
CyberProbe: Towards Internet-Scale Active
Detection of Malicious Servers

Antonio Nappa⇤‡, Zhaoyan Xu†, M. Zubair Rafique⇤, Juan Caballero⇤, Guofei Gu†
⇤IMDEA Software Institute ‡Universidad Politécnica de Madrid

{antonio.nappa, zubair.rafique, juan.caballero}@imdea.org
†SUCCESS Lab, Texas A&M University

{z0x0427, guofei}@cse.tamu.edu

Abstract—Cybercriminals use different types of geographi-
cally distributed servers to run their operations such as C&C
servers for managing their malware, exploit servers to distribute
the malware, payment servers for monetization, and redirectors
for anonymity. Identifying the server infrastructure used by a
cybercrime operation is fundamental for defenders, as it enables
take-downs that can disrupt the operation and is a critical step
towards identifying the criminals behind it.

In this paper, we propose a novel active probing approach for
detecting malicious servers and compromised hosts that listen
for (and react to) incoming network requests. Our approach
sends probes to remote hosts and examines their responses,
determining whether the remote hosts are malicious or not. It
identifies different malicious server types as well as malware that
listens for incoming traffic such as P2P bots. Compared with
existing defenses, our active probing approach is fast, cheap, easy
to deploy, and achieves Internet scale.

We have implemented our active probing approach in a
tool called CyberProbe. We have used CyberProbe to identify
151 malicious servers and 7,881 P2P bots through 24 localized
and Internet-wide scans. Of those servers 75% are unknown
to publicly available databases of malicious servers, indicating
that CyberProbe can achieve up to 4 times better coverage than
existing techniques. Our results reveal an important provider

locality property: operations hosts an average of 3.2 servers on
the same hosting provider to amortize the cost of setting up a
relationship with the provider.

I. INTRODUCTION

Cybercrime is one of the largest threats to the Internet.
At its core is the use of malware by miscreants to monetize
infected computers through illicit activities such as spam,
clickfraud, ransomware, and information theft. To distribute
the malware, control it, and monetize it, miscreants leverage
remotely-accessible servers distributed throughout the Internet.
Such malicious servers include, among many others, exploit
servers to distribute the malware through drive-by downloads,
C&C servers to control the malware, web servers to monitor

the operation, and redirectors for leading fake clicks to ad-
vertisements. Even P2P botnets require “server-like” remotely
accessible peers for newly infected hosts to join the botnet.

Identifying the server infrastructure used by an operation
is fundamental in the fight against cybercrime. It enables take-
downs that can disrupt the operation [12], sinking C&C servers
to identify the infected hosts controlled by the operation [52],
and is a critical step to identify the miscreants running the
operation, by following their money-trail [59].

Most current defenses identify malicious servers by pas-
sively monitoring for attacks launched against protected com-
puters, either at the host (e.g., AV installations, HIDS) or
at the network (e.g., NIDS, spamtraps, honeypots), or by
running malware in a contained environment monitoring their
network communication [22], [27]. These passive approaches
achieve limited coverage, as they only observe servers involved
in the attacks suffered by the protected hosts, or contacted
by the malware samples run. To increase coverage, security
companies aggregate information from multiple distributed
sensors or execute more malware samples, but this requires
a large investment or a large user base, and still does not
achieve Internet-scale coverage. These approaches are also
slow; malicious servers are detected asynchronously, when
attacks happen to target the protected hosts. This is prob-
lematic because miscreants often use dynamic infrastructures,
frequently moving their servers to make detection difficult, as
well as in reaction to individual server takedowns [36]. By the
time a new server is detected, a previously known one may
already be dead.

A prevalent active approach for identifying malicious
servers is using honeyclient farms, which visit URLs, typ-
ically found through crawling, looking for exploit servers
performing drive-by downloads [42], [61]. Such farms are
at the core of widely deployed browser defenses such as
Google’s SafeBrowsing and Microsoft’s Forefront. However,
honeyclients focus on exploit servers and do not cover other
malicious server types. In addition, achieving coverage is
expensive, requiring large investments in server farms to run
the crawlers and honeyclients. Thus, they are often deployed
only by large corporations.

In this paper, we propose a novel active probing approach
for detecting malicious servers and compromised hosts that
listen for (and react to) incoming network requests. Our
approach sends probes to remote hosts and examines their
responses, determining whether the remote hosts are malicious
or not. The probes are sent from a small set of scanner hosts

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’14, 23-26 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-35-5
http://dx.doi.org/

http://dx.doi.org/10.14722/ndss.2014.23218

to a large set of target hosts. The targets may belong to
the same network (e.g., a hosting facility), different networks
across the Internet (e.g., all hosting facilities of the same
provider), or correspond to all remotely accessible Internet
hosts. Our approach is general and can identify different
malicious server types including C&C servers, exploit servers,
web front-ends, and redirect servers; as well as malware that
listens for incoming traffic such as P2P bots.

Compared with existing defenses, our active probing ap-
proach is fast, cheap, easy to deploy, and achieves Internet
scale. It does not require a sensor to be hosted in every
network. Using 3 scanners, it can probe the Internet in 24
hours searching for a specific family of malicious servers, e.g.,
C&C servers of the same malware family or exploit servers
of a specific operation. The scanners can be geographically
distributed and rate-limited to respect bandwidth constraints
on the networks hosting them. To reduce the probing time
we can simply add more scanners. Given its speed, it can be
used to understand the size of the server infrastructure used
by an operation at a small window of time. Furthermore, it
enables tracking (dynamic) malicious infrastructures over time,
by periodically scanning for the servers of the same operation.

We have implemented our approach in a tool called Cyber-
Probe, which comprises two components: adversarial finger-
print generation and scanning. CyberProbe implements a novel
adversarial fingerprint generation technique, which assumes
that the servers to be fingerprinted belong to an adversary who
does not want them to be fingerprinted. Adversarial fingerprint
generation takes as input network traces capturing dialogs
with servers of a malicious family of interest, and builds a
fingerprint, which captures what probes to send and how to
determine from a target’s response if it is malicious. The
fingerprint generation process is designed to minimize the
traffic sent to malicious servers and to produce inconspicuous
probes to minimize the chance of detection by the adversary.
The scanning component takes as input a fingerprint and a
set of target ranges and probes those targets to check if they
belong to the family of interest.

We have used CyberProbe to build 23 fingerprints for 13
malicious families (10 malware families and 3 drive-by down-
load operations). Using CyberProbe and those fingerprints,
we perform 24 scans (12 of them Internet-wide). The scans
identify 7,881 P2P bots and 151 distinct malicious servers
including C&C servers, exploit servers, payment servers, and
click redirectors. Of those servers, 75% are unknown to 4
public databases of malicious infrastructure: VirusTotal [56],
URLQuery [54], Malware Domain List [35], and VxVault [58].
This demonstrates that for some families CyberProbe can
achieve up to 4 times better coverage than existing techniques.
CyberProbe is also fast; in some cases it can even identify ma-
licious servers before they start being used by the miscreants,
when they are simply on stand-by.

Our results uncover an important provider locality property.
A malicious operation hosts an average of 3.2 servers on the
same provider to amortize the cost of setting up a relationship
with the provider. As malicious servers are often hosted in
cloud hosting providers [36], these providers need to be aware
of provider locality. When they receive an abuse report for a
malicious server, chances are more servers of the same family
are being hosted on their networks.

This work makes the following contributions:

• We propose a novel active probing approach for
Internet-scale detection of malicious servers. Our ap-
proach sends probes to remote target hosts and classi-
fies those targets as belonging to a malicious family or
not. Compared to current solutions our active probing
approach is fast, scalable, easy to deploy, and achieves
large coverage.

• We implement our approach into CyberProbe, a tool
that implements a novel adversarial fingerprint gener-
ation technique, and three network scanners. Cyber-
Probe builds fingerprints from a set of network traces
for a malicious family, under the assumption that the
adversary does not want its servers to be fingerprinted,
and probes target networks or the Internet using those
fingerprints.

• We use CyberProbe to conduct 24 localized and
Internet-wide scans for malicious servers. CyberProbe
identifies 151 malicious servers, 75% of them un-
known to existing databases of malicious activity. It
also uncovers an important provider locality property
of the malicious servers hosting infrastructure.

II. OVERVIEW AND PROBLEM DEFINITION

CyberProbe uses an active probing (or network fingerprint-
ing) approach that sends probes to a set of remote hosts and ex-
amines their responses, determining whether each remote host
belongs to a malicious family or not. Network fingerprinting
has been a popular security tool for nearly two decades [9]. A
fingerprint identifies the type, version, or configuration of some
networking software installed on a remote host. It captures the
differences in the responses to the same probes sent by hosts
that have the target software installed and those that have not.
A fingerprint can identify software at different layers of the
networking stack. Tools like Nmap [39] use it to identify the
OS version of remote hosts, and other tools like fpdns [16]
or Nessus [37] use it for identifying application-layer software
such as DNS or Web servers.

Our fingerprints target application-layer software and its
configuration. Each fingerprint targets a specific malicious
family. For C&C servers and P2P bots, a fingerprint identifies
the C&C software used by a malware family. For exploit
servers, a fingerprint can identify the exploit kit software or
a specific configuration of the exploit kit. For example, a
fingerprint could be used to identify all BlackHole exploit
servers on the Internet, and a different fingerprint could be
used to identify only BlackHole exploit servers belonging to a
specific operation. For the latter, we leverage the intuition that
exploit servers belonging to the same operation are managed
by the same individuals, and therefore have similarities in their
(exploit kit) configuration [36]. Since an exploit kit is typically
a set of web pages and PHP scripts installed on an off-the-shelf
web server (e.g., Apache or Nginx), the fingerprint needs to
capture characteristics of the exploit kit independent of the
underlying web server.

A malicious family may have multiple fingerprints. For
example, a malware family may use different C&C protocols,
or different messages in the same C&C protocol. A different
fingerprint can be generated for each of those protocols or
message types, but all of them identify the same family.

2

Fig. 1. Architecture overview.

