
Towards a Richer Set of Services in
Software-Defined Networks

Roberto Bifulco
NEC Laboratories Europe

roberto.bifulco@neclab.eu

Ghassan O. Karame
NEC Laboratories Europe

ghassan.karame@neclab.eu

Abstract—Software-Defined Networking (SDN) has drawn
increasing attention from both industry and academia, owing
to its premise to simplify the management and control over large
networks. While the SDN technology was initially deployed within
datacenters, there are currently early deployments of SDN in
Wide-Area Networks; SDN is further envisioned to be deployed
in the near future within fixed and mobile networks.

In this paper, we show that the envisioned deployment of
SDN within operator networks opens the doors to novel network
security services that the operators can efficiently offer. More
specifically, we propose in this work two exemplary operator
services; our first solution enables the construction of secure
location proofs for registered network users. Our second solution
offers users the possibility to request the setup of network paths
that are tailored to their specific security constraints, e.g., that
only cross domains regulated by appropriate legislations which
match their security policies. We show that this can be securely
and efficiently attained by leveraging basic functionality from the
OpenFlow protocol. In this respect, we evaluate the feasibility
of our proposals by means of implementation within a realistic
testbed composed of hardware OpenFlow-enabled switches; our
findings suggest that our proposals can be deployed with minimal
overhead within existing SDN-enabled networks.

I. INTRODUCTION

The emergence of Software-Defined Networking (SDN)
has lead researchers and practitioners into the design of a
number of innovative network functions and applications in an
easier and flexible way. This is due to the main premise behind
SDN, which lies in the separation of the “control plane” and
the “data plane”, thus greatly facilitating network management.

A successful instantiation of the SDN principles is Open-
Flow [1], which defines a communication protocol and a
network switch interface programming model specification.
OpenFlow enables a controller to perform flow-based network
forwarding via a number of OpenFlow-operated switches.
Hence, the controller installs rules at the switches using the
control interface; the switches then implement the requested

rules on the data plane. OpenFlow is already experiencing
real-world deployments within campus networks and data-
centers [2]. The premises of SDN have also lead to early
deployments in Wide-Area Networks [3]; the deployment of
OpenFlow-enabled technology is envisioned in the near future
within fixed and mobile network operators [4]–[7].

Besides the ease of management, we argue that OpenFlow
simplifies the integration of security functions and applications
within the network. For instance, recent work has demonstrated
that OpenFlow can help deploying security policies in the
network [8], performing dynamic load-balancing [9], [10],
implementing network intrusion detection/prevention [11], per-
forming secure end-to-end network measurements [12], etc.

In this work, we show that SDN (and OpenFlow) em-
powers network operators to efficiently offer a richer set
of security services tailored to satisfy the performance and
security requirements of their individual network users. Here,
we consider a network comprising of the federation of one
or more OpenFlow domains and we propose two solutions
leveraging the OpenFlow protocol that aim at offering users
the means to request additional services from the network.
Our first solution, dubbed NPoL, enables operators to securely
issue network location proofs for their users; these proofs can
be submitted to location-based services such as YouTube, e-
voting, e-banking services, etc. Our second solution, dubbed
UdP, builds upon NPoL and offers users the possibility to
request the setup of user-defined paths that are tailored to their
specific Quality-of-Service (QoS) constraints. For instance,
communicating entities might want to ensure that their traffic
only crosses network domains that are regulated by appropriate
legislations which matches their security policies—without
compromising the desired QoS requirements (e.g., bandwidth,
delay, jitter). UdP could also provide assurance for companies
and governments that their Internet traffic cannot be hijacked
by untrusted network operators for surveillance purposes [13],
[14]. Besides proposing UdP, we present an efficient instan-
tiation of our scheme within a realistic testbed composed of
OpenFlow-enabled switches.

The main benefits of our proposals are: (i) given the surge
of Internet surveillance/hijacking events [13]–[18], our propos-
als enable users to benefit from additional security assurances
from the network itself, (ii) our proposals are likely to boost
the revenues of network operators since these operators can
offer their customers differentiated services without incurring
additional costs in terms of network infrastructure. Finally, (iii)
we show that this vision can be efficiently attained within ex-

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
SENT ’14, 23 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-36-3
http://dx.doi.org/10.14722/sent.2014.23006

isting OpenFlow-enabled networks and conveniently scales to
accommodate potential requests originating from the multitude
of available network users. Note that a thorough analysis of
the economic viability of our scheme is out of the scope of
the paper; instead we focus in this work on demonstrating the
feasibility of securely deploying such services within existing
OpenFlow networks.

Our contributions can be summarized as follows:

• We introduce NPoL, a novel OpenFlow application
which can be used by registered users to acquire
secure location proofs from the network operator. We
analyze the security of our solution, and we describe
an instantiation of NPoL within existing SDN-enabled
networks.

• We show that OpenFlow also enables the provisioning
of user-defined constrained paths. We present a solu-
tion, dubbed UdP, that can be efficiently deployed
within existing OpenFlow networks and we analyze
its performance and security provisions.

• We implement and evaluate a prototype instantiation
of UdP within the Beacon OpenFlow controller [19]
and using a realistic testbed comprising of NEC
OpenFlow-enabled switches.

The remainder of the paper is organized as follows. In
Section II, we overview the OpenFlow protocol and we present
our model. In Section III, we introduce and analyze our
solution, NPoL, that leverages OpenFlow in order to construct
secure location proofs for network users. In Section IV, we
introduce and implement our second solution, UdP, which
enables the efficient provisioning of user-defined paths in the
network. In Section V, we overview related work in the area
and we conclude the paper in Section VI.

II. BACKGROUND & MODEL

In what follows, we briefly overview the main features of
OpenFlow and we state our system and attacker model.

A. OpenFlow

OpenFlow [20] provides an architecture that separates the
data plane of the network, i.e., the switching hardware, from
its control plane which implements the forwarding decision
logic. More specifically, the control plane usually comprises a
logically centralized entity—the controller—which is typically
implemented in software (using a high level programming
language). The controller uses the interface and the program-
ming model defined by the OpenFlow specification in order
to configure/program the switches in the network. The com-
munication between the controller and switches is established
using a control channel, which is usually implemented as an
out-of-band dedicated TCP/IP network. Here, TLS can be used
to secure the communication between the controller and the
switches.

