A Tradeoff between Caching Efficiency and Data Protection for Video Services in CCN

2014. 2. 23.

Eunsang Cho*, Jongho Shin, Jaeyoung Choi, Ted "Taekyoung" Kwon, Yanghee Choi

escho@mmlab.snu.ac.kr Network Convergence & Security Lab, Seoul National University, Korea

BACKGROUND AND STATUS QUO

Background

• Video content is the one of major data sources with *massive volume*.

 CCN (Content-Centric Networking) is able to handle the video content well, thanks to *innetwork caching*.

• First content request (Interest): from Bob to Alice

• First content delivery: from Alice to Bob

 Second content request (Interest): from Charlie to Alice

• Second content delivery: from cache to Charlie

• First content request (Interest): from Bob to Alice

Encrypted Content Data for Bob

• First content delivery: from Alice to Bob

 Second content request (Interest): from Charlie to Alice

Encrypted Content Data for Bob

• Second content delivery: from Alice to Charlie

Problem Definition

• End-to-end data encryption for each different content subscriber makes *caching ineffective*.

A novel video encryption scheme for CCN is required.

Objectives

- The objectives of this research are:
 - To develop a video encryption scheme which can *utilize caching feature* of CCN
 - To provide a practical approach for video content protection
 - To customize protection levels by video content provider's requirements

→ To provide tradeoffs between data protection level, decodability of video, and cache effectiveness

Status Quo

• Transport Layer Security (TLS)

- Limitations
 - One-time validity of encrypted data
 - Ineffectiveness of in-network caching

Status Quo

• Shared & symmetric key cryptography

- Limitations
 - Key leakage problem
 - Untraceability of piracy

OUR PROPOSED SCHEME

Our Approach

- Access control with multiple symmetric keys
 - Distinct set of keys is assigned to each user
 - Tracing feature against key leakage problem (piracy)
 - Some keys can be shared among users
 - Subset of content can be shared by caching

Utilizing MPEG Video Structure

• MPEG video structure

A sample GOP sequence of MPEG video: GOP(12, 3)

Our Approach

- Video compression feature
 - From the structure of a MPEG video, some parts, such as Iframes are more important than others
 - Decrypting B- and P-frames requires I-frames
 - For higher cache utilization, *less important parts* can be left unencrypted

Overview of the Framework

Naming Model

Operation Overview

- 1. Subscriber S requests her own set of keys for video.
- Publisher P responds w/ multiple symmetric keys {k₁, k₂, k₃, ..., k_N} and corresponding content names.

$$k_1 = k_0 = k_0 = k_2 = k_0 = k_0 = k_3 = k_0 = k_0 = k_1 = \dots$$

k₀: unencrypted

3. Subscriber S downloads packets of both encrypted and unencrypted video, the former of which are decrypted with symmetric keys in round-robin.

Do we need to encrypt all the segments of an I-frame?

- I-frames are larger than other frames in volume.
 - Usually an I-frame consists of multiple segments.
 - Encrypting a subset of segments may foil decoding the entire I-frame by adversary without proper keys.

Partial Encryption of I-Frames

- Not all the I-frame segments need to be encrypted.
 - Encrypting a subset of I-frame segments can lower
 PSNR significantly (of an adversary)

MODELLING AND EVALUATION

How Partial Encryption Affects the Performance?

Modelling Partial Encryption Impact on Decodable Frame Rate

• Expected number of successfully decodable I-frames

- p: Encoded segment ratio of I-frame
- Probability of the I-frame of a GOP to be successfully decoded (C_I : number of segments of an I-frame)

$$S(I) = (1-p)^{C_I}$$

Expected number of successfully decodable I-frames

$$N_{dec-I} = S(I) * N_{GOP} = (1-p)^{C_I} * N_{GOP}$$

Number of GOP sequences & there is one I-frame in each GOP 27

Modelling Partial Encryption Impact on Decodable Frame Rate

• Expected decodable frame rate Q

$$\begin{aligned} Q &= \frac{N_{dec-I} + N_{dec-P} + N_{dec-B}}{N_{total-I} + N_{total-P} + N_{total-B}} \\ &= \frac{(1-p)^{C_I} \cdot N_{GOP} + (1-p)^{C_I} \cdot N_P \cdot N_{GOP} + \left[\left(\frac{N}{M} - 1 \right) + (1-p)^{C_I} \right] \cdot (1-p)^{C_I} \cdot (M-1) \cdot N_{GOP}}{N_{total-I} + N_{total-P} + N_{total-B}} \\ &= \frac{\left\{ 1 + N_P + \left[\left(\frac{N}{M} - 1 \right) + (1-p)^{C_I} \right] \cdot (M-1) \right\} \cdot (1-p)^{C_I} \cdot N_{GOP}}{N_{total-I} + N_{total-P} + N_{total-B}} \\ &= \frac{\left\{ \frac{N}{M} + \left[\left(\frac{N}{M} - 1 \right) + (1-p)^{C_I} \right] \cdot (M-1) \right\} \cdot (1-p)^{C_I}}{N}. \end{aligned}$$

Q is inversely proportional to p.