Similarly, an exploit kit stores a number of files on a web
server (e.g., PHP, PDF, JAR), and a fingerprint could capture
a probe (and its corresponding response) for each of those files.

Our active probing approach takes as input network traces
capturing traffic involving a few seed servers that belong to the
family of interest, often only one. The fingerprints CyberProbe
generates enable finding not only the seed servers, but also
other previously unknown servers from the same family. Thus,
active probing provides a way of amplifying the number of
servers known to be part of the infrastructure of a malicious
operation.

A. Problem Definition
The problem of active probing is to classify each host h in

a set of remote target hosts H as belonging to a target family
x or not. Active probing comprises two phases: fingerprint
generation and scanning. The goal of fingerprint generation
is to produce one or more fingerprints for a family of interest
x, where each fingerprint FGx = hP, f

P

i comprises a probe
construction function P and a classification function f

P

. The
probe construction function returns, for a given target host h 2
H , the sequence of probes to be sent to the target host. The
classification function is a boolean function such that when
we send the probes P (h) to host h and collect the responses
R

P

from h, f
P

(R
P

) outputs true if h belongs to the family
of interest and false otherwise. The goal of scanning is given
a fingerprint, a port number, and a set of target hosts, to send
the probes, collect the responses, and determine whether each
target host belongs to the family of interest (i.e., matches the
fingerprint).

B. Adversarial Fingerprint Generation Overview
In this work we introduce the concept of adversarial

fingerprint generation, i.e., how to generate fingerprints for
servers owned by an adversary who may not want them
to be fingerprinted. The challenge in traditional fingerprint
generation is to find probes that trigger distinctive responses
from servers in the family of interest, i.e., responses that can
be differentiated from those by servers not in the family. A
general framework for fingerprint generation is proposed in
FiG [7]. It generates candidate probes, sends them to a set of
training hosts comprising hosts in the family of interest and
outside of it, and applies learning algorithms on the responses
to capture what makes the responses from hosts in the family
of interest distinctive.

Fig. 2. Example fingerprints.

Our adversarial fingerprint generation approach follows
that framework, but has two important differences. First, we
consider an adversarial scenario where the set of training
hosts from the family of interest are malicious servers. We
do not control them and they may be tightly monitored by
their owners. In this scenario, it is critical to minimize the
amount of traffic sent to those malicious seed servers and
to produce probes that look inconspicuous, i.e. that resemble
valid messages. As FiG generates random candidate probes,
a huge number of such candidates needs to be sent before
finding a distinctive response, as most random probes do not
have proper protocol structure and will be ignored or incite a
generic error response. Instead, CyberProbe replays previously
observed requests to the seed servers. These requests come
from valid interactions with the malicious servers and thus are
well-formed and inconspicuous. We obtain such requests by
executing malware in a contained environment (Section II-D),
by monitoring a honeyclient as it is exploited in a drive-by
download, or from external analysis [10].

Second, our approach differs in the process used to build
the classification function. FiG’s classification functions have
two main problems: they operate on the raw response, ignoring
any protocol structure, and they need a specific matching
engine. Instead, a key intuition in this work is that the
classification function can be implemented by using a network
signature on the responses from the targets. Network signatures
typically capture requests sent by malware infected hosts,
but can similarly capture responses from remote endpoints.
This relationship between fingerprint generation and signature
generation enables prior and future advances on either field
to be applied to the other. CyberProbe generates protocol-
aware network signatures compatible with Snort [50] and
Suricata [53], two efficient signature-matching open source
IDSes. Figure 2 shows example fingerprints for a clickfraud
operation and a drive-by download operation.

Figure 1a shows the adversarial fingerprint generation
architecture. It takes as input a set of network traces capturing
interactions with servers from the family of interest. First,
it extracts the unique request-response pairs (RRPs) in the
traces. Then, it replays the requests to the servers in the traces,
keeping only replayed RRPs with distinctive responses. Next,
it clusters similar requests. Finally, it generates signatures for
the responses in a cluster. It outputs one or more fingerprints
for the family of interest, each comprising a probe construction
function and a signature.

C. Scanning Overview
We use two types of scans based on the target ranges:

Internet-wide and localized. Internet-wide scans probe the
entire IPv4 address space while localized scans probe selected
ranges. Our localized scans explore the provider locality of the

3

malicious servers. That is, whether the managers of a malicious
family select a small number of hosting and ISP providers and
install multiple servers in each, to amortize the cost of setting
up a relationship with the provider (e.g., registering with a fake
identity, setting up working VMs). Using the seed servers as a
starting point, a localized scan probes only the set of IP ranges
belonging to the same providers that host the seed servers.
Localized scans do not allow identifying the full infrastructure
of a malicious family. However, they require sending only a
very small number of probes, and quite frequently they still
identify previously unknown servers.

We envision two different application scenarios for our
active probing approach. Some entities like antivirus vendors,
police, or national security agencies may want to use Internet-
wide scans to identify all malicious servers of a family on
the Internet. However, other entities like hosting providers or
ISPs may want to simply scan their own IP ranges to identify
malicious servers installed by their clients.

Scanners. Figure 1b shows the architecture of CyberProbe’s
scanning component. It comprises three scanners: a horizontal
TCP scanner, a UDP scanner, and an application-layer TCP
scanner (app-TCP). The horizontal TCP scanner performs
a SYN scan on a given port, and outputs a list of hosts
listening on that port. The UDP and app-TCP scanners send
the fingerprint probes and collect or analyze the responses. For
TCP fingerprints, CyberProbe first runs the horizontal scanner
and then the app-TCP scanner on the live hosts found by
the horizontal scanner. This allows reusing the results of the
horizontal scanner for multiple scans on the same port. All
3 scanners can be distributed across multiple scanner hosts.
The receiver component of the UDP and appTCP scanners can
output a network trace containing all responses or run Snort
on the received traffic to output the set of hosts matching
the fingerprint. Saving the network trace requires significant
disk space (e.g., 50 GB for an Internet-wide HTTP scan), but
enables further analysis of the responses.

Scan scope. Currently, our UDP and appTCP scanners probe
one fingerprint at a time since different fingerprints, even if
for the same family, may use different transport protocols and
require scanning on different ports. The scanners can be easily
modified to scan with multiple fingerprints if the target port
and target hosts are the same and the fingerprints use the same
transport protocol. However, an important goal of the scanning
is to spread the traffic received by a target over time and each
additional fingerprint makes the scan more noisy.

D. Malware Execution
Executing malware in a contained environment is a widely

studied problem [22], [27], [57]. For active probing, the
main goals are acquiring the malicious endpoints known to
the malware sample (e.g., C&C servers and P2P peers) and
collecting instances of the network traffic between the sample
and the malicious endpoints. Since C&C servers are highly
dynamic it is important to run the malware soon after collection
to maximize the probability that at least one of the C&C
servers is alive.

We use two containment policies for running the malware:
endpoint failure and restricted access. The endpoint failure
policy aborts any outgoing communication from the malware
by sending error responses to DNS requests, resets to SYN

packets, and sinking outgoing UDP traffic. This policy is
designed to trick the malware into revealing all endpoints it
knows, as it tries to find a working endpoint. The restricted
access policy allows C&C traffic to and from the Internet, but
blocks other malicious activities such sending spam, launching
attacks, or clickfraud. This policy also resets any connection
with a payload larger than 4 KB to prevent the malware to
download and install other executables.

The malware is first run with the endpoint failure contain-
ment policy and a default configuration. If it fails to send any
traffic, it is rerun with different configurations. For example,
it is queued to be rerun on a different VM (e.g., on QEMU
if originally run on VMWare) and for an extended period of
time (e.g., doubling the execution timer). This helps to address
malware samples that use evasion techniques for specific VM
platforms, and to account for malware samples that may take
longer to start its network communication.

III. ADVERSARIAL FINGERPRINT GENERATION

This section explains the process of generating fingerprints
for a malicious family of interest starting from a set of
network traces. Fingerprint generation comprises 4 steps. First,
it extracts from the network traces the set of request-response
pairs (RRPs) (Section III-A). Then, it replays the requests to
the live servers collecting their responses (Section III-B). Next,
it clusters RRPs with similar requests (Section III-C). Finally,
it generates signatures for each cluster (Section III-D).

Benign traffic pool. Adversarial fingerprint generation also
takes as input a pool of benign traffic used to identify which
parts of the responses from servers in the family are distinctive,
i.e., do not appear in benign traffic. This pool comprises three
traces: two of HTTP and HTTPS traffic produced by visiting
the top Alexa sites [2] and a 2-day long trace comprising all
external traffic from a network with 50 users, captured at the
network’s border. We scan the traces with two IDS signature
sets, verifying that they do not contain malicious traffic.

A. RRP Feature Extraction
From the network traces, CyberProbe first extracts the

RRPs, i.e., TCP connections and UDP flows initiated by the
malware or honeyclient towards a remote responder, and for
which some data is sent back by the responder. Here, a UDP
flow is the sequence of UDP packets with the same endpoints
and ports that times out if no communication is seen for
a minute. For each RRP, CyberProbe extracts the following
feature vector:
hproto, sport, dport, sip, dip, endpoint, request, responsei

where proto is the protocol, sport, dport, sip, dip are the ports
and IP addresses, and endpoint is the domain name used to
resolve the destination IP. The request and response features
represent the raw content of the request and response.

To extract the protocol feature CyberProbe uses protocol
signatures to identify standard protocols commonly used by
malware such as HTTP. Protocol signatures capture keywords
present in the early parts of a message (e.g., GET or POST
in HTTP) [13], [19]. They are able to identify the protocol
even if it uses a non-standard port, and can also identify
non-standard protocols on standard ports. Both situations are
common with malware. For unknown application protocols,
the protocol feature is the transport protocol.

4

RRPs for which the request endpoint is one of the top
100,000 Alexa domains [2] are discarded. This removes traffic
to benign sites, used by malware to test connectivity and by
exploit servers to download vulnerable software or redirect the
user after exploitation. In addition, it removes RRPs that have
identical requests (excluding fields known to have dynamic
data such as the HTTP Host header), to avoid replaying
the same request many times. From the remaining RRPs
CyberProbe builds an initial list of malicious endpoints. For
this, it resolves each domain in the endpoint feature to obtain
the current IP addresses the domain resolves to. It returns the
union of the destination IP addresses and the resolved IPs.