The function of a controller is to provide a set of rules to be
installed at the different switches by means of the OpenFlow
protocol. In the OpenFlow terminology, the rules used to
program a switch are called flow table entries (FTE). An FTE
is defined by (i) the match set that defines the network flows to

which the entry is applied, (ii) the action set which defines the
processing and the forwarding decision that must be applied to
the matched flows, (iii) a priority field of the entries installed
in a switch, and (iv) an expiration time specified as a timeout.
For instance, a typical FTE provides semantics like “forward
network flows with network destination address 1.1.1.1 to port
3”. Notice that the rules space is a limited resource in an
OpenFlow switch; hence, the control logic design must take
into account the total number of rules that are required to
be installed at switches in order for any SDN solution to be
deployed in practice.

Moreover, we point out that an OpenFlow switch can
be instructed to forward packets to a “controller port”, thus
allowing the controller to inspect packet headers. In this
case, the switch sends a packet_in message to the controller,
which contains the original packet’s headers and additional
information—such as the switch and the port IDs onto which
the packet was received.

B. System and Attacker Model

Throughout this paper, we assume the following network
model. We assume a network comprising of one or more
OpenFlow-supported domains. In the sequel, we denote by
Di the i-th domain, and by Ci, the (logically-centralized)
controller that governs domain Di. We assume that each
controller Ci is equipped with a public/private key pair and we
assume that the various controllers know each others’ public
keys.

We also assume that each network user uj ∈ Di is
equipped with a public and private key pair, denoted by
(pkj , skj) respectively. Our analysis covers the typical case
where users are connected to the network using a Customer
Premises Equipment (CPE, also commonly referred to as
“home gateway”); here, we assume that the CPE is under the
governance of Ci. Figure 1 summarizes our network model.

In our analysis, we assume a secure channel between the
user machines and the network routers/switches on the one
hand and between switches and the corresponding controllers
on the other hand.

We consider one or more colluding malicious network
users who are motivated to increase their benefit in the
network, e.g., by claiming a different network location, etc.
We assume that these users have knowledge of the measures
used by the controllers/switches in order to deter misbehavior
in the network. We, however, assume that these users are
computationally bounded, and as such cannot forge signatures,
break encryption schemes, etc. Finally, we assume that the
controllers and network components are trusted and cannot be
compromised.

III. NPOL: LOCATION PROOFS USING OPENFLOW

In this section, we introduce NPoL, a novel OpenFlow ap-
plication which can be used by network users to automatically
acquire location proofs from the network operator.

A. Location Proofs

Location-based services (e.g., Foursquare [21] and
Yelp [22]) are gaining increasing importance recently. Sev-
eral applications enable users (e.g., using mobile devices) to

2

Fig. 1. System model. We assume a network comprising of one or more OpenFlow-supported domains. Each domain Di is governed by a (logically centralized)
controller Ci. Users are connected to the network by means of CPEs.

discover and communicate their locations to a server in the
cloud; in turn, the server uses this information to return data
relevant to the users’ locations. For instance, a number of
existing services can only be acquired by users who are located
within a specific geographical area; this includes banking
services, Youtube and content delivery services, among many
others. Location information also proves to be useful for a
number of security-critical services such as police investiga-
tions, e-voting, etc. However, while many devices nowadays
are capable of discovering and reporting their locations, they
lack a mechanism to prove their locations to third-party
applications and services. Indeed, as the utility of relying on
location information increases, so do the incentives for users
to misreport their locations. Recent studies [23]–[25] suggest
that current mechanisms such as IP-based Geolocation, and
network coordinate systems cannot be used, solely, to securely
estimate the location of devices since these techniques are
vulnerable to a wide range of location manipulation attacks.

“Location proofs” consist of a certificate that certifies
the presence of a given entity at a certain location at some
point in time. The literature comprises a number of proposals
for location proof architectures (e.g., [26]–[29]). Most of
these solutions require additional functionality from network
components (e.g., such as performing distance bounding mea-
surements, generating signatures) in order to issue such proofs.
Other solutions (e.g., [24]) require the reliance on trusted land-
mark nodes within the network which can securely determine
the location of users. The unavailability of such functionality
within existing networks has made location proofs absent from
the current landscape of services offered by network operators.

In what follows, we introduce our solution, NPoL, which
leverages OpenFlow and enables operators to issue location
proofs without incurring modifications to the network.

B. NPoL: Network Proofs of Location

NPoL leverages OpenFlow to (i) acquire the network
location of users and to (ii) enforce anti-spoofing of IPs in
the network. By doing so, NPoL can ensure that a given IP is
present at a given location.

More specifically, in OpenFlow, the controller typically

configures the switches on the edge of the network, which
are connected directly to the CPEs to generate a packet_in
message upon reception of a network packet—when such a
packet is not matched by any forwarding rules installed within
the switch. The packet_in message contains the switch ID and
the port ID from where the packet has been received; it also
includes the packets’ headers, so that the controller can inspect
those headers and extract relevant information.

Using this information, the controller builds a dynamic
location table in NPoL which contains the locations of current
IP addresses. Here, “location” connotes the presence of the
user’s device at a given switch’s port. This network location
can be easily paired with a geographical location, e.g., retrieved
from the network operatorâĂŹs inventory database1. Note that
in case the IP address of the user changes, then the controller
can immediately detect the change and issue new proofs of
location for the newly obtained IP address. Moreover, our
solution also ensures that an IP address is correctly assigned to
its current location in case of address rewriting, e.g., for load
balancing purposes. For instance, consider the case where the
controller needs to issue a location proof for a node whose
address has been rewritten by a network switch. Since we
assume that the switch/CPE is under the governance of the
controller, the controller is also aware of the translation table,
and of the mapping to the corresponding translated location.

Moreover, to prevent IP spoofing in NPoL, the controller
installs a new forwarding rule on the outermost switch from
which it received the packet_in message to ensure that only
packets with the specified source IP addresses are forwarded
from that port. In the OpenFlow protocol, this rule looks like:

Match set: All wildcards but (NW_SRC that has value “IPj”)
Action set: OUTPUT (port: a)

In this example, packets from IPj are forwarded onto port
a. Using this approach, the controller ensures that IP addresses

1This geo-location information is not likely to go stale since it is required
in order to e.g., physically maintain the switches.

3

User uj Controller Ci
M1 ← {IP j ||pkj ||T1}

M1||Sig(M1,skj)
!!