Evaluation of Partial Encryption

- Video Statistics
 - GOP(N=12, M=3)

Video File		Foreman	Akiyo
Total number of frames		300	300
I-frames	Number of Frames	25	25
	Total size of frames (Bytes)	435.643	312.528
P-frames	Number of Frames	75	75
	Total size of frames (Bytes)	245.874	45.859
B-frames	Number of Frames	200	200
	Total size of frames (Bytes)	167.196	24.038
CI	For 0.5K Packet	34.85144	25.00224
	For 1K Packet	34.85144	25.00224
	For 2K Packet	8.71286	6.25056
	For 4K Packet	4.35643	3.12528

 C_I is the mean number of packets of an I-frame, which is used for previous model.

- Evaluation Method
 - Encoder/decoder
 - ffmpeg, libavcodec
 - Making pseudo encrypted file
 - Equal-length segments of I-frame is overwritten with meaningless 0x41 ('A') depending on probability p.
 - Quality Metric
 - PSNR

PSNR

• Peak Signal to Noise Ratio (PSNR) is the standard way to measure video fidelity.

$$PSNR = 10 \log_{10}(\frac{c^2}{MSE})$$

c is a maximum possible value of a pixel (constant)

- PSNR is measured in decibels (dB).
- Higher PSNR value means better quality.

(b) Expected Decodable Frame Ratio Q, GOP(12, 3)

(a) Original

(b) Best PSNR

(c) Worst PSNR

(a) Measured PSNR (Y-YUV) of Akiyo CIF, MPEG-4 H.264/AVC, GOP(12, 3)

(b) Expected Decodable Frame Ratio Q, GOP(12, 3)

(a) Original

(b) Best PSNR

(c) Worst PSNR

Measured PSNR vs. Q

Modelling Cache Hit Probability

- Cache hit probability can be calculated on a single cache with a cache storage of *m* segments:
 - Hit probability of segment k (k = 1, ..., K)

•
$$P_k^{hit}(m, E) = 1 - \pi_k^{m+1} = 1 - \frac{K' - m}{K'(q_k + 1) - 1} \prod_{i=1}^{m-1} \left(\frac{K' - i}{K'(q_k + 1) - 1 - i} \right)$$

Miss prob. of content request of segment k

Prob. of content request of segment k

Hit probability of the whole K' segments

•
$$P^{hit}(m, E) = \sum_{i=1}^{K'} q_i P_i^{hit}(m, E)$$

 P^{hit} decreases since K' is proportional to p.

 $K' = K \cdot E$

K' is the total number of different segments including the encrypted segments *K* is the total number of segments before encryption *E* is an average number of differently encrypted segments for a given content

Modelling Cache Hit Probability

- # of Segments
 - − Blu Ray Single Layer 25GB
 → 6.25M of 4KB segments
- Memory capacity (m)
 - Cisco ASR1000 Series Route Processors (RPs)
 - RP1: up to 4GB DRAM \rightarrow 1M of 4KB segments
- Base values:
 - 6.25K segments (on the network)
 - 1K segments of memory capacity
 - u: # of subscribers (users)
 - s: # of keys given to a user
 - S: # of keys in total (managed by a publisher)

- Two key distributions
 - Min keys: max overlapping keys
 - Max keys: min overlapping keys
- Other settings
 - S=u=100, s=3, I-frame ratio=0.3

Finding Optimal Configurations

- Tradeoff model between the cache hit probability P^{hit} and decodable frame ratio Q
 - Tradeoff function

$$T(m, p, s, u, S) = \gamma \cdot P^{hit}(m, p, s, u, S) + \frac{1}{Q(p) + \delta}, \quad \gamma, \delta > 0$$

Scaling parameters
 Maximum cache hit probability by varying control parameter p

$$\max_{p} \quad T \\ s.t. \quad 0 \le Q \le \epsilon \\ \quad 0 \le p \le 1 \\ \quad 1 \le u \le S^{s} \\ \quad Q, \ p \in R, \ u \in Z_{+}$$

36

• $\delta = 1.0, S = u = 100, s = 3$, I-frame ratio=0.3, $K = 6250, m = 100, GOP(12,3), C_I = 4.35643$

Conclusion

- Assuming MPEG video streams, we seek to achieve data protection while preserving the advantage of CCN's in-network caching
- We present a CCN protection framework for video streaming services:
 - Key mechanism is the partial encryption
 - Tradeoff between the data protection and caching efficiency in CCN

END OF DOCUMENT