to the next time frame by sending (nextTimeframe). We let
the attacker dynamically decide at which point in time an
honest party P performs its initial setup phase by sending
(initialize, IDP ).

The variable registered [IDP ] keeps track of parties that
finished their setup phase. By sending (compromise, IDP ), the
attacker can adaptively compromise a party P . The variable
c[IDP ] keeps track of compromised parties. Compromising a
party is only possible if the attacker has not previously issued
a challenge involving that party.

The attacker can let parties P and Q compute the seed for
the current time frame by sending (computeSeed, IDP , IDQ).
The newly established seed is immediately send to the attacker.
Finally, the attacker can request a challenge seed for two honest
(i.e., non-compromised) parties P and Q of her choice by
sending (challenge, IDP , IDQ). At this point, the parameter
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b of the challenger comes into play: if b = 0, i.e., if the
challenger is in the pseudo-randomness game, the challenger
sends the correctly computed seed; otherwise, b = 1, i.e., if
the challenger is running the random game, and the challenger
sends a value chosen uniformly at random. The attacker wins
if she is able to determine the bit b with non-negligible
probability.

C. Security proof

In the following, we show that the attacker E cannot
win in the challenge defined above. In the following, we let
E(1⌘)M denote the execution of E(1⌘) with oracle access to
the machine M , i.e., can send requests to M and receives
responses from M .

Definition 1: Let PRSCh be defined as in Figure 2. We
say that a tuple of ppt algorithms (GGen,MGen, Seed) is a
secure seed establishment scheme if for all ppt attackers E the
following difference is negligible in ⌘:

|Pr[z  E(1⌘)PRSCh0(1
⌘) : z = 1]�

Pr[z  E(1⌘)PRSCh1(1
⌘) : z = 1]|.

We base the security of our scheme on the commonly used
bilinear version of the decisional Diffie-Hellmann problem.

The decisional bilinear Diffie-Hellmann (DBDH) problem.
Let GGen be a group generator algorithm for G1 as described
in Section IV-B. We say that the DBDH problem is hard
for GGen if for every pair (IDA, IDB) 2 {0, 1}⇤ and every
probabilistic, polynomial-time (ppt) attacker E the following
difference is negligible in ⌘:

|Pr[hq, g, e, f, hi, GGen(1⌘), a, b, s Z⇤
q

z  E(1⌘, q, g, e, a · g, b · g, s · g, e(g, g)abs) : z = 1]

� Pr[hq, g, e, f, hi, GGen(1⌘), a, b, s, r  Z⇤
q ,

z  E(1⌘, q, g, e, a · g, b · g, s · g, e(g, g)r) : z = 1]|.

Theorem 1: Let GGen be the group generator algorithm as
defined in Section IV-B. If h : G1 ! GT and f : {0, 1}⇤ !
{0, 1}⌘ are random oracles and if DBDH is hard for GGen,
then (GGen,MGen, Seed) is a secure seed establishment
scheme.

Proof outline. The full proof shows by contraposition that
E(1⌘)PRSCh0(1

⌘) and E(1⌘)PRSCh1(1
⌘) are indistinguishable.

For every attacker E , we construct a reduction M that
breaks the DBDH problem with non-negligible probability
if E(1⌘)PRSCh0(1

⌘) and E(1⌘)PRSCh1(1
⌘) are distinguishable

with non-negligible probability, i.e., if the following difference
is non-negligible:

|Pr[z  E(1⌘)PRSCh0(1
⌘) : z = 1]�

Pr[z  E(1⌘)PRSCh1(1
⌘) : z = 1]|.

The full proof can be found in Appendix B.

VI. EXPERIMENTAL EVALUATION

We implemented our seed establishment scheme as detailed
in Section IV-B and conducted an experimental evaluation to
investigate the practical feasibility of our approach.

A. Prototype Implementation

The implementation was done in Java since Java runs on
virtually all commodity personal computers and on Android
embedded devices, thus conveniently allowing us to study the
efficiency with only one implementation. For the mathematical
operations, we relied on the jPBC library [4]. This library is
written entirely in Java without resorting to external native-
code libraries for speedup. As hash function to compute the
seed, we use SHA-256 as provided by the standard Java API
via the MessageDigest class. For the time frames, we
conveniently used the current system time, accessible via the
Java API call System.currentTimeMillis. Of course,
a concrete implementation would use a more coarse-grained
time resolution. Since this does not affect the seed computation
time we omitted the code that computes such time frames in
our implementation.