Verify{M1||Sig(M1, skj)}
L← Lookup(IP j , pkj)
M2 ← {IP j ||pkj ||T2||L}

M2||Sig(M2,skCi
)

""

Fig. 2. Sketch of the messages exchanged between users and the controller
in NPoL.

in domain Di cannot be spoofed2. Notice that this property—
which is straightforward to guarantee in OpenFlow—is rel-
atively challenging to enforce otherwise. Indeed, network
operators usually only enforce anti-spoofing rules at the data
link layer of the network stack3.

In NPoL, a user asks for his location proof by using
an interface exposed by the controller, e.g., using a REST-
based interface [31]. The protocol interactions in NPoL are
depicted in Figure 2. Here, the user creates (and signs) a
request location proof message M1 which contains the user’s
public key (pkj), the current IP address (IPj) and a timestamp
(T1). After receiving M1, the controller checks (i) that the
signature is valid and that it matches pkj and (ii) that the IP
address for which the location proof is required is correct,
by comparing it against the source IP address contained in
the message’s packet header. If these verifications pass, the
controller performs a lookup for the user’s device location in
the dynamic location table using the IP address as search key in
order to find the current geographical location of such device.
Finally, the location is used to build the signed location proof
which is delivered to the requesting user in M2.

Security Analysis: NPoL provides a location proof that a
given IP address, associated with the public key of the user is
present at location L, at timestamp T2. By binding both the IP
address and the public key of the user to a specific location,
NPoL ties the IP address of users to their identity (i.e., public
keys) and inherently alleviates Sybil attacks [32] where users
create several fake identities in several locations within the
network4. Note that any third-party service which acquires the
location proof M2 can tunnel all communication with uj using
a secure channel established using its public key5 pkj . Recall
that the controller prevents spoofing in its domain by installing
the forwarding rules at the switches (see above).

We point out, however, that similar to existing solutions,
NPoL cannot prevent attacks where a malicious user com-
promises several devices in the network and replicates her
credentials across these devices [33]. Instead, NPoL ensures
that the user has at least one device equipped with IPj and

2Note that this can be achieved in spite of user mobility. When users move,
they will acquire new IPs. The controllers then install anti-spoofing rules for
the newly obtained IPs.

3In Ethernet based Broadband Access networks [30], a common procedure
to ensure that the source MAC address is correct is to install static anti-
spoofing rules directly in access nodes, such as DSLAMs, as a one time
action executed after the service provisioning contract subscription.

4Here, we assume that each network user has registered its public key within
the controller at an earlier setup phase.

5As a by-product, NPoL can be used to securely distribute the public key
of uj to third-party services that know the public keys of the controllers.

pkj at location L at time T2. Clearly, if a malicious user uses
the same credentials across several network locations within
a small period of time, then the controllers can immediately
detect such misbehavior by periodically exchanging location
information of their users6.

We also note that NPoL does not come at odds with
user privacy. Indeed, a location proof request can only be
issued by the user himself, since the request needs to be
authenticated using the private key of the user (which should
match its registered public key). We further note that in existing
networks the location privacy of users is exposed to network
operators who can keep track, at all times, of the network
locations of their users.

Remark 1: We point out that NPoL can be easily extended
to include the attestation of the software installed at the
controller Ci. Recall that attestation protocols serve to prove
to any third party that Ci is executing genuine software. In
this case, the user can include a random nonce within M1,
which can be used as an attestation challenge. Ci can then
piggyback the attestation response within M2. Further details
about attestation protocols can be found in [34], [35].

IV. ON-DEMAND PROVISIONING OF USER-DEFINED

PATHS

In this section, we show that OpenFlow also efficiently
enables the on-demand provisioning of user-defined paths. We
first start by introducing the concept of user-defined paths.

A. User-Defined Paths

The growth and complexity of conventional networks pre-
vents network operators from offering fine-grained subscrip-
tions to their customers; instead these networks can only, at
best, offer their clients a handful of possible choices for their
network subscriptions (e.g., in terms of connection bandwidth).
SDN suggests a slight departure from this model, since it al-
lows the operators to dynamically configure network switches
and therefore to install fine-grained rules within the network,
specifically tailored to the needs and requirements of individual
network customers.

In this respect, we envision the deployment of a network
service that enables users to request from the network operator
the provisioning of a dedicated communication path between
two IP addresses; the requested path can be constrained
to some user requirements. For instance, one possible use-
case would be to provision a user-defined path which only
crosses network domains whose regulation abides by the users’
security policies. Indeed, while there are clear legislations
which protect net-neutrality and the privacy of online users,
some countries clearly lack the existence of any legislation
that prevents operators and entities from undergoing Internet
surveillance [36]–[38]. Even worse, recent events reveal that
some operators are purposefully hijacking Internet traffic [13],
[14]. For instance, a hijack of major Internet domains in
2010 [13] resulted in the routing of a large proportion of
Internet traffic to a single network operator. Note that such
threats are typically hard to deter; while end-to-end encryption

6Here, the same user would appear to have moved at a very large speed
across various network locations.

4

User ua Controller Ci
M1 ← {IP a||pka||IP b||pkb||NPoLb||CONSTRAINTS||DURATION||T1}

M1||Sig(M1,ska)||Sig(M1,skb)
!!

Verify{M1||Sig(M1, ska)||Sig(M1, skb)}
Verify(NPoLb)

(If CONSTRAINTS can be deployed)

M2 ← {‘OK′||M1||T2||R||ACKs}
M2||Sig(M2,skCi

)
""

Fig. 3. Sketch of the messages exchanged in UdP. Here, we assume a user-defined path with requirements CONSTRAINTS. Recall that all communication
between the users and the controller is performed over a secure channel.

can hide the contents of the packets, recent results show
that end-to-end encryption does not necessarily hinder surveil-
lance [15]–[18]. Furthermore, anonymizing systems, such as
Tor [39], typically come at high performance costs, e.g., for
VoIP communication.

Ideally, companies and governments would want to make
sure that—whether purposefully or not—their Internet traffic
does not cross untrusted network operators (e.g., in authoritar-
ian countries). In the best case, these entities want to make sure
that their traffic only crosses network domains that are regu-
lated by appropriate legislations which matches their security
policies, without compromising the desired QoS requirements
(e.g., bandwidth, delay, jitter)—hence the motivation for the
following Example 1.