B. Replay
The next step is to replay the requests in the RRPs extracted

from the network traces to the known malicious endpoints.
The goal is to identify requests that lack replay protection, i.e.,
requests that if replayed to the same server at a later time or to
another server of the family still incite a distinctive response.
CyberProbe replays each unique request in the RRPs to every
entry in the initial list of malicious endpoints, collecting the
responses from endpoints that are alive.

The replay uses a commercial Virtual Private Network
(VPN) that offers exit points in more than 50 countries, each
with a pool of IP addresses, totaling more than 45,000 IPs.
Using a VPN is important for two reasons. First, while the
requests CyberProbe replays have a valid protocol syntax,
there is still a small chance that they are replayed in an
incorrect order or are no longer valid. If so, the managers of
the malicious family could notice it and block the sender’s IP
address. In addition, we are interested in requests that generate
a response without requiring any prior communication with
the malicious server. Since CyberProbe replays all requests to
each endpoint, it is important that the request being replayed is
not influenced by any state that a previously replayed request
may have set in the server. To achieve independence between
replays, the replayer changes the VPN exit node (an thus
its observable IP address) for each request sent to the same
endpoint. Intuitively, a server keeps a separate state machine
for each client that connects to it. Thus, by employing a
previously unused IP address, the server will be in its initial
state when it receives the replayed request.

Filtering benign servers. A common situation when replaying
is that the IP address of a malicious server in the input
network traces may have been reassigned to a benign server.
Responses from benign servers need to be removed before
building a signature to avoid false positives. To filter responses
from benign servers, CyberProbe leverages the intuition that a
benign server will not understand the replayed request and typ-
ically will ignore it (e.g., for a binary C&C request) or return
an error (e.g., HTTP 404). Thus, as a first step CyberProbe
removes from the replayed RRPs those with no response or
where the response is an error (e.g., HTTP 4xx). However, a
surprisingly large number of benign HTTP servers reply with
a successful response (i.e., HTTP 200 OK) to any request,
possibly including a custom error message in the body of the
response. Thus, a technique is needed to identify custom error
messages without a priori knowledge of how they may look.
To address this challenge, CyberProbe also sends an HTTP
request for a random resource to each potentially malicious
HTTP server, leveraging the insight that if the responses from

a server to the replayed request and to the random request are
similar, most likely the server did not understand either request
and the response is an error message.

CyberProbe considers two HTTP responses similar if they
have the same result code, the same Content-Type header
value, and similar content. Two non-HTML contents are sim-
ilar if their MIME type as returned by the UNIX file tool
is the same. For HTML documents, it uses an off-the-shelf
similarity package [21], which serializes the HTML trees of
the pages as arrays and finds the longest common sequence
between the arrays. It measures similarity as:

d(a, b) =
2 ⇤ length(LCS(array(a), array(b)))

length(array(a)) + length(array(b))
.

After removing errors and responses from benign servers
the remaining RRPs are replayed twice more to the endpoints
that responded, so that variations in the responses, e.g., changes
in the HTTP Date and Cookie headers, are captured. The
output of the replay phase are the remaining replayed RRPs.
The original RRPs extracted from the network traces are not
part of the output, i.e., only RRPs for which the request
successfully replays are used to build the fingerprint. The
unique endpoints in the output RRPs are the seed servers.

C. Clustering RRPs by Request Similarity
Next, CyberProbe clusters the RRPs by request similarity

to identify instances of the same type of request across the
network traces. This step prevents generating multiple finger-
prints of the same type and enables producing more general
fingerprints. We use two separate clusterings, a protocol-
aware clustering for HTTP and a transport clustering for other
protocols.

For HTTP, CyberProbe groups RRPs for which the requests
have the same method (e.g., GET or POST) and satisfy the
following conditions:

• Same path. The path in both URLs is the same and
does not correspond to the root page.

• Similar parameters. The Jaccard index of the sets
of URL parameters is larger than an experimentally
selected threshold of 0.7. Parameter values are not
included.

For other protocols, CyberProbe groups packets from the
same transport protocol, with the same size and content, and
sent to the same destination port. The output of the request
clustering is the union of the traffic clusters output by the two
clusterings. Each cluster contains the RRP feature vectors and
the clusters do not overlap.

Probe construction function. From the requests in each
cluster, CyberProbe produces a probe construction function.
The probe construction function is basically one of the probes
in the cluster where the value of a field may be replaced by
the special TARGET and SET macros. The TARGET macro
represents that the field needs to be updated with the value
of the target endpoint during scanning, e.g., the HTTP Host
header. The SET macro is used for fields that have different
values in the cluster’s requests. It represents that the value of
the field can be chosen from this set when generating a new
probe during scanning.

5

Algorithm 1 Signature Generation Algorithm

1 def t o k e n i z e r e s p o n s e s (c l u s t e r) {
2 t o k e n s i n f o = []
3 # Get u n i qu e f i e l d s f o r r e s p o n s e s i n c l u s t e r
4 u n i q u e f i e l d s = g e t d i s t i n c t f i e l d s (c l u s t e r)
5 f o r f i e l d in u n i q u e f i e l d s
6 # Get u n i qu e v a l u e s f o r f i e l d
7 u n i q u e v a l u e s = g e t d i s t i n c t f i e l d s v a l u e s (f i e l d)
8 # T o k e n i z e u n i qu e f i e l d v a l u e s
9 t o k e n s = t o k e n i z e (u n i q u e v a l u e s)

10 f o r t o k e n in t o k e n s
11 # Get f e a t u r e v e c t o r s f o r r e s p o n s e s w i t h t h e t o k e n
12 v e c t o r s = g e t r e s p o n s e s (t o k e n)
13 # Add t o k e n
14 t o k e n s i n f o . add (f i e l d , token , v e c t o r s)
15 re turn t o k e n s i n f o
16
17 def r e f i n e s i g n a t u r e (t o k e n s i n f o , c u r r s i g)
18 t i n f o , r e m t o k e n s i n f o =
19 g e t t o k e n m a x o v e r l a p (t o k e n s i n f o , c u r r s i g)
20 r s i g = add token (c u r r s i g , t i n f o)
21 i f cov (r s i g) = cov (c u r r s i g)
22 r e f i n e s i g n a t u r e (r e m t o k e n s i n f o , r s i g)
23 i f fp (c u r r s i g) < thres

fp

24 re turn c u r r s i g
25 r e f i n e s i g n a t u r e (r e m t o k e n s i n f o , r s i g)
26
27 def g e n e r a t e s i g n a t u r e s (c l u s t e r) {
28 s i g n a t u r e s = []
29 t o k e n s i n f o = t o k e n i z e r e s p o n s e s (c l u s t e r)
30 whi le t r u e
31 # Find t o k e n t h a t max imi ze s c o v e r a g e
32 t i n f o , r e m t o k e n s i n f o , c o v i n c r e a s e =
33 g e t m a x c o v e r a g e t o k e n (s i g n a t u r e s , t o k e n s i n f o)
34 i f c o v i n c r e a s e < thres

cov

break
35 e l s e
36 i n i t i a l s i g = add token (Ø , t o k e n i n f o)
37 r e f i n e d s i g = r e f i n e (r e m t o k e n s i n f o , i n i t i a l s i g)
38 i f r e f i n e d s i g
39 s i g n a t u r e s . add (r e f i n e d s i g)
40
41 re turn s i g n a t u r e s
42 }

D. Signature Generation
For each cluster, signature generation produces signatures

that capture parts of the responses that are unique to the
family of interest, i.e., that are uncommon in the benign traffic
pool. CyberProbe builds token-set payload signatures, which
are supported by both Snort and Suricata. A token set is an
unordered set of binary strings (i.e., tokens) that matches the
content of a buffer if all tokens in the signature appear in the
buffer, in any order. The more tokens and the longer each token
the more specific the signature.

Algorithm 1 describes the signature generation. Its salient
characteristics are that when the protocol is known (e.g,.
HTTP) the tokenization is performed on fields and that multi-
ple signatures may be generated for each cluster. For each field
in the responses in the cluster, it identifies distinctive tokens
i.e., tokens with high coverage and low false positives. We
define the false positive rate of a token in a field to be the
fraction of responses in the benign pool that contain the token
in the field, over the total number of responses in the benign
pool. The coverage is the fraction of responses in the cluster
with the token in that field, over the total number of responses
in the cluster. A token is distinctive if it has a file coverage
larger than 0.4 and a false positive rate below 10�9.

Algorithm 1 can generate multiple signatures because dis-
tinctive tokens do not need to appear in all responses in the
traffic cluster. This is important to handle noise in the cluster,

Full (F) Unreserved (U) Allocated (I) BGP (B)
4.3B (100%) 3.7B (86%) 3.7B (86%) 2.6B (60%)

TABLE I. NUMBER OF IPV4 ADDRESSES (IN BILLIONS) FOR
DIFFERENT INTERNET-WIDE TARGET SETS.

e.g., from incorrectly labeled malware in the input traces. The
get distinct fields function returns all fields in the response
(or a single field if the protocol is unknown), except fields
that contain dynamically generated data (e.g., the Date and
Set-Cookie HTTP headers), as those fields should not be part
of the signature. The tokenize function uses a suffix array [1]
to extract tokens larger than 5 bytes that appear in the set of
unique field values.

IV. SCANNING

This section first describes general characteristics of our
scanning such as the target ranges to scan, scan rate, scan order,
and scanner placement. Then, it details the implementation of
our horizontal, UDP, and appTCP scanners.