The implementation is general and does not exploit any
form of parallelism (further discussed below). The source code
and an executable Android APK package and an executable
Java archive are freely available [17].

B. Experimental Evaluation

We conducted an experimental evaluation of the imple-
mentation. We let the implementation run on a commodity
notebook with a 3.3 GHz quad-core processor and 4 GB RAM,
on a Galaxy Nexus phone that is equipped with a 1.2 GHz
dual-core processor and 1 GB RAM, and on a Galaxy Note
10.1 tablet that is outfitted with a 1.4 GHz quad-core processor
and 2 GB RAM. On each device, we used multiple security
parameters to show that our scheme is also feasible for larger,
more secure elliptic curves. We used elliptic curves that offer
a security parameter of 80 bits, 112 bits, and 128 bits. More
precisely, we used symmetric TYPE-I curves [7] with an
embedding degree of k = 2 that are coined Type-A curves
in jPBC [4]. The curve parameters are specified in Table I.
We selected a symmetric pairing.2 In the following, we shed
more light on the selection of the curve parameters.

Since we rely on the discrete logarithm problem for the
security of our scheme, we require that this problem is at
least as hard in the target group GT as it is in G1. The
group G1 is an r bit prime-order subgroup of an elliptic curve
E(Fq) over the finite field Fq , where q is a p bit prime. Since
the embedding degree of our curves is k = 2, GT is a
subgroup of the field extension Fq2 . Koblitz and Menezes [12]
recommend that for achieving a security parameter ⌘, the field
extension Fqk should be as large as RSA groups with that
security parameter and that r should equal 2⌘. Intuitively, the
algorithms for attacking RSA are as sophisticated as those for
attacking the discrete logarithm problem in r bit subgroups of
E(Fq) and in Fqk .

We applied these recommendations and derive the curves
as follows: we used the curve provided with jPBC that offers
80 bit security (called “a.param”) and we generated curves
with 112 bit and with 128 bit security ourselves using the jPBC

2Asymmetric pairings may result in a higher embedding degree and, as
a consequence, smaller curves and potentially better performance (see Ap-
pendix A). We are, however, not aware of a library with support for asymmetric
pairings on Type-II curves that runs on commodity hardware as well as
embedded devices out of the box.
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Figure 3. Experimental evaluation.

RSA ⌘ r p |Fq2 |
1024 80 160 512 1024
2048 112 229 1099 2198
3072 128 260 1599 3198

Table I. ELLIPTIC CURVE PARAMETERS USED IN THE PROTOTYPE
IMPLEMENTATION.

function TypeACurveGenerator(r, p). Since the curve
generation algorithm sometimes deviates from the desired
parameters, we added a margin to guarantee at least the desired
group sizes. Table I summarizes the RSA group sizes for the
security parameter ⌘, the bit size r of G1, the bit size p of the
base field Fq of the elliptic curve, and the bit size of the field
extension Fq2 . For more details and explanations, we refer the
reader to extensive literature on the topic [2], [7], [12], [21].

For each of the three curves, we evaluated the schemes as
follows: we randomly chose PKG secret keys. For each such
key, we set up the public keys for two parties A and B and
we ran the seed establishment scheme 100 times, each time
with a different time frame. We report the average time that it
took party A and B to compute the seed in Figure 3.

C. Results and Discussion

Figure 3 shows that the seed establishment protocol is
fast enough to be used on commodity hardware as well as
embedded devices. On a normal notebook, the computation of
the seed constitutes only a very minor overhead: it takes less
than 55 ms even for the highest security parameter. On the two
Android devices, the time required for the seed computation
ranges between 311 ms to 838 ms and 424 ms to 1182 ms for
the quad-core tablet and the dual-core phone, respectively.

The graphs indicate that the computation time does not
grow linearly in the security parameter. The reason is that we
use elliptic curves that are defined over finite fields and finite
field extensions. The operations in these finite fields have a
super-linear complexity in the length of the security parameter.
This super-linear complexity of the basic operations is reflected
in the computation time of the pairing.