Example 1: A company requests a given QoS level for
all traffic crossing between two of its IP addresses (e.g.,
corresponding to two or more geo-located datacenters) while
ensuring that exchanged flows between those IP addresses
never cross domain A.

Challenges: A number of challenges need to be addressed to
enable Example 1 in practice.

a) Scalability: If network operators would allow such
level of fine-grained rule creation across the entire (federated)
network, then this means that the number of flow table entries
maintained per network router/switch will increase linearly
with the number of user-defined paths. Here, we point out
that existing routers can maintain, at best, flow entry tables
with few thousands of entries. For instance, HP switches are
reported to hold 1,500 flow entries [40], [41], while NEC
reports that its switches can store more than 64,000 flows [42].

b) Security: Such a service implicitly requires that the
user-defined path is solely used by legitimate clients (e.g., who
purchased the service). As such, the network operator needs to
prevent a malicious user from benefiting from another user’s
subscription. Needless to mention, this entire process should
not incur considerable overhead on the various controllers.

B. UdP: Efficient Provisioning of User-Defined Paths

We start by presenting our solution, UdP, which builds
upon NPoL in order to enable the efficient and secure provi-
sioning of user-defined paths.

In UdP, users install a daemon application which serves
to provide a user-interface to request a user-defined path. A
sketch of the interactions required for setting up a user-defined

path between IP a and IP b unfolds in Figure 3. Similar
to NPoL, UdP binds the IP addresses of ua and ub to
their public keys pka and pkb, respectively. By doing so,
UdP enables ua and ub to use the same path even if their
IP addresses have changed (e.g., if they have relocated).
In UdP, users can request the setup of paths that satisfy
requirements ‘CONSTRAINTS’ by sending message M1 ←
{IP a||pka||IP b||pkb||NPoLb||CONSTRAINTS||DURATION
||T1}. Here, CONSTRAINTS could refer to QoS
requirements (e.g., bandwidth), but could also specify
the set of allowed domains S that the path can traverse. For
example, ua could require that S ∈ {D − Di} (i.e., the path
does not traverse domain Di}). Moreover, NPoLb denotes a
location proof binding IP b and pkb. Note that since the path
is bi-directional, such a request needs to be authorized by
both ua and ub. Here, we assume that ua contacts ub (using
their respective daemons) in order to acquire NPoLb and a
signature over M1. The UdP daemon of ua then sends M1

(along with ua and ub’s signatures on M1) to Ci.

Note that in the (typical) case where IP b is located
outside Di, then Ci uses the location information contained
in NPoLb in order to contact the controller of the neighboring
domain Dj on the path to IP b and checks for the feasibility
of installing a network path that satisfies CONSTRAINTS.
This process recursively re-iterates until Ci acquire signed
acknowledgement messages from all controllers on the path
between IP a and IP b. For transparency, Ci includes these
signed acknowledgements in the ACKs field in the receipt
M2 (cf. Figure 3).

If CONSTRAINTS could be deployed within the network,
then Ci sends a receipt M2 ← {‘OK′||M1||T2||R||ACKs} to
ua, ub, and to the corresponding controllers involved in the
provisioning of the path (here, R is a random nonce); these
latter, along with Ci then install the appropriate rules on the
switches for the required duration DURATION. Notice here
that the rules installed at the first switch on the path are based
on exact matching of the IP addresses of ua and ub and the
matching of a packet header field with the cryptographic
hash of the receipt M2, denoted in the sequel by h(M2). In
OpenFlow, this can be specified as follows:

Match set: (Not specified fields are wildcard)
DL_SRC = h(M2), NW_SRC = IPa, NW_DST = IPb

Hard Timeout: DURATION
Action set: OUTPUT (port: a)

5

Fig. 4. Example of setting up a user-defined path in UdP. Here, the user-defined path between ua and ub should not traverse the crossed domain. The controller
of the domain hosting ua contacts the appropriate controllers and checks the feasibility of setting up a user-defined path according to the user requirements. If
such a path can be established, the controllers install the corresponding flow rules in their domains. The resulting user-defined path is shown in solid red line.
The dotted arrows refer to communication on the control plane.

Once the user-constrained path is provided, the user’s UdP
daemon rewrites the packets’ source MAC address with the
value of h(M2). Upon reception of the packets, the network
switches check the presence of h(M2) in order to forward
the packets accordingly to the required user-defined path.
The process of setting up a user-defined path in UdP is
summarized in Figure 4. By including h(M2) in the flow
matching criteria, UdP does not require the controller to
keep any intermediate state information in order to verify the
authenticity of established subscriptions in the system.

Security Analysis: By tainting the flows with the hash of M2

as a flow matching criteria, UdP associates each flow rule
with a given subscription. This, in turn, enables the controller
to verify, without the need to store metadata information about
any subscription, whether a given user (i.e., public key) is
entitled to make use of the user-defined path. Note that, after
installation of the rules, only users with IP a and IP b can taint
their flows using h(M2) to make use of the user-defined path.
We point out, here, that spoofing attacks of IP a are prevented
by Ci (cf. Section III-B). Furthermore, the location proof
NPoLb provides a guarantee that the controller governing IP b

ensures that IP b cannot be spoofed in its domain. Note that,
alternatively, this guarantee could be explicitly requested by Ci
upon path establishment. However, by requiring that NPoLb

is included within M1, Ci offloads the work to the users, and
ensures that they have committed enough of their resources
before it proceeds to establish the path. Such an approach
thwarts DoS attacks on the controller.

If, on the other hand, IP a and/or IP b refer to the addresses
of CPEs or of NATs, then all users located behind the NATs
can benefit from the installed user-defined path (e.g., in case
of a company or a grouping of users). Note that in case ua

changes his IP (e.g., ua moves to another network), then there
is no forwarding rule for the tainted packet that arrives at
the first operator’s switch. The latter then encapsulates ua’s
packets in a packet_in message which is sent to the controller.
The controller subsequently requests the receipt of the sub-
scriptionM2; this message could be sent by leveraging existing
functionality from OpenFlow, such as the ability to inject
arbitrary packets at a switch’s port using a packet_out message.
After receiving this message, the UdP daemon replies back

with the certificate M2. After verifying the signature of M2,
the controller installs the appropriate rules on the switches.