A. General Scanning Characteristics

Scan ranges. We perform 3 types of scans based on the
ranges to be probed: localized-reduced, localized-extended,
and Internet-wide. For Internet-wide scans, prior work has used
different ranges that qualify as “Internet-wide” [3], [11], [20],
[28]. These studies do not scan the full Internet IPv4 space
(F), but rather the non-reserved IPv4 ranges (U ✓ F) [3],
the IANA-allocated blocks (I ✓ U) [11], [20], or the set of
advertised BGP ranges (B ✓ I) [28]. These ranges differ in
their sizes, which are shown in billions of IP addresses in
Table I. The U and I ranges are nowadays the same as all
the non-reserved IPv4 space has been allocated by IANA. In
this work, for Internet-wide horizontal and UDP scans, we
first collect the BGP ranges advertised the day of the scan
from the RouteViews site [46]. Then, we union those ranges
removing any route overlaps. The table shows that using the
BGP information to exclude non-routable ranges reduces the
scan range up to 40%.

Localized scans focus on IP ranges belonging to providers
that have been observed in the past to host a server of the
malicious family. To select the target ranges for localized scans
we use the IP addresses of the seed servers and the BGP
route information. For localized-reduced scans, we obtain the
most specific BGP route that contains each seed’s IP address,
and output the union of those routes. For localized-extended
scans, for each seed server we first obtain the most specific
route containing the seed’s IP. From each of those routes,
we extract the route description, which typically identifies the
provider that the route belongs to. Then, we query again the
BGP information for the list of all other routes with the same
description (i.e., from the same provider) and make their union
our target set.

Scan rate. Nowadays, a well-designed scanner running on
commodity hardware can send fast enough to saturate a 1 Gbps
link (i.e., 1.4 Mpps) [14] and some work enables commodity
hardware to saturate even 10 Gbps links [45]. Thus, a scanner
often needs to be rate-limited to avoid saturating its uplink,
disconnecting other hosts in the same network. In this work,
for good citizenship we limit each horizontal and UDP scanner

6

host to a maximum of 60,000 packets per second (26 Mbps),
and each appTCP scanner host to a rate of 400 connections
per second.

Scan order. Our horizontal and UDP scanners select which
target to probe next using a random permutation of the
target address space. Drawing targets uniformly at random
from the target ranges mixes probes to different subnets over
time, avoiding the overload of specific subnets [51]. To scan
in random order, without needing to keep state about what
addresses have already been scanned or are left to be scanned,
our horizontal and UDP scanners use a linear congruential
generator (LCG) [24]. Since the IP addresses output by the
horizontal scanner are not sequential, the appTCP scanner does
not use a LCG but simply randomizes the order of the target
IP addresses.

Whitelisting. The LCG iterates over a single consecutive
address range. However, the BGP ranges to be scanned may not
be consecutive. Also, we may need to exclude certain ranges,
e.g., those whose owners request so. To address these issues,
before probing a target, the horizontal and UDP scanners check
if the target’s IP is in a whitelist of IP addresses to scan,
otherwise they skip it. The whitelist is implemented using a
512 MB bit array, where each bit indicates if the corresponding
IP address needs to be probed. This ensures that checks are
done in O(1). Since most commodity hardware has a few GBs
of memory this is a good tradeoff of memory for efficiency. For
the appTCP scanner, which does not use an LCG, we simply
remove IP addresses that should not be probed from the input
target list.

Scanner placement. Multiple scanners can be used to dis-
tribute a scan. Since a single scanner may be able to saturate its
uplink it is typically not needed to use multiple scanners on the
same network. It is preferable to add them in separate networks
with independent uplinks. All scanners use the same generator
for the LCG. To split the target hosts between scanners, we
assign each scanner a unique index from zero to the number
of scanners minus one. All scanners iterate over the targets in
the same order, but at each iteration only the scanner whose
index matches the target IP modulo the number of scanners
sends the probe.

B. Horizontal Scanner
An efficient horizontal scanner is fundamental to perform

fast and resource-efficient scans because the large majority
of IP addresses (97%–99% depending on the port) do not
send responses to probes. Two important characteristics of
our horizontal scanner are the lack of scanning state and the
asynchronous sending of probes and receiving of responses.

Our horizontal scanner performs TCP SYN (or half-open)
scans. While there exists different types of TCP scans [39],
TCP SYN scans are arguably the most popular one because
they can efficiently determine if a target host is listening on a
port. They are also called half-open scans because they never
complete a full TCP handshake. A SYN packet is sent to a
target and if a SYNACK response is received, the scanner
marks the target as alive and sends it a RST packet, which
avoids creating state on the scanner or the target. A single SYN
packet is sent to each target without retransmissions, which
prior work has shown as a good tradeoff between accuracy (low
packet loss on the backbone) and efficiency (avoiding doubling

or tripling the number of probes) [28]. The horizontal scanner
is implemented using 1,200 lines of C code and runs on Linux.
It comprises a sender and a receiver module. Both modules are
independent and can be run on the same or different hosts. We
describe them next.

Sender. The sender uses raw sockets to send the probes. Raw
sockets bypass the kernel network stack so that no state is kept
for a probe. They prevent the kernel from doing route and ARP
lookups, and bypass the firewall. When a SYNACK packet is
received, the kernel automatically sends a RST packet since
it is unaware of the connection. On initialization the sender
creates a buffer for a raw Ethernet request. It fills all fields
in the Ethernet, IP, and TCP headers except the destination
IP address, source port, sequence number, and TCP and IP
checksums. Using a single buffer and caching most field values
reduces memory accesses, increasing performance. The source
IP is the IP address of the receiver. If the receiver runs on a
separate host the sender spoofs the receiver’s IP address. To
enable the receiver to identify valid responses, the sequence
number is filled with the XOR of the target IP and a secret
shared between the sender and the receiver. The checksums
can be computed on software or outsourced to the network
card if it supports checksums on raw sockets.

The sender implements rate limiting by enforcing an inter-
probe sleeping time. The Linux kernel does not provide fine-
grained timers by default, so OS functions like usleep or
nanosleep are too coarse for microsecond sleeps. Instead, the
scanner deactivates CPU scaling, computes the sleeping time
in ticks, and then busy-waits using the rdtsc instruction until
it is time to send the next probe.

Receiver. The receiver is implemented using libpcap [31] and
set to sniff all SYNACK packets. Note that the number of
received packets is much smaller than the number of probes,
e.g., only 2.6% of the advertised IPs listen on 80/tcp. Thus
performance is less critical in the receiver than in the sender.
Once the sender completes, the receiver keeps listening for a
predefined time of 5 minutes to capture delayed responses. The
receiver uses the shared secret, the acknowledgment number,
and the source IP to check if the SYNACK corresponds to
a valid probe. If so, it outputs the source IP to a log file of
live hosts. There is no need to keep state about which IPs
have already responded. Once the scan completes, duplicated
entries due to multiple SYNACKs are removed from the log.

C. AppTCP & UDP Scanners
The appTCP and UDP scanners need to be able to send

probes from different fingerprints, which may capture different
application-layer protocols and message types. The probe
construction function in a fingerprint abstracts the specificities
of probe building from the scanner. Each probe construction
function comprises two C functions. The first function is called
during initialization and builds a default probe. Then, for each
target host the appTCP or UDP scanner passes the target IP to
the second function, which returns the TCP or UDP payload
for the probe (e.g., updating the default probe with target-
specific field values).

Both scanners can apply the fingerprint by running Snort on
the received traffic. In addition, they can collect the responses
into a network trace and then run Snort offline on the trace. In

7

our experiments we store the responses to enable post-mortem
analysis and for collecting benign responses to enhance the
benign traffic pool.

AppTCP scanner. The appTCP scanner is implemented using
the libevent [30] library for asynchronous events, which is able
to handle thousands of simultaneous non-blocking connections.
It comprises 600 lines of C code plus the code that implements
the probe construction functions for each fingerprint. It takes as
input the list of live hosts identified by the horizontal scanner.
To limit the connection rate the appTCP scanner operates on
batches and the batch size limits the maximum number of
simultaneously open connections. Reception is asynchronous,
i.e., each received packet triggers a callback that reads the
content from the socket. It sets a maximum size for a response
since most classification functions operate on the early parts
of a response. The default is 1MB but can be modified for
any fingerprint. This limit is needed for servers that respond
to any request with a large stream of data. For example,
SHOUTCast [48] radio streaming servers may send a 1GB
stream in response to an HTTP request for a random file.

UDP scanner. The UDP scanner uses the same architecture as
the horizontal scanner, but builds instead UDP probes using
the fingerprint’s probe construction function. It comprises
800 lines of C code. The sender component also uses raw
sockets, but embeds the secret in the source port instead of the
sequence number. Similar to the appTCP scanner, the receiver
component sets the maximum size of a response to 1MB.

V. EVALUATION

This section presents the evaluation results for adversarial
fingerprint generation (Section V-A), our scanning setup (Sec-
tion V-B), scanning results (Sections V-C to V-E), and detailed
analysis of selected operations (Section V-F).
A. Adversarial Fingerprint Generation Results

We obtain malware from two different sources:
VirusShare [55] and the MALICIA dataset [33]. We run
the malware on our infrastructure to produce the network
traces used as input to the fingerprint generation. VirusShare
malware is not classified, so we use a traffic clustering
algorithm to split the executables into families [43]. The
MALICIA dataset contains malware distributed through drive-
by downloads, already classified into families, so clustering
is not needed. For the exploit servers, we use network traces
of the honeyclients collecting the malware in the MALICIA
dataset. In addition, we add another exploit server family not
present in MALICIA that we identify in URLQuery [54] and
use a honeyclient to collect the network traces.

Table II summarizes the results of adversarial fingerprint
generation. It shows the type and source of the network traces,
the number of malicious families, the number of network traces
processed, the RRPs in those traces, the RRPs replayed after
filtering, and the number of seeds and fingerprints output.
Overall, CyberProbe produces 23 fingerprints for 13 families:
3 exploit server families and 10 malware families. Of those,
one fingerprint uses UDP and the rest use HTTP. The number
of generated fingerprints is low compared to the number of
network traces processed because some families have many
traces (e.g., 700 for winwebsec) and because much malware
connects to dead servers, which have likely been replaced by
newer ones.