Even though the embedded devices used in our evaluation
are equipped with powerful CPUs, they show a significantly
worse performance for the following reasons: jPBC internally
uses the BigInteger class. This class uses normal registers
to compute arbitrary-precision modular operations. Since the

CPUs in both handheld devices are 32 bit processors, these
devices have an inherent disadvantage when compared to
64 bit processors of commodity notebooks. Furthermore, a
study conducted by Oracle [9] suggests that the Dalvik virtual
machine, the back-end virtual machine that runs the Android
applications, is slower than native Java VMs.

Generality and parallelism. The implementation uses the
jPBC library out of the box. This implementation is written to
be portable and consequently does not exploit any optimized
number theory library. Even though jPBC is thread-safe, our
implementation cannot exploit parallelism because the imple-
mentation consists of two sequentially-dependent jPBC API
calls. A specialized, more low-level implementation potentially
improves efficiency by actively exploiting the features of a
multi-core architecture.

VII. RELATED WORK

Identity-based cryptography. The identity-based cryptogra-
phy paradigm was initiated by Adi Shamir [23]. Since then,
an impressive corpus of literature on different kinds of identity-
based cryptography techniques has been published. The work
closest to ours are pairing-based key establishment schemes
(e.g., [5], [11], [21], [22]). In all of these schemes, the
established key k is used to directly encrypt or directly mac
the subsequent communication. In particular, the established
key k must be strong enough to provide forward secrecy
or unconditional anonymity, i.e., even if the long-term keys
used to establish k are broken in the future, k is still secure.
In our case, however, we do not need that seeds remain
secret in the future or that seeds remain secure if one of
the two parties is compromised. We only require that two
consecutively generated seeds are different. Therefore, we can
resort to the conceptually much simpler and computationally
much more efficient solution based on time-frames and hash
functions. After establishing the seed to enable a jamming-
resistant communication, any key establishment protocol can
be used to establish a session key to secure the successive
communication.

Our seed establishment scheme is inspired by the key setup
of the encryption scheme by Boneh and Franklin [2]. Our
approach, however, significantly deviates from their approach
since they build an asymmetric encryption scheme while we
aim at establishing a shared seed in a non-interactive manner.
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The concept of combining strings and cryptographic mate-
rial as input to hash functions has, for instance, been explored
in the form of service-specific pseudonyms [16], of domain
pseudonyms [8], and of scope-exclusive pseudonyms [1]. The
aim of all of these approaches is to create pseudonyms
that are linkable within the context described by the string
but unlinkable outside of that context. We do not establish
pseudonyms. In fact, the identity of two communication parties
can be publicly known. Instead, we focus on establishing cryp-
tographically strong seeds and we enforce that consecutively
established seeds differ.

Seed establishment and non-interactive key establishment.
Our security notion for a seed establishment closely resembles
the security notion of a secure key exchange in the eCK
model [13]. The main difference to the eCK model is that
our goal is to abstain from any communication between
the participating parties and that we do not require forward
secrecy. Even though a seed establishment scheme for anti-
jamming techniques does not need to provide forward secrecy,
an attacker should not be able to mount replay attacks. We
introduce time frames and require that even for the same
peer the seed establishment scheme produces a completely
uncorrelated seed for every time frame.

On the theory side, non-interactive key establishment has
recently been re-investigated by [6]. In this work, the authors
provide security models for this primitive and explore their
relationships. On the more practical side, the use of identity-
based key establishment protocols for wireless ad-hoc commu-
nication in adversarial settings has recently been modeled by
Capar et al. [3]. The authors analyze the communication and
energy costs of existing security protocols in wireless settings
and propose a protocol that reduces both costs. In contrast
to our scheme, their protocol relies on transmitting a nonce
for guaranteeing the freshness of a seed, which make zero-
communication seed establishment impossible. Moreover, they
do not consider specific implementation details for realizing
identity-based key establishment.

Keyless spread-spectrum communication. Apart of the
mentioned works on spread-spectrum communication without
shared secrets such as [25], [26] for FHSS-based solutions and
[10], [19], [24] for DSSS-based solutions, a number of further
schemes have been proposed to improve their efficiency and
applicability. To improve the robustness of keyless DSSS-based
schemes to reactive jammers, delayed seed-disclosure [14] and
randomized differential DSSS [15] were proposed. In [28],
Wang et al. model UFHSS transmissions as a multi-armed ban-
did problem and derive optimality results for adaptive UFHSS.
In [29], Xiao et al. take the pairwise problem to network
(multi-hop) settings and propose solutions for collaborative
broadcast. All these proposals focus on the communication
side and how to make the reception of messages more efficient.
They do not improve on the required length of messages that
must be exchanged for establishing a shared secret (or seed)
as we do in this paper. This idea might seem simple but it can
nevertheless be very effective.