In addition to minimizing storage within controllers, this
approach throttles Denial-of-Service attacks on the controller.
Here, malicious users have to present authentic receipts to
the controller which match their flow taints in order to solicit
the controller to install any rule. Notice here that the random
number R within M2 prevents tainting collisions for similar
subscriptions, and ensures that the taint is hard to predict;
recall that an external attacker cannot eavesdrop on the taints
of existing flows since we assume a secure channel between
the user and the switches. We note that even if an attacker can
acquire a correct taint, she cannot make use of the user-defined
path provisioned for ua and ub since she needs to spoof IP a

or IP b in domains which strictly enforce anti-spoofing.

Rule Scalability: UdP requires a potentially high number
of forwarding rules that need to be installed, in particular
at the network switches located in the core of the network.
This clearly does not scale well as the number of users which
benefit from this service increases. To overcome this limitation,
UdP relies on an innovative OpenFlow-based solution adapted
from [43]. The main intuition here is that the controllers only
install forwarding rules at the outermost (and least loaded)
switches of the network (i.e., those connected to the CPEs
and users), while no rules are installed at the overloaded core
routers/switches.

Packet forwarding for UdP is then achieved as follows.
After acquiring the path information from the controller, the
outermost switch rewrites the packet’s headers to encode (i)
the list of actions that each switch on the path has to execute on
the received packet, and (ii) a counter that encodes the current
action that each switch needs to apply upon reception of the
packet. That is, each switch, when receiving this modified
packet, checks the counter field to find the action that has to
be executed, increments the counter and executes the required
action. This means that core switches no longer need to store a
flow table entry per path, but simply have to store the required
actions only; these typically require at most few tens of entries
to be stored per core switch [43]. For instance, a switch with 24
ports could have 24 possible forwarding actions (one per each
port), hence, a small number of possible actions are required

6

Fig. 5. The testbed used in our prototype evaluation. Our testbed is composed
by two servers HP DL380G7 equipped with two Intel L5640 (6-Core 2.26GHz)
processors, 24GB of RDIMM PC3-10600R-9 memory and by three NEC
ProgrammableFlow PF5240 OpenFlow-enabled switches.

at any given hop. This also makes it possible to encode the
sequence of the actions in current packet’s header space. Notice
that the last switch on the path restores the packet’s original
header.

We point out that this solution can be easily ported to
the OpenFlow switches’ firmware with small modifications.
Further details on this solution can be found in [43].

C. Implementation Setup

We implemented UdP atop of the Beacon OpenFlow
Controller [19]. To support controller scalability, UdP relies on
a hierarchical controller architecture similar to [44]. Here, the
controller consists of several layers, where the lower layer is
solely interfacing with the switches. Each layer interacts with
its upper layer when a network event (such as a packet_in)
cannot be handled with the knowledge of the local layer. This
approach distributes network events opportunistically, based
on the assumption that a large fraction of these events can
be locally handled; indeed this is an expected behavior in
Wide-Area Networks (WAN) where interactions within local
networks do not require the knowledge from other networks
to be handled. Further details on this approach can be found
in [44], [45].

The controller exposes a REST interface to receive user-
defined path requests. The requests follow the protocol de-
scribed in Figure 3, with the CONSTRAINTS encoded either
using JSON or XML, to include requirements such as path
end-points’ IP addresses, the required QoS, the set of domains
where the path should (or not) traverse, etc. Conforming with
the specification of UdP, when a request is received, the
controller computes the optimal path according to the current
network topology and load, creates the certificate M2 and
stores the computed solution in memory, using a hash table
that uses h(M2) as an index field.

The installation of user-defined paths can follow two strate-
gies: early path installation or lazy path installation. In the
former approach, the controller installs the path rules once
the user’s request is received, while in the latter approach,
the controller defers the installation of the forwarding rules
until the first tainted packet is received. Clearly, this approach
enables the dynamic handling of new path installations and
path updates upon end-point relocation.

Our implementation for UdP’s daemon7 exposes a GUI
for the user to request the user-defined paths and creates a

7Note that the same solution can be equally mounted at the CPEs, in which
case, the user interface can be made accessible from the local network, e.g.,
a web interface could be provided

Fig. 6. Our evaluation setup. All OpenFlow switches are connected to each
other on the data plane, and connect to the controller in a star topology via an
Ethernet switch. We assume that user-defined path setup between “Server1”
and “Server2”.

software Ethernet bridge and a TAP virtual network interface.
The bridge then acquires the original user’s machine network
setup in order to connect to the TAP interface and to the
physical Ethernet interface of the user’s machine. The TAP
interface MAC address is set to the value of h(M2), so that
any packet going out using this interface will be tainted by
writing the value h(M2) in the source MAC address. Notice
that this solution does not require any modification to the user’s
machine network stack. Finally, the UdP daemon adds an entry
in the forwarding table of the machine’s kernel in order to
forward the packets belonging to the user-defined path using
the TAP interface.

We conducted our experiments using the testbed shown
in Figure 5. The testbed is composed by two HP DL380G7
servers equipped with two Intel L5640 (6-Core 2.26GHz)
processors, 24GB of RDIMM PC3-10600R-9 memory and
by three NEC ProgrammableFlow PF5240 OpenFlow-enabled
switches [42]. Here, “Server1” has two network interfaces, one
connected to a traditional Ethernet switch used for the Open-
Flow control network, and the second one used to perform
the tests using the OpenFlow switches data-path. In this way,
“Server1” runs both the OpenFlow Controller and the UdP
daemon.

D. Evaluation Results

First, we evaluate the performance of installing path for-
warding rules for setting up a user-defined path between
“Server1” and “Server2” (cf. Figure 6). Here, we relied on
the ping tool to measure the delay experienced by network
packets in our testbed. To accurately assess the performance of
our scheme, there was no cross-traffic traversing the switches
throughout the entire evaluation. Table I reports the various
RTT propagation times witnessed by the first packet of a
new network flow originating at “Server1” using the lazy and
early rule installation strategies, respectively. Clearly, the early

Rule Installation strategy First packet RTT (ms)
Early installation 0.159 (0.009664)
Lazy installation 18.270 (5.837111)

TABLE I. RTT PROPAGATION TIMES WITNESSED BY THE FIRST

PACKET OF A NEW NETWORK FLOW ORIGINATING AT “SERVER1” USING

THE LAZY AND EARLY RULE INSTALLATION STRATEGIES. EACH DATA

POINT IS AVERAGED OVER 10 INDEPENDENT MEASUREMENTS. WE ALSO

INCLUDE THE 95% CONFIDENCE INTERVALS IN BRACKETS.