B. Scanning Setup
For the localized horizontal and UDP scans we use a single

scanner at one of our institutions. This machine has 4 CPU
cores running at 3.30GHz, a network connection at 1Gbps
and 4GB of RAM. To distribute the Internet-wide horizontal
and UDP scans across different hosts and locations we also
rent 4 large instances in a cloud hosting provider. For the
HTTP scans, we rent smaller virtual machines on virtual
private server (VPS) providers and also use two dedicated
hosts installed at one of our institutions. For the VPSes we
select the cheapest instance type offered by each provider
that satisfies the following minimum requirements: 1GHz,
512RAM, 100Mbps link, and 15GB hard drive.

Different providers may offer different virtualization tech-
nologies (e.g., XEN, OpenVZ, VMWare). The cheapest ones
are often based on OpenVZ technology (starting at $4/month).
In total we spent close to $600 on cloud hosting for the
experiments in this paper. The selected instances on different
providers have different resources and those resources are
sometimes not well specified. For example, some providers
only specify the maximum amount of network traffic the
instance can send over the rental period (e.g., 1TB/month), but
do not specify the network interface bandwidth and whether
they perform some additional rate-limiting of the VMs. To
address the resource differences across VMs we split the
target addresses proportionally to the hard drive and network
bandwidth (when known) of the rented instances. This may
result in some scanners being assigned larger ranges than
others, e.g., 3 scanner hosts being used one with 50% and
each of the other two with 25% of the total target addresses.

C. Horizontal Scanning
For TCP fingerprints, CyberProbe first performs a horizon-

tal scan of the desired target ranges to identify hosts listening
on the target port. Table III summarizes our horizontal scans.
It shows the scan type, i.e., localized-reduced (R), localized-
extended (E), or Internet-wide (I); the date of the scan; the
target port; the number of target IP addresses scanned; the
number of scanners used (SC); the sending rate for each scan-
ner; the duration of the scan; and the number (and percentage)
of live hosts found.

The first 9 scans are localized scans, targeting small ranges
from 4,096 to 19 million IP addresses, and performed at very
low scan rates. The goal of these localized scans was to test our
scanning infrastructure, and to perform an initial evaluation of
whether our hosting provider locality hypothesis holds (next
subsection). The last 4 are Internet-wide scans, three on 80/tcp
and one on 8080/tcp. Using 5 scanner hosts at a rate of 50,000
packets per second (pps), or 4 scanners at 60,000pps, it takes
less than 3 hours for CyberProbe to perform an Internet-wide
horizontal scan.

The Internet-wide scans found 2.6% of all advertised IP
addresses listening on 80/tcp and 0.01% on port 8080. The
80/tcp scan on April 30th found 67.7 million hosts, the scan
on July 1st 65.5 million, and the August 5th scan 63.5 million.
The 8080/tcp scan found 239K live hosts. The difference on
live hosts found between the 80/tcp scans is due to changes
on the total size of the BGP advertised routes on the scan
days. The live hosts intersection between the April 30th and
July 1st 80/tcp scans is 43.9 million IPs (67%). That is, two

8

Type Source Families Pcaps RRPs RRPs Seeds Fingerprints
Replayed

Malware VirusShare 152 918 1,639 193 19 18
Malware MALICIA 9 1,059 764 602 2 2
Honeyclient MALICIA 6 1,400 42,160 9,497 5 2
Honeyclient UrlQuery 1 4 11 11 1 1

TABLE II. ADVERSARIAL FINGERPRINT GENERATION RESULTS

HID Type Start Date Port Targets SC Rate(pps) Time Live Hosts
1 E 2013-03-12 8080 13,783,920 1 300 14.3h 193,667 (1.4%)
2 R 2013-03-26 80 4,096 1 60 1.2m 2,053 (50.1%)
3 E 2013-04-08 80 7,723,776 1 125 19.1h 316,935 (4.1%)
4 R 2013-04-14 80 24,576 1 200 2.4m 14,134 (57.5%)
5 E 2013-04-15 80 32,768 1 200 3.6m 14,869 (45.3%)
6 E 2013-04-17 80 1,779,965 1 125 3.9h 751,531 (42.2%)
7 E 2013-04-20 8080 19,018,496 1 900 6.0h 301,758 (1.6%)
8 R 2013-04-23 80 105,472 1 250 7.2m 8,269 (7.8%)
9 R 2013-04-28 80 668,672 1 5,000 2.4m 36,148 (5.4%)

10 I 2013-04-30 80 2,612,160,768 4 50,000 3.5h 67,727,671 (2.6%)
11 I 2013-04-30 8080 2,612,160,768 4 50,000 3.5h 239,517 (0.01%)
12 I 2013-07-01 80 2,510,340,631 5 50,000 2.9h 65,633,678 (2.6%)
13 I 2013-08-05 80 2,459,631,240 4 60,000 2.9h 63,534,118 (2.6%)

TABLE III. HORIZONTAL SCANNING RESULTS.

thirds of the 80/tcp live hosts are stable for over 2 months. The
others change due to servers being added and removed, and
IP assignments changing over time. This indicates that we can
trade coverage for politeness by reusing the results of a hor-
izontal scan for multiple application-layer scans. This slowly
decreases coverage over time, but minimizes the number of
horizontal scans needed.

The results show that the 80/tcp localized scans find from
4.1% up to 57.5% of live hosts on the targeted ranges, well
above the 2.6% Internet average. This happens because most
seeds are located on cloud hosting providers, which are being
abused to install malicious servers. Thus, localized scans focus
on hosting services that house significantly more web servers
than other residential or enterprise networks.

D. HTTP scanning
Table IV summarizes our HTTP scans, which probe the

set of live hosts found by the horizontal scans, identifying
malicious servers matching a fingerprint. The left part of the
table shows the scan configuration: the scan date, the target
port, the fingerprint used, the number of hosts scanned, the
horizontal scan that found them (HID), and the number of
scanners used (SC). We have used CyberProbe to perform 22
scans using 14 fingerprints. Note that we have yet to scan for
the remaining fingerprints.

The middle part of Table IV shows the results: the scan
duration; the response rate (Resp.), i.e., the percentage of
targets that replied to the probe; the number of malicious
servers found; the number of malicious servers found previ-
ously known to us, i.e., seeds and servers found by a prior
scan for the same family; and the number of found servers
previously unknown. CyberProbe takes on average 14 hours
to perform an Internet-wide HTTP scan using 4 scanners and
24 hours using 3 scanners.

The results show that the 22 scans identified 194 servers,
of which 151 are unique. Starting from 15 seeds CyberProbe
identified 151 unique malicious servers, achieving a 10x am-

plification factor. Of the 22 scans, 91% (20) find previously
unknown malicious servers, the exception being two localized
scans for winwebsec and blackrev. The 11 localized scans
find 66 servers (34 new), an average of 6 servers found per
scan. The 11 Internet-wide scans find 128 servers (72 new),
an average of 11.6 servers found per scan. While Internet-
wide scans find more servers per scan, if we normalize
by the number of targets scanned, localized scans find an
abnormally high number of malicious servers. This verifies
our provider locality hypothesis: cybercriminals are installing
multiple servers on the same providers. Once they establish a
relationship with a hosting provider they are likely to reuse it,
minimizing the effort for locating new providers, learn their
procedure to install new servers, and create fake identities for
registration (e.g., Paypal accounts).

Coverage. The right part of Table IV shows the number of
servers found by CyberProbe that were already known to 4
popular anti-malware cloud services: VirusTotal (VT) [56],
URLQuery (UQ) [54], Malware Domain List (MD) [35],
and VxVault (VV) [58]. All these cloud services use crowd-
sourcing to collect potentially malicious executables and
URLs. Their coverage depends on the number and volume
of their contributors. Some of them have infrastructures to au-
tomatically visit submitted URLs (VirusTotal and URLQuery)
and execute the submitted malware to collect behavioral infor-
mation (VirusTotal). The collected information is dumped into
databases and public interfaces are provided to query them. As
far as we know, Malware Domain List and VxVault follow a
similar process to populate their databases from submissions,
but the process is manually performed by volunteers. We select
these specific databases because they are popular and allow
querying by IP address, while other public databases, e.g.,
Google Safe Browsing [47], only enable URL queries.

The best coverage is achieved by VirusTotal, which knows
25.7% of the servers found by CyberProbe (50/194), followed
by URL Query with 15.5% (30/194). Malware Domain List

9

ID Start Date Port Fingerprint Targets HID SC Time Resp. Found Known New VT UQ MD VV
1 2013-01-08 8080 doubleighty 4K - 1 62h 92% 5 4 1 0 3 1 0
2 2013-03-03 8080 doubleighty 193K 1 1 79m 91% 11 2 9 0 1 0 0
3 2013-03-26 80 winwebsec 2K 2 1 3m 96% 2 1 1 0 1 0 0
4 2013-04-08 80 winwebsec 316K 3 1 5.3h 22% 2 2 0 0 1 0 0
5 2013-04-15 80 blackrev 14K 4 1 18m 94% 1 1 0 0 0 0 0
6 2013-04-16 80 blackrev 14K 5 1 19m 94% 2 1 1 0 0 0 0
7 2013-04-17 80 bh2-adobe 751K 6 1 9.9h 55% 3 1 2 1 1 0 0
8 2013-04-17 8080 doubleighty 301K 7 1 5.1h 22% 4 2 2 0 0 0 0
9 2013-04-23 80 kovter-links 8K 8 1 8m 36% 2 1 1 1 0 0 0

10 2013-04-23 80 clickpayz1 8K 8 1 8m 31% 17 2 15 0 0 0 0
11 2013-04-28 80 clickpayz1 36K 9 1 35m 38% 17 15 2 1 0 0 0
12 2013-07-06 80 bh2-adobe 65.6M 12 3 24.7h 75% 10 1 9 3 1 0 0
13 2013-07-11 80 clickpayz1 65.6M 12 3 26.5h 74% 22 17 5 7 0 0 0
14 2013-07-16 80 clickpayz2 65.6M 12 3 26.6h 76% 25 12 13 5 1 0 0
15 2013-07-20 80 kovter-pixel 65.6M 12 3 26.5h 72% 7 1 6 4 0 0 0
16 2013-07-22 80 bh2-ngen 65.6M 12 3 24.6h 72% 2 1 1 0 0 0 0
17 2013-07-25 80 optinstaller 65.6M 12 3 24.5h 71% 18 1 17 3 2 0 1
18 2013-07-27 80 bestav-pay 65.6M 12 4 15.6h 70% 16 2 14 6 5 0 0
19 2013-07-29 80 bestav-front 65.6M 12 4 13.2h *62% 2 1 1 1 1 0 0
20 2013-07-31 80 ironsource 65.6M 12 4 13.1h *59% 7 1 6 5 5 0 0
21 2013-08-05 80 soft196 65.6M 12 2 23.8h 71% 8 1 7 6 5 0 0
22 2013-08-06 80 winwebsec 63.5M 13 3 15.6h 85% 11 0 11 7 3 0 0

TOTALS: 194 70 124 50 30 1 1
TABLE IV. HTTP SCAN RESULTS.

and VxVault only know one of the servers each, an abysmal
1.1%. Overall, CyberProbe finds 4 times more malicious
servers than the best of these services. The best coverage
among those 4 services is achieved by those using automatic
processing (VirusTotal and URLQuery). Although those 2
services have huge URL and malware collections, they still
achieve limited coverage. Those services could be combined
with our active probing approach so that when they discover
new seed servers and families, fingerprints are automatically
generated and scanned to identify other family servers. This
would significantly increase their coverage and bring them
closer to Internet scale.