A general problem in this context (not specific to this
paper) is how a receiver will know that it should be receiving
messages. In scenarios where messages are sent regularly, this

can be predicted by the receiver. Other settings require out-of-
band channels or the receiver’s initiative when all communi-
cation is suddenly lost (due to jamming attacks).

VIII. CONCLUSION

In this paper, we presented a zero-communication seed es-
tablishment scheme that derives cryptographically strong seeds
for anti-jamming spread spectrum methods. Once derived,
these seeds are used as input to a pseudo-random generator
that in turn is used to create a high-throughput, jamming-
resistant channel. The proposed scheme combines powerful
identity-based cryptographic methods with sophisticated anti-
jamming techniques to facilitate fast and reliable wireless com-
munication in an adversarial setting. Cryptographically strong
seeds are derived by exploiting a-priori knowledge of the
communication partners. Even if no a-priori knowledge about
the partners is available, our method significantly reduces the
required communication over low-throughput channels by one
order of magnitude.

We proved that our scheme derives cryptographically
strong seeds. In particular, the derived seeds are computation-
ally indistinguishable from random numbers against a very
strong attacker that knows all established seeds and that can
dynamically create and corrupt parties. More precisely, we
formally defined the notion of a secure seed establishment
scheme for anti-jamming methods and we showed that our
scheme satisfies this notion in the presence of such a strong
attacker. Furthermore, we also conducted an experimental
evaluation to show the feasibility of our approach. The results
confirm that the seed establishment is efficient enough to run
on commodity mobile hardware such as notebooks, tablet
computers, and smart phones. An optimized implementation
that exploits hardware-specific features such as the readily-
available multi-core architectures of these devices can be
expected to improve the efficiency further.
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APPENDIX

A. Seed Establishment with an Asymmetric Pairing

The seed establishment scheme in a setting with an asym-
metric pairing works as follows: the pairing e : G1 ⇥ G2 7!
GT , G1 6= G2 is defined over a Type-II elliptic curve [7].
These curves have an efficiently-computable isomorphism � :
G2 7! G1. We require that all values reside in G2 and the hash
function h : {0, 1}⇤ 7! G2. The public key and private keys
are still computed as before. The seed computation however,
becomes slightly more involved:

SA,B := f(e(�(skA), pkB), tf )
SB,A := f(e(�(skB), pkA), tf )

To show the correctness of this computation, i.e., to show that
SA,B = SB,A, we observe that �(ĝ) := g for some generators
ĝ of G2 and g of G1 and that �(x · ĝ) = x · g since � is an
isomorphism. Furthermore, we recall that skA = s · pkA =
s · a · ĝ and skB = s · pkB = s · b · ĝ for some a, b, and the
PKG secret s. Then

SA,B := f(e(�(skA), pkB), tf )
= f(e(�(s · a · ĝ), b · ĝ), tf )
= f(e(s · a · �(ĝ), b · ĝ), tf )
= f(e(�(ĝ), ĝ)s·a·b, tf )
= f(e(s · b · �(ĝ), a · ĝ), tf )
= f(e(�(s · b · ĝ), a · ĝ), tf )
= f(e(�(skB), pkA), tf )
=: SB,A

B. Full Proof of Theorem 1

Theorem 1. Let GGen be the group generator algorithm
as above. If h : G1 ! GT and f : {0, 1}⇤ ! {0, 1}⌘ are
random oracles and if DBDH is hard for GGen, then for all
ppt attackers E the following difference is negligible in ⌘:

|Pr[z  E(1⌘)PRSCh0(1
⌘) : z = 1]�

Pr[z  E(1⌘)PRSCh1(1
⌘) : z = 1]|.

Proof: We show by contraposition that E(1⌘)PRSCh0(1
⌘)

and E(1⌘)PRSCh1(1
⌘) are indistinguishable. We construct for

every attacker E a reduction M that breaks the DBDH
problem with non-negligible probability if E(1⌘)PRSCh0(1

⌘)

and E(1⌘)PRSCh1(1
⌘) are distinguishable with non-negligible

probability, i.e., if the following difference is non-negligible:

|Pr[z  E(1⌘)PRSCh0(1
⌘) : z = 1]�

Pr[z  E(1⌘)PRSCh1(1
⌘) : z = 1]|.

Let p be the polynomial of E . The reduction Mb commu-
nicates with E and outputs as a guess z whatever E outputs
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as a guess. For a given challenge tuple (q, g, e, a · g, b · g, s ·
g, e(g, g)z) and bilinear mapping e, where z = (abs) for
b = 0 and z is chosen uniformly at random for b = 1, Mb

is constructed as follows:

Upon initialization
uniformly draw a secret key s

0

let par := hq, g, ei
draw two random numbers i, j  {1, . . . , p(⌘)}
let pki := a · g and pkj := b · g
let c := 0 and cheated := ;

Upon a random oracle query for h(m)
if c 2 {i, j} then

program h(m) := pkc
store cheated := cheated [ {m}

else
let r  Z⇤

q
store exponents[m] := r

program h(m) := r · g
increment c := c+ 1
return h(m)

upon (initialize, IDP )
if IDP 62 cheated then

skP  Gen(par , s0, IDP )
send ready to E

upon (compromise, IDP )
if IDP 62 challengeSet and IDP 62 cheated then

c[IDP ] := 1; send skP to E
else

abort and halt

upon nextTimeframe

tf := tf + 1; send tf to E

upon (computeSeed, IDP , IDQ)
if seed [IDP , IDQ, tf ] = ? then

if IDP , IDQ 2 cheated then
seed [IDP , IDQ, tf ] := f(e(g, g)z, tf )

else if IDP 2 cheated then
seed [IDP , IDQ, tf ]
:= f(e(s · g, h(IDQ))exponents(m)

, tf )
else if IDQ 2 cheated then
seed [IDP , IDQ, tf ]
:= f(e(h(IDP ), s · g)exponents(m)

, tf )
else
d

tf

 Seed(par , skP , IDQ, tf )
seed [IDP , IDQ, tf ] := d

tf

send seed [IDP , IDQ, tf ] to E

upon (challenge, IDP , IDQ)
set challengeSet := {IDP , IDQ}
if seed [IDP , IDQ, tf ] = ? ^

c[IDP ] = ? = c[IDQ]
then

if IDP , IDQ 2 cheated then
seed [IDP , IDQ, tf ] := e(g, g)z

else
d

tf

 Seed(par , skP , IDQ, tf )
seed [IDP , IDQ, tf ] := d

tf

send seed [IDP , IDQ, tf ] to E

We have to show that if the attacker distinguishes
E(1⌘)PRSCh0(1

⌘) from E(1⌘)PRSCh1(1
⌘) with non-negligible

probability then the reduction M also wins in the DBDH game
with non-negligible probability.

We prove this statement in three steps. First, we show that
E(1⌘)PRSChb(1

⌘) is indistinguishable from E(1⌘)Mb as long
as Mb does not abort and halt. Second, we show that the
probability that Mb does not abort and halt is noticeable. Third,
we show that the attacker cannot predict when Mb does abort
and halt.

As a first step, we show the indistinguishability as long as
Mb does not abort and halt. We observe that the output of the
random oracle is random and uncorrelated, and that for the
parties not in cheated will behave exactly like the challenger.
Moreover, for every session in which only one of the parties
in cheated participates, we have

seed(IDP , IDQ, tf ) := f(e(h(IDP ), s · g)exponents(m)
, tf )

= f(e(h(IDP ), s · g)r, tf )
= f(e(h(IDP ), r · g)s, tf )
= f(e(h(IDP ), h(IDQ))

s
, tf )

= f(e(g, g)ars, tf ) where a · g = h(IDP )

Hence, as long as Mb does not abort and halt E(1⌘)PRSChb(1
⌘)

is indistinguishable from E(1⌘)Mb .

As a second step, we show that the probability that Mb

does not abort and halt is noticeable. This statement directly
follows from the fact that Mb randomly picks the parties that
are in cheated from a set of polynomial size.

As a third step, we show that the attacker cannot predict
when Mb aborts and halts. This statement directly follows from
the fact that the elements in cheated are randomly chosen.

Consequently, if the attacker distinguishes
E(1⌘)PRSCh0(1

⌘) from E(1⌘)PRSCh1(1
⌘) with non-negligible

probability then the reduction M also wins in the DBDH
game with non-negligible probability. This contradicts the
DBDH assumption and the statement follows.
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