7

installation causes the first packet to only perceive the usual
network forwarding delay (which in our case was three hops),
while the lazy installation introduces a considerable delay in
the flow setup phase, since the packet has to wait until the
packet is examined by the controller and the forwarding rules
are installed at the various switches before being forwarded.
In our evaluation, the lazy installation resulted in a total RTT
of about 20ms. While this network delay can be acceptable
in many scenarios, we acknowledge that it might result in
a sensible performance degradation when dealing with real-
time streaming. These results therefore motivate the need to
extract the rule installation strategy from the user requirements.
On one hand, lazy installation might result in a performance
degradation in some use-cases, but on the other hand, this
strategy is ideal for alleviating network resources usage, in
particular during heavy workloads [8].

As explained before, both lazy and early installations only
affect the outermost switches in UdP and are not required for
inner core switches; in our testbed (cf. Figure 6), this translates
to installing rules only at switches A and B. In this respect, we
performed a preliminary evaluation of the number of required
rules that need to be installed at switches A and B in order
to support user-defined paths. For that purpose, we analyze
a one day long traffic trace taken at a Digital Subscriber
Line Access Multiplexer (DSLAM) of a European telecom
operator in 2007, and we count the number of flows in the
trace, using as flow definition the combination of source and
destination IP addresses. In total, there were around 182,000
different combinations of addresses; only 10,000 of those were
however active (i.e., where end-points are exchanging packets
in a 10s time window) and as such should be installed at
switches. Given that current OpenFlow switches can easily
cope with this number of flows entries [42], this preliminary
evaluation confirms that UdP can easily cope with current
traffic dynamics.

Finally, we evaluate the performance of the system when
subject to updates to a given user-defined path. Such updates
could occur in case network failures occur or for optimization
purposes, or to support user mobility. To evaluate UdP in this
context, we dynamically replace the three-hop path (shown in
solid red in Figure 6) with the two-hop path (not crossing
switch C, shown in dotted green in Figure 6) and we measure
the end-to-end packet delay during the path change. Figure
7 shows the resulting RTT between “Server1” and “Server2”
when the aforementioned path update occurs8. Our results
clearly show that no packets are lost and that the perceived
RTT is not significantly affected when compared to the ’static’
case featuring no path updates. Note that the variability in
RTT witnessed immediately after the transmission of packet
ID 25 is due to change in scheduling policies at end-hosts (to
accommodate for the new shorter path).

V. RELATED WORK

In this section, we overview related work in the area.

Location Proofs: The literature comprises a considerable
number of proposals for location proof architectures. Most of

8Notice that the path change happens in the proximity of the transmission
of packet ID 25.

0 10 20 30 40 50
Packet ID

0.13

0.14

0.15

0.16

0.17

0.18

0.19

R
T
T
(m

s)

static

dynamic

Fig. 7. Experienced per-packet delay when using UdP between “Server1”
and “Server2” in the early and lazy installation strategies, respectively. The
y-axis shows the experienced delay in milliseconds while the x-axis reports
the packet sequence number. ‘Static’ refers to the case where no modification
to the user-defined path occurs. ‘Dynamic’ refers to the scenario where the
three-hop user-defined path in Figure 6 (in red) is replaced with the two-hop
path (in red) before the transmission of packet ID 25.

these solutions require additional functionality from network
components (e.g., such as generating signatures) in order to
issue such proofs. Other solutions require the reliance on the
presence of trusted landmark nodes within the network which
can securely determine the location of users.

In [27], Luo et al. propose a privacy-friendly location
proof architecture that relies on trust third party. In [28],
[46], Capkun et al. rely on measuring the round trip time of
signals to securely estimate the distance between two parties
in wireless sensor networks. In [24], Kaafar et al. propose the
reliance on trusted surveyor nodes in order to secure Internet
coordinate systems.

In [47], Faria and Cheriton propose a location-based au-
thentication architecture for WLANs, which relies on a trusted
centralized entity that controls a group of access points and
broadcasts random challenges to clients through these access
points. In [48], Lenders et al. propose a geotagging service
that allows a content creator to tag their content with a spatial
timestamp. Other proposals (e.g., [49], [50]) rely on deploying
dedicated hardware (e.g., Trusted Platform Modules) to ensure
the correctness of the location reported by sensing devices.

OpenFlow/Next-Generation Internet Security: Security in
OpenFlow has recently received considerable attention in the
literature. In [9], Wang et al. propose algorithms for computing
wildcard rules in order to adjust to changes in load-balancing
policies without disrupting existing connections. In [10], Hand-
igol and Seetharaman propose the reliance on customized flow
routing in OpenFlow in order to dynamically perform load-
balancing in the network.

In [11], Braga el al. propose a lightweight method for
detecting DDoS attacks based on traffic flow features acquired
using the OpenFlow-enabled NOX controller. In [12], [51],
[52], Karame showed that the security of bottleneck bandwidth
estimation and RTT latency measurements can be strengthened
by acquiring functionality from OpenFlow-enabled networks.

8

In [53], Shin et al. proposed a security application develop-
ment framework designed to facilitate the design of modules
for attack detection/mitigation. In [54], Porras et al. propose a
software extension that enables the NOX OpenFlow controller
to check flow rule contradictions in real time. In [55], Shin et
al. propose an extension to the data plane in order to alleviate
control plane saturation attacks aiming at disrupting network
operations.

In [56], Andersen et al. propose AIP, a protocol which
enables hosts and domains to prove that they have the address
they claim to have without relying on any global trusted
authority. In [57], Zhang et al. introduce a scheme which
separates ASes into groups of independent routing sub-planes,
which then interconnect to form complete routes. By doing
so, this scheme promises route control, failure isolation, and
explicit trust information for end-to-end communications.

VI. CONCLUSION

SDN has lead researchers and practitioners into thinking
of innovative ways to integrate security applications within
the network. In this paper, we showed that the inevitable
deployment of SDN within operator networks opens the doors
to novel security services that can be made available to
users, without incurring additional costs in terms of network
infrastructure.

In this respect, we illustrated and proposed two exemplary
services that can be efficiently deployed within existing SDN
networks. Our first solution, NPoL, enables the construction
of secure location proofs in OpenFlow networks. Our second
solution, UdP, leverages NPoL and enables users to request
the setup of network paths that are tailored to their specific
constraints, e.g., that only cross network domains regulated by
appropriate legislation which matches their security policies.
We evaluated the feasibility and practicality of deploying our
solutions using a realistic testbed; our findings suggest that
our proposals can be deployed with minimal overhead within
existing OpenFlow-enabled networks.