Our results show that CyberProbe achieves 4 times bet-
ter coverage than current approaches for identifying some
malicious server families. However, there exist some imple-
mentation and deployment trade-offs that limit CyberProbe’s
coverage, which could be even higher. For example, we reuse
the results of horizontal scans over time to minimize the
number of horizontal scans. In particular, scans 12–21 target
the live hosts found by horizontal scan 12 in Table III. As
expected, the response rate of these HTTP scans decreases
over time as those results become stale. However, we find that
the response rate decreases slowly, from 75% to 70% 3 weeks
later. Scans 19–20 show a lower response rate because they
include 2 instances that (unaware to us) were rate-limited by
the provider. Removing the instances from that provider the
response rate was 70% for scans 19–20. This slow decrease
justifies the trade-off of coverage for politeness. However, in
other situations it may be possible or better to perform more
aggressive scanning. We further discuss scan completeness in
Section VI.

False positives. The majority of the fingerprints do not produce
false positives. However, the bh2-adobe fingerprint, which
captures a fake Adobe webpage (further explained in the next

section) produces one false positive. It corresponds to a web
server with a page that contains license keys for popular
software from Adobe. The authors seem to have copied parts
of the Adobe webpage that are part of our signature. We have
not verified if the license keys work.

E. UDP scans.
One of the fingerprints produced by CyberProbe was for

the UDP-based P2P protocol used by the ZeroAccess botnet.
According to an analysis by Sophos [62], this P2P protocol
has two types of peers: remotely reachable supernodes with
public IP addresses and normal nodes behind NATs. There
are two distinct ZeroAccess botnets, each using two ports
for the P2P C&C (for 32-bit and 64-bit infected hosts).
The executed malware was from one of the 32-bit botnets
operating on port 16471/udp. The fingerprint captures a getL
command in which a peer requests from a supernode the list of
other supernodes it knows about, and the corresponding retL
response where the supernode returns a subset of its peers.

Table V summarizes the UDP scans. A localized-restricted
scan on 40,488 IPs belonging to a residential US provider was
first used to test the fingerprint. It identified 55 supernodes,
a response rate of 0.13%. A later Internet-wide scan found
7,884 supernodes (0.0003% response rate). Since the response
comprises a list of advertised supernodes, we extract their
addresses from the responses and compute their union across
all 7,884 responses. There were 15,943 supernodes advertised
at the time of the Internet-wide scan. Of those, 6,257 (39%)
were found by our scan and 9,686 (61%) were not reachable.
The unreachable hosts could have been cleaned, be offline, or
have changed IP address (e.g., mobile devices, DHCP). Our
scan also finds 1,627 supernodes alive but not advertised. This
could be due to supernodes only responding with a partial
list of peers and due to nodes that have changed IP since
advertised. One day after the Internet-wide scan only 19%

10

Type Start Date Port Fingerprint Targets SC Rate(pps) Time Found
R 2013-03-19 16471 zeroaccess 40,448 1 10 1.2h 55 (0.13%)
I 2013-05-03 16471 zeroaccess 2,612,160,768 4 50,000 3.6h 7,884 (0.0003%)

TABLE V. C&C UDP SCANNING RESULTS.

Operation Finger Seeds Servers Prov. Provider
prints Locality

bestav 3 4 23 7 3.3
bh2-adobe 1 1 13 7 1.8
bh2-ngen 1 1 2 2 1.0
blackrev 1 1 2 2 1.0
clickpayz 2 2 51 6 8.5
doubleighty 1 1 18 9 2.0
kovter 2 2 9 4 2.2
ironsource 1 1 7 4 1.7
optinstaller 1 1 18 2 9.0
soft196 1 1 8 4 2.0
TOTAL 14 15 151 47 3.2 (avg.)

TABLE VI. SERVER OPERATIONS SUMMARY.

of the 15,943 advertised supernodes were alive. This high
variability has previously been observed to make it easy to
overestimate the size of a botnet using IP addresses [52].
However, the speed of active probing makes IP variability a
smaller issue, enabling an easy and quite accurate method for
estimating the size of P2P botnets.

F. Server Operations
Table VI summarizes the 10 server operations analyzed.

It shows the number of fingerprints from the operation used
in the scans, the seeds used to generate the fingerprints, the
number of unique servers found, the number of providers
hosting the servers found, and the ratio of servers per provider
of the operation. Overall, these operations host an average of
3.2 servers per provider. The remainder of this section details
selected operations.

BestAV. Best AV is an affiliate pay-per-install program that
has been operating since at least August 2010 distributing
the winwebsec family, which encompasses multiple fake
AV brands [4]. Nowadays, BestAV manages 3 programs:
the winwebsec fake antivirus, the Urausy ransomware, and
another unknown family [5]. We have 3 fingerprints related to
the BestAV operation. Two of the fingerprints were generated
by running winwebsec malware. They capture C&C servers
(winwebsec) and payment servers (bestav-pay). The Internet-
wide scans reveal 16 payment servers and 11 C&C servers.
There is strong provider locality as they use 4 cloud hosting
providers for the 27 servers. Provider A hosts 6 payment and
5 C&C servers, provider B 9 payment and 4 C&C servers,
provider C 2 C&C servers, and provider D the remaining
payment server. The 3 providers used for payment servers
provide only dedicated server hosting, which indicates that
the managers do not want external services colocated with
their payment infrastructure. The third fingerprint captures web
servers used by the affiliates for checking statistics and col-
lecting their installers. We manually generated this fingerprint
after reading an external analysis, which identified 2 live web
servers [4]. One of them was alive and we use it as seed server.
An Internet-wide scan reveals a second server for the affiliates
that we have not seen mentioned anywhere else. This server

does not show any domain associated on different passive DNS
databases, so we believe it is kept as backup in case the main
one is taken offline.

Blackhole2-adobe. The bh2-adobe fingerprint captures a mal-
ware distribution operation through drive-by downloads that
has been ongoing since at least October 2012 [6]. This oper-
ation configures their Blackhole 2 exploit servers to redirect
users to a fake Adobe webpage if exploitation fails, which
prompts the user to install a malicious Flash player update.
The webpage has been copied from Adobe but resides on
a different resource. Our fingerprint captures that an Adobe
server will reply to that resource with a 404 error, but the
exploit servers will successfully return an Adobe download
page. Our Internet-wide scan on July 6 found 10 live servers,
all in cloud hosting services. This supports recent results
that the majority of exploit servers are abusing cloud hosting
services [36]. Of the 10 servers, 3 were already known to
VirusTotal. Another 2 were identified by VirusTotal four days
later, and a third one 13 days after CyberProbe detected it.
This shows how CyberProbe can find servers earlier than other
approaches.

Blackhole2-ngen. The bh2-ngen fingerprint captures another
drive-by download operation, distinguishable because their
URLs contain the /ngen/ directory. The Internet-wide scan
reveals only 2 servers. To verify that CyberProbe does not miss
servers we examine the URLQuery database. It contains 10
exploit servers with the /ngen/ string since October 2012. Since
then, the database contains at most three servers operating on
the same period of time. None of those 10 servers are located
in known hosting providers, which makes us think they are
using their own hosting. The new server CyberProbe found on
July 7 is still not in URLQuery. It is the only server hosted on
a known dedicated server hosting provider. We hypothesize it
is either a test server or has not yet been set to receive traffic.

Doubleighty. The doubleighty family uses an unknown ex-
ploit server with a fixed resource in the landing URL:
/forum/links/column.php. CyberProbe identifies 18
distinct servers in 3 localized scans with strong provider
locality as two cloud hosting providers host 61% of the servers.
After the March 3 scan, we used a honeyclient to visit the 9
new servers found. Seven of them exploited the honeyclient
but two did not. We set the honeyclient to periodically visit
those 2 servers. One month later (April 4) one of them started
distributing malware. This shows that the server was installed
much earlier than it started being used. It also shows that active
probing can sometimes identify stand-by servers, before they
exhibit their malicious behavior.

Kovter. Kovter is a ransomware family that blocks the infected
computer and displays a police warning on the screen telling
the user it needs to pay a fine to have it unlocked. CyberProbe
produced two fingerprints for different C&C messages used
by the malware. We performed one localized scan using the
kovter-links fingerprint that found 2 servers and an Internet-

11

wide scan 3 months later using the newer kovter-pixel finger-
print that found 7. Thus, the C&C infrastructure has a high
level of redundancy. One of the servers appears in both scans
so it has been alive for at least 3 months. It is located in a
German cloud hosting provider. Overall, the 8 distinct servers
are distributed among 4 cloud hosting providers.

Clickpayz Clickpayz1 is an online service that sells clicks.
Quoting them: “clickPAYZ has a network of search sites with
10s of millions of people searching for everything under the
sun”. Some files in our malware datasets send clicks to their
servers and the two fingerprints produced by CyberProbe seem
to correspond to traffic sent by two different affiliates. The
39 unique servers identified by both fingerprints are click
redirectors belonging to Clickpayz. They are located on 6 cloud
hosting providers. Clickpayz managers are either unaware that
their affiliates send them clicks via files flagged as malicious
by different antivirus, or simply do not care. However, their
claim of having tens of millions of people searching their sites
is dubious and their site only provides an email address as
contact information, typically a sign of dark objectives.

VI. DISCUSSION

A. Ethical Considerations
Internet scanning has been carried out many times for

different research goals [11], [14], [20], [28], [41]. Still, the
unsolicited nature of the probes makes some targets consider it
offensive. We take ethical considerations seriously in our study.
For our horizontal scanning, we follow the recommendations
of prior work, notably those by Leonard and Loguinov [28]
who study how to perform maximally polite horizontal scans.
We adopt their proposals of mixing the scanner IP addresses,
setting up forward and backward DNS records for the scanners,
running a web server on the scanners with a page explaining
that the probing is part of a research project, and removing
from the scan whitelist the ranges of owners that complain
about our probing and are willing to share their IP ranges.
Overall, we have removed from the whitelist 106K IP ad-
dresses. In addition, we limit the probing rate of our horizontal
scanners to 60,000pps, well below their maximum rate. We
also manually vet the generated fingerprints before scanning to
make sure they do not contain attacks and will not compromise
any host. Furthermore, we work with our system administrators
to minimize the impact on the local network (e.g., bypass the
firewall / IDS) and to quickly answer any complaints.

No prior literature details how to perform application-
layer probing of malicious servers. Our HTTP probing is not
malicious, it simply sends a request, which we have manually
vetted first, and collects a response from a target server.
However, our requests mimic those of malicious families, and
often request inexistent resources from web servers. Thus, they
may be considered suspicious or malicious by server owners,
or may trigger IDSes loosely configured to match traffic on
both directions. Overall, out of 11 VMs that we use for HTTP
probing, 2 of them got suspended for “malicious” behavior.
We did not get a warning from those providers, but found out
when trying to access the instances. In addition, we received 3
emails warning us that our VMs may have been compromised.
The communications from the providers and those received
by the system administrators of our institutions show that the

1https://www.clickpayz.com/

majority of the complaints come from web honeypots that
do not advertise their IP addresses and consider any received
traffic malicious. A less frequent reason are owners thinking
our scanner hosts have been infected or are attacking them.
Similar to the horizontal scanning, when the providers let us
know their IP ranges, we avoid further probing.

Finally, it is worth noting that our scanning does not collect
and publicize any sensitive information on remote networks.

B. Future Improvements

Completeness. Our current implementation is not guaranteed
to find all servers forming the infrastructure of a family. There
are two reasons for this. First, there are some families for
which we cannot generate a fingerprint (e.g., their traffic cannot
be replayed) or for which we may only be able to generate
fingerprints for some of the server types they use (e.g., for
the C&C server but not for their web servers). Second, our
implementation has some limitations that limit our coverage.
In particular, we have limited scanning capacity and are not
able to run all fingerprints for a family simultaneously. In
addition, we reuse the results of horizontal scans. This makes
our probing more polite but reduces coverage slowly over time.

Complex protocol semantics. One limitation of our finger-
print generation approach is that a replayed request may fail
to incite a response from a remote server, e.g., if a field in the
request should be a checksum of the sender’s IP address or if
the request is encrypted using the IP address as initialization
vector. Such semantic information cannot be easily obtained
from the network traffic, but prior work extracts it from a
binary that implements the protocol [8], [32]. For cases where
a binary is available, e.g., with malware, we plan to integrate
binary analysis techniques into our approach.

Shared hosting. Some types of web hosting such as shared
hosting and content delivery networks (CDNs) involve in-
stalling multiple domains on the same web server under the
same IP. Here, the web server requires the presence of a
domain name in the Host header to route the request, as two
domains on the same server may define the same resource
(e.g,. index.html). This is problematic for our scanning as we
do not know the domains hosted on each probed IP address.
However, malicious servers rarely use shared hosting services
because those services are managed, i.e., the web server owner
installs the content for the clients, which is problematic if the
content is C&C software or an exploit kit. We could leverage
passive DNS databases to identify domains hosted on an IP
address to be probed. Some challenges that we foresee are
the current limited coverage of such databases and the large
amount of queries needed to complete a scan.

Making the probes identifiable to selected parties. When-
ever we get a complaint on our probing we ask the reporters for
the IP ranges they own and we remove them from the whitelist.
However, some reporters may not want to disclose their IP
ranges, e.g., if they run web honeypots whose addresses should
remain secret. For those cases, we could embed a secret in
our probes and disclose it to selected parties. For example,
we could fix the secret used to compute the sequence number
of our TCP probes and reveal it to reporters so that they can
check if a received probe was sent by CyberProbe. Whenever
the secret is updated we would need to notify all reporters.

12

VII. RELATED WORK

Active probing. Active probing (or active network fingerprint-
ing) has been proposed for a variety of goals. Comer and Lin
first proposed active probing to identify differences between
TCP implementations [9] and tools like Nmap popularized
the approach to identify the OS of remote hosts [17]. It has
also been used to identify the version of application-layer
servers [16], [37] and for tracking specific devices based on
device clock skews [25]. A variant of active probing identified
web users that visit a web server by querying the browser [15].

Most related to our work are active probing techniques to
detect network-based malware. BotProbe [18] actively injects
commands into IRC channels to identify if the target is an
IRC bot or a human. PeerPress [63] uses active probing to
detect P2P malware in a monitored network. Two funda-
mental differences with these work are that CyberProbe can
detect any type of application that listens on the network,
and that it focuses on probing external networks, achieving
Internet scale. CyberProbe does not need to inject traffic into
existing connections as BotProbe. The fingerprint generation
used by CyberProbe differs from the one in PeerPress in
that it leverages network traffic rather than binary analysis.
This makes it possible to scale to running large quantities
of malware. In independent work, Marquis-Boire et al. [34]
manually generated fingerprints to identify the servers used by
FinSpy, a commercial software that governments employ to
spy on activists. Our work differs, among others, in that we
propose a novel adversarial fingerprint generation technique
that automatically generates fingerprints for a large number of
malicious server families.

Fingerprint/signature generation. FiG proposed to auto-
matically generate OS and DNS fingerprints from network
traffic [7]. CyberProbe follows the same high-level fingerprint
generation approach as FiG, but proposes a novel adversarial
fingerprint generation technique, with two fundamental dif-
ferences. First, it does not randomly or manually generate
candidate probes, rather it reuses previously observed requests.
This greatly reduces the traffic that needs to be sent to the
training servers for generating a fingerprint, and produces
inconspicuous probes. Both properties are fundamental when
fingerprinting malicious servers. In addition, CyberProbe uses
network signatures to implement the classification function, so
it does not require a specific fingerprint matching component.
Furthermore, CyberProbe addresses the problem of Internet-
wide scanning.

There is a wealth of prior work on automatically generating
network signatures for worm detection. Honeycomb [26], Au-
tograph [23], and EarlyBird [49] proposed signatures compris-
ing a single contiguous token. Polygraph [38] proposed more
expressive token set, token subsequence, and probabilistic
Bayes signatures. Wang et al. extended PAYL [60] to generate
token subsequence signatures for content common to ingress
and egress traffic. Nemean [64] introduced semantics-aware
signatures and Hamsa [29] generated token set signatures that
can handle some noise in the input traffic pool. Beyond worms,
Botzilla [44] generated signatures for the traffic produced by a
malware binary run multiple times in a controlled environment,
Perdisci et al. [40] clustered and generated signatures for mal-
ware with HTTP C&C protocols, and FIRMA [43] generalized
the approach to handle any protocol. A fundamental difference

is that these studies generate network signatures for requests
sent by the malware, while CyberProbe generates them on the
responses from remote servers.

Scanning. Prior work demonstrates the use of Internet-wide
scanning for security applications. Provos and Honeyman used
it for identifying vulnerable SSH servers [41], Dagon et al. for
finding DNS servers that provide incorrect resolutions [11],
and Heninger et al. for detecting weak cryptographic keys in
network devices [20]. In this work we propose another security
application for active probing: identifying malicious servers.
Leonard et al. [28] described how to perform Internet-wide
horizontal scans with the goal of maximizing politeness. The
design of our scanning is greatly influenced by their work.
Other studies are related to how to perform fast scanning.
Staniford et al. described techniques that malware can use to
quickly spread through scanning [51]. Netmap [45] proposed
a framework for fast packet I/O in software, which enables
a single core to generate 14.88 Mpps, enough to saturate a
10Gbps link. Recently, Durumeric et al. proposed Zmap [14],
a fast Internet-wide scanner that can do a horizontal scan
of the Internet in 45 minutes from a single host. Compared
to these studies our goal is to identify malicious servers.
CyberProbe could incorporate some of these techniques to
speed up the scanning, but currently we cap the scan speed
for good citizenship.

VIII. CONCLUSION

In this paper, we have proposed a novel active probing
approach for detecting malicious servers and compromised
hosts that listen for (and react to) incoming network requests.
Our active probing approach sends probes to remote hosts
and examines their responses, determining whether the remote
hosts are malicious or not. Compared with existing defenses,
it is fast, cheap, easy to deploy, and achieves Internet scale. It
identifies different malicious server types such as C&C servers,
exploit servers, payment servers, and click redirectors, as well
as malware that listens for incoming traffic such as P2P bots.

We have implemented our active probing approach in a
tool called CyberProbe, which implements a novel adver-
sarial fingerprint generation technique, and 3 scanners. We
have used CyberProbe to build fingerprints for 13 malicious
families. Using those fingerprints, CyberProbe identifies 151
malicious servers and 7,881 P2P bots through 24 localized
and Internet-wide scans. Of those servers 75% are unknown
to 4 databases of malicious servers, indicating that for some
families CyberProbe can achieve up to 4 times better coverage
than existing techniques. Our results also reveal an important
provider locality property: cybercriminals host an average of
3.2 servers on the same hosting provider to amortize the cost
of setting up a relationship with a provider.

IX. ACKNOWLEDGEMENTS

The authors are especially grateful to the Network Security
teams at Texas A&M University and the IMDEA Software
Institute for helpful discussions and their professional handling
of this work. We would also like to thank the people behind
VirusTotal, URLQuery, VxVault, and Malware Domain List
for making their information publicly available.

This research was partially supported by NSF (Grant No.
CNS-0954096) and AFOSR (Grant No. FA9550-13-1-0077).

13

Partial support was also provided by the European Union
through Grant FP7-ICT No. 256980 and the EIT-ICT Labs
CADENCE project, by the SoftNet-CM project, and by the
Spanish Government through Grant TIN2012-39391-C04-01
and a Juan de la Cierva Fellowship for Juan Caballero.
All opinions, findings and conclusions or recommendations
expressed herein are those of the authors and do not necessarily
reflect the views of the sponsors.

REFERENCES
[1] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. Replacing suffix trees

with enhanced suffix arrays. Journal of Discrete Algorithms, 2(1), 2004.
[2] Alexa - the web information company. http://www.alexa.com/.
[3] D. Benoit and A. Trudel. World’s first web census. International Journal

of Web Information System, 3, 2007.
[4] Tracking cyber crime: Inside the fakeav business. http://www.xylibox.

com/2011/06/tracking-cyber-crime-inside-fakeav.html.
[5] The missing link - some lights on urausy affiliate. http://malware.

dontneedcoffee.com/2013/05/the-missing-link-some-lights-on-urausy.
html.

[6] Blackhole exploit kit v2 on the rise. http://research.zscaler.com/2012/
10/blackhole-exploit-kit-v2-on-rise.html.

[7] J. Caballero, S. Venkataraman, P. Poosankam, M. G. Kang, D. Song,
and A. Blum. fig: Automatic fingerprint generation. In Network and
Distributed System Security Symposium, San Diego, CA, February 2007.

[8] J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Automatic extrac-
tion of protocol message format using dynamic binary analysis. In ACM
Conference on Computer and Communications Security, Alexandria,
VA, October 2007.

[9] D. E. Comer and J. C. Lin. Probing tcp implementations. In USENIX
Summer Technical Conference, Boston, MA, June 1994.

[10] Collection of pcap files from malware analysis. http://contagiodump.
blogspot.com.es/2013/04/collection-of-pcap-files-from-malware.html/.

[11] D. Dagon, C. Lee, W. Lee, and N. Provos. Corrupted dns resolution
paths: The rise of a malicious resolution authority. In Network and
Distributed System Security Symposium, San Diego, CA, February 2008.

[12] D. Dittrich. So you want to take over a botnet... In USENIX Workshop
on Large-Scale Exploits and Emergent Threats, San Jose, CA, April
2012.

[13] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer. Dynamic
application-layer protocol analysis for network intrusion detection. In
USENIX Security Symposium, Vancouver, Canada, July 2006.

[14] Z. Durumeric, E. Wustrow, and J. A. Halderman. Zmap: Fast internet-
wide scanning and its security applications. In USENIX Security
Symposium, Washington, D.C., August 2013.

[15] P. Eckersley. How unique is your web browser? In Privacy Enhancing
Technologies Symposium, Berlin, Germany, July 2010.

[16] Fpdns. http://www.rfc.se/fpdns/.
[17] Fyodor. Remote os detection via tcp/ip stack fingerprinting, December

1998. http://www.phrack.com/phrack/51/P51-11.
[18] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, and W. Lee. Active botnet

probing to identify obscure command and control channels. In Annual
Computer Security Applications Conference, Honolulu, HI, December
2009.

[19] P. Haffner, S. Sen, O. Spatscheck, and D. Wang. acas: Automated
construction of application signatures. In ACM Workshop on Mining
network data, Philadelphia, PA, October 2005.

[20] N. Heninger, Z. Durumeric, E. Wustrow, and J. Halderman. Mining your
ps and qs: Detection of widespread weak keys in network devices. In
USENIX Security Symposium, Bellevue, WA, August 2012.

[21] Html::similarity. http://search.cpan.org/⇠xern/HTML-Similarity-0.2.0/
lib/HTML/Similarity.pm/.

[22] J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishnamurthy. Studying
spamming botnets using botlab. In Symposium on Networked System
Design and Implementation, Boston, MA, April 2009.

[23] H.-A. Kim and B. Karp. Autograph: Toward automated, distributed
worm signature detection. In USENIX Security Symposium, San Diego,
CA, August 2004.

[24] D. E. Knuth. The Art Of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

[25] T. Kohno, A. Broido, and K. Claffy. Remote physical device finger-
printing. In IEEE Symposium on Security and Privacy, Oakland, CA,
May 2005.

[26] C. Kreibich and J. Crowcroft. Honeycomb - creating intrusion detection
signatures using honeypots. In Workshop on Hot Topics in Networks,
Boston, MA, November 2003.

[27] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson. gq:
Practical containment for measuring modern malware systems. In
Internet Measurement Conference, Berlin, Germany, November 2011.

[28] D. Leonard and D. Loguinov. Demystifying service discovery: Imple-
menting an internet-wide scanner. In Internet Measurement Conference,
Melbourne, Victoria, Australia, November 2010.

[29] Z. Li, M. Sanghi, B. Chavez, Y. Chen, and M.-Y. Kao. Hamsa: Fast
signature generation for zero-day polymorphic worms with provable
attack resilience. In IEEE Symposium on Security and Privacy, Oakland,
CA, May 2006.

[30] Libevent. http://libevent.org/.
[31] Tcpdump/libpcap. http://www.tcpdump.org/.
[32] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protocol format

reverse engineering through context-aware monitored execution. In
Network and Distributed System Security Symposium, San Diego, CA,
February 2008.

[33] The malicia project. http://malicia-project.com/.
[34] M. Marquis-Boire, B. Marczak, C. Guarnieri, and J. Scott-Railton.

For their eyes only: The commercialization of digital spying. https:
//citizenlab.org/2013/04/for-their-eyes-only-2/.

[35] Malware domain list. http://malwaredomainlist.com/.
[36] A. Nappa, M. Z. Rafique, and J. Caballero. Driving in the cloud:

An analysis of drive-by download operations and abuse reporting. In
SIG SIDAR Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, Berlin, Germany, July 2013.

[37] Nessus. http://www.nessus.org/.
[38] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generat-

ing signatures for polymorphic worms. In IEEE Symposium on Security
and Privacy, Oakland, CA, May 2005.

[39] Nmap. http://www.insecure.org.
[40] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of http-

based malware and signature generation using malicious network traces.
In Symposium on Networked System Design and Implementation, San
Jose, CA, April 2010.

[41] N. Provos and P. Honeyman. Scanssh - scanning the internet for ssh
servers. Technical Report CITI TR 01-13, University of Michigan,
October 2001.

[42] N. Provos, P. Mavrommatis, M. A. Rajab, and F. Monrose. All your
iframes point to us. In USENIX Security Symposium, San Jose, CA,
July 2008.

[43] M. Z. Rafique and J. Caballero. Firma: Malware clustering and network
signature generation with mixed network behaviors. In International
Symposium on Recent Advances in Intrusion Detection, St. Lucia,
October 2013.

[44] K. Rieck, G. Schwenk, T. Limmer, T. Holz, and P. Laskov. Botzilla:
Detecting the phoning home of malicious software. In ACM Symposium
on Applied Computing, 2010.

[45] L. Rizzo. Netmap: A novel framework for fast packet i/o. In USENIX
Annual Technical Conference, Boston, MA, June 2012.

[46] University of oregon route views project. http://www.routeviews.org/.
[47] Google safe browsing. https://developers.google.com/safe-browsing/.
[48] Shoutcast. http://www.shoutcast.com/.
[49] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm

fingerprinting. In Symposium on Operating System Design and Imple-
mentation, San Francisco, CA, December 2004.

[50] Snort. http://www.snort.org/.

14

[51] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the internet in
your spare time. In USENIX Security Symposium, San Francisco, CA,
August 2002.

[52] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna. Your botnet is my botnet:
Analysis of a botnet takeover. In ACM Conference on Computer and
Communications Security, Chicago, IL, November 2009.

[53] Suricata. http://suricata-ids.org/.
[54] Urlquery. http://urlquery.net/.
[55] Virusshare. http://virusshare.com/.
[56] Virustotal. http://www.virustotal.com/.
[57] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren,

G. M. Voelker, and S. Savage. Scalability, fidelity, and containment in
the potemkin virtual honeyfarm. In Symposium on Operating Systems
Principles, Brighton, United Kingdom, October 2005.

[58] Vxvault. http://vxvault.siri-urz.net.
[59] R. J. Walls, B. N. Levine, M. Liberatore, and C. Shields. Effective

digital forensics research is investigator-centric. In USENIX Workshop

on Hot Topics in Security, San Francisco, CA, August 2011.
[60] K. Wang, G. Cretu, and S. J. Stolfo. Anomalous payload-based worm

detection and signature generation. In International Symposium on
Recent Advances in Intrusion Detection, Seattle, WA, September 2005.

[61] Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen,
and S. King. Automated web patrol with strider honeymonkeys:
Finding web sites that exploit browser vulnerabilities. In Network and
Distributed System Security Symposium, San Diego, CA, February 2006.

[62] J. Wyke. The zeroaccess botnet: Mining and fraud for massive finan-
cial gain, September 2012. http://www.sophos.com/en-us/why-sophos/
our-people/technical-papers/zeroaccess-botnet.asp:x.

[63] Z. Xu, L. Chen, G. Gu, and C. Kruegel. Peerpress: Utilizing enemies’
p2p strength against them. In ACM Conference on Computer and
Communications Security, Raleigh, NC, October 2012.

[64] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha. An architecture for
generating semantics-aware signatures. In USENIX Security Symposium,
Baltimore, MD, July 2005.

15