ACKNOWLEDGMENT

The authors would like to thank Thomas Dietz for helpful
feedback and for the support in setting our implementation
testbed. The authors would also like to thank Francesco
Gringoli and Maurizio Dusi for the help in analyzing DSLAM
traffic traces.

REFERENCES

[1] OpenFlow, Available from http://www.openflow.org/. [Online].
Available: http://www.openflow.org/

[2] NEC, “ONF Case study: Kanazawa University Hospital,”
https://www.opennetworking.org/images/stories/downloads/
sdn-resources/customer-case-studies/cs-nec.pdf.

[3] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat, “B4: Experience with a Globally-Deployed
Software Defined WAN,” in Proceedings of ACM SIGCOMM, ser.
SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 3–14.
[Online]. Available: http://doi.acm.org/10.1145/2486001.2486019

[4] T. Taleb and A. Ksentini, “Follow Me Cloud: Interworking Federated
Clouds and Distributed Mobile Networks,” IEEE Network, vol. 27,
no. 5, pp. 12–19, 2013.

[5] “Software Defined Networking for Next Generation Internet Compo-
nents,” available from http://www.fp7-sparc.eu/goals/.

[6] A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Software
Defined Radio Access Network,” in Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp. 25–30.
[Online]. Available: http://doi.acm.org/10.1145/2491185.2491207

[7] L. E. Li, Z. M. Mao, and J. Rexford, “Toward Software-Defined
Cellular Networks,” in Proceedings of the European Workshop on
Software Defined Networking, ser. EWSDN ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 7–12. [Online]. Available:
http://dx.doi.org/10.1109/EWSDN.2012.28

[8] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and
M. Yu, “SIMPLE-fying middlebox policy enforcement using SDN,” in
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
ser. SIGCOMM ’13. New York, NY, USA: ACM, 2013, pp. 27–38.
[Online]. Available: http://doi.acm.org/10.1145/2486001.2486022

[9] R. Wan, D. Butnariu, and J. Rexford, “OpenFlow-Based Server Load
Balancing Gone Wild Into the Wild : Core Ideas,” in Proceedings of
USENIX Hot-ICE, 2011.

[10] N. Handigol and S. Seetharaman, “Plug-n-Serve: Load-balancing Web
Traffic using OpenFlow,” in Computer Communication Review (ACM
SIGCOMM), 2009.

[11] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding
attack detection using NOX/OpenFlow,” in Proceedings of the 2010
IEEE 35th Conference on Local Computer Networks, ser. LCN ’10.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 408–415.
[Online]. Available: http://dx.doi.org/10.1109/LCN.2010.5735752

[12] G. Karame, “Towards Trustworthy Network Measurements,” in TRUST,
2013, pp. 83–91.

[13] “China’s Internet hijack: Attack or accident?” available
from http://www.infoworld.com/t/routers-and-switches/
chinas-internet-hijack-attack-or-accident-461.

[14] “Iranian Internet Infrastructure and Policy Report,” available from http:
//smallmedia.org.uk//sites/default/files/u8/iiipjune.pdf.

[15] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson, “Spot Me if You Can: Uncovering Spoken Phrases in
Encrypted VoIP Conversations,” in Proceedings of the 2008 IEEE
Symposium on Security and Privacy, ser. SP ’08. Washington, DC,
USA: IEEE Computer Society, 2008, pp. 35–49. [Online]. Available:
http://dx.doi.org/10.1109/SP.2008.21

[16] M. Backes, G. Doychev, M. Dürmuth, and B. Köpf, “Speaker
Recognition in Encrypted Voice Streams,” in Proceedings of
the European conference on Research in Computer Security, ser.
ESORICS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 508–523.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1888881.1888921

[17] “US and UK spy agencies have cracked most online encryp-
tion,” available from http://www.thenational.ae/news/world/americas/
us-and-uk-spy-agencies-have-cracked-most-online-encryption.

[18] “The NSA Has A Devastating Backdoor Around Lots Of Web
Encryption,” available from http://www.businessinsider.com/
the-scariest-part-about-the-nsa-access-2013-9.

[19] D. Erickson, “The Beacon Openflow Controller,” in Proceedings of
the ACM SIGCOMM Workshop on Hot topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013,
pp. 13–18. [Online]. Available: http://doi.acm.org/10.1145/2491185.
2491189

[20] “Open Networking Foundation,” https://www.opennetworking.org/.
[Online]. Available: https://www.opennetworking.org/

[21] “Foursquare,” available from http://foursquare.com/.

[22] “Yelp,” available from http://www.yelp.com/.

[23] P. Gill, Y. Ganjali, B. Wong, and D. Lie, “Dude, where is that IP?:
Circumventing Measurement-based IP Geolocation,” in Proceedings of
the 19th USENIX conference on Security, ser. USENIX Security’10.
Berkeley, CA, USA: USENIX Association, 2010, pp. 16–16. [Online].
Available: http://dl.acm.org/citation.cfm?id=1929820.1929842

[24] M. A. Kâafar, L. Mathy, C. Barakat, K. Salamatian, T. Turletti, and
W. Dabbous, “Securing Internet Coordinate Embedding Systems,” in
SIGCOMM, 2007, pp. 61–72.

9

[25] M. A. Kâafar, L. Mathy, T. Turletti, and W. Dabbous, “Virtual Networks
under Attack: Disrupting Internet Coordinate Systems,” in CoNEXT,
2006, p. 12.

[26] S. Saroiu and A. Wolman, “Enabling New Mobile Applications
with Location Proofs,” in Proceedings of Workshop on Mobile
Computing Systems and Applications, ser. HotMobile ’09. New
York, NY, USA: ACM, 2009, pp. 3:1–3:6. [Online]. Available:
http://doi.acm.org/10.1145/1514411.1514414

[27] W. Luo and U. Hengartner, “VeriPlace: a Privacy-Aware Location
Proof Architecture,” in Proceedings of the International Conference
on Advances in Geographic Information Systems, ser. GIS ’10.
New York, NY, USA: ACM, 2010, pp. 23–32. [Online]. Available:
http://doi.acm.org/10.1145/1869790.1869797

[28] S. Čapkun, L. Buttyán, and J.-P. Hubaux, “SECTOR: Secure Tracking
of Node Encounters in Multi-hop Wireless Networks,” in Proceedings
of the 1st ACM workshop on Security of Ad Hoc and Sensor Networks,
ser. SASN ’03. New York, NY, USA: ACM, 2003, pp. 21–32.
[Online]. Available: http://doi.acm.org/10.1145/986858.986862

[29] A. Sheth, S. Seshan, and D. Wetherall, “Geo-fencing: Confining
Wi-Fi Coverage to Physical Boundaries,” in Proceedings of the 7th
International Conference on Pervasive Computing, ser. Pervasive ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 274–290. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-01516-8_19

[30] Broadband Forum, “Migration to Ethernet-based DSL Aggregation
- Issue 2,” Tech. Rep. 101, 2011, http://www.broadband-forum.org/
technical/download/TR-101_Issue-2.pdf.

[31] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern
Web Architecture,” ACM Trans. Internet Technol., vol. 2, no. 2, pp.
115–150, May 2002. [Online]. Available: http://doi.acm.org/10.1145/
514183.514185

[32] J. R. Douceur, “The Sybil Attack,” in Revised Papers from the
First International Workshop on Peer-to-Peer Systems, ser. IPTPS
’01. London, UK, UK: Springer-Verlag, 2002, pp. 251–260. [Online].
Available: http://dl.acm.org/citation.cfm?id=646334.687813

[33] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Packet Leashes: a Defense
against Wormhole Attacks in Wireless Networks,” in INFOCOM,
vol. 3. IEEE, Mar. 2003, pp. 1976–1986 vol.3. [Online]. Available:
http://dx.doi.org/10.1109/infcom.2003.1209219

[34] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki,
“Flicker: an Execution Infrastructure for TCB Minimization,” in Eu-
roSys, 2008, pp. 315–328.

[35] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. D. Gligor, and
A. Perrig, “TrustVisor: Efficient TCB Reduction and Attestation,” in
IEEE Symposium on Security and Privacy, 2010, pp. 143–158.

[36] “Government Internet Surveillance Starts With Eyes Built in
the West,” available from https://www.eff.org/deeplinks/2011/09/
government-internet-surveillance-starts-eyes-built.

[37] “Snowden: US Spies On China’s Universities and Mobile
Firms,” available from http://thediplomat.com/china-power/
snowden-us-spies-on-chinas-universities-and-mobile-firms/.

[38] “China could be leveraging electronic exports to spy on
the US,” available from http://www.techspot.com/news/
46494-china-could-be-leveraging-electronic-exports-to-spy-on-the-us.
html.

[39] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: the Second-
Generation Onion Router,” in Proceedings of the 13th conference on
USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 21–21. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251375.1251396

[40] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R. Curtis,
and S. Banerjee, “DevoFlow: Cost-Effective Flow Management for
High Performance Enterprise Networks,” in Proceedings of the ACM
SIGCOMM Workshop on Hot Topics in Networks, ser. Hotnets-IX.
New York, NY, USA: ACM, 2010, pp. 1:1–1:6. [Online]. Available:
http://doi.acm.org/10.1145/1868447.1868448

[41] D. Y. Huang, K. Yocum, and A. C. Snoeren, “High-Fidelity Switch
Models for Software-Defined Network Emulation,” in Proceedings of
the ACM SIGCOMM Workshop on Hot topics in Software Defined
Networking, ser. HotSDN ’13. New York, NY, USA: ACM, 2013,

pp. 43–48. [Online]. Available: http://doi.acm.org/10.1145/2491185.
2491188

[42] NEC, “NEC ProgrammableFlow UNIVERGE PF5240 Datasheet,” http:
//www.necam.com/docs/?id=5ce9b8d9-e3f3-41de-a5c2-6bd7c9b37246.

[43] Y. Chiba, Y. Shinohara, and H. Shimonishi, “Source Flow: Handling
Millions of Flows on Flow-based Nodes,” in Proceedings of ACM
SIGCOMM, ser. SIGCOMM ’10. New York, NY, USA: ACM, 2010,
pp. 465–466. [Online]. Available: http://doi.acm.org/10.1145/1851182.
1851266

[44] R. Bifulco, R. Canonico, M. Brunner, P. Hasselmeyer, and F. Mir, “A
Practical Experience in Designing an OpenFlow Controller,” in 2012
European Workshop on Software Defined Networking (EWSDN), 2012,
pp. 61–66.

[45] R. Bifulco, M. Brunner, R. Canonico, P. Hasselmeyer, and F. Mir,
“Scalability of a Mobile Cloud Management System,” in Proceedings
of the MCC workshop on Mobile cloud computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 17–22. [Online]. Available:
http://doi.acm.org/10.1145/2342509.2342514

[46] S. Capkun, M. Cagalj, G. Karame, and N. O. Tippenhauer, “Integrity
Regions: Authentication through Presence in Wireless Networks,” IEEE
Trans. Mob. Comput., vol. 9, no. 11, pp. 1608–1621, 2010.

[47] D. B. Faria and D. R. Cheriton, “No Long-term Secrets: Location-based
Security in Over-provisioned Wireless LANs,” in In Proceedings of the
ACM Workshop on Hot Topics in Networks (HotNets-III, 2004.

[48] V. Lenders, E. Koukoumidis, P. Zhang, and M. Martonosi, “Location-
based Trust for Mobile User-generated Content: Aplications, Challenges
and Implementations,” in Proceedings of the Workshop on Mobile
computing systems and applications, ser. HotMobile ’08. New
York, NY, USA: ACM, 2008, pp. 60–64. [Online]. Available:
http://doi.acm.org/10.1145/1411759.1411775

[49] S. Saroiu and A. Wolman, “I am a Sensor, and I Approve this
Message,” in Proceedings of the Workshop on Mobile Computing
Systems & Applications, ser. HotMobile ’10. New York, NY, USA:
ACM, 2010, pp. 37–42. [Online]. Available: http://doi.acm.org/10.
1145/1734583.1734593

[50] P. Gilbert, L. P. Cox, J. Jung, and D. Wetherall, “Toward
Trustworthy Mobile Sensing,” in Proceedings of the Workshop on
Mobile Computing Systems & Applications, ser. HotMobile ’10.
New York, NY, USA: ACM, 2010, pp. 31–36. [Online]. Available:
http://doi.acm.org/10.1145/1734583.1734592

[51] G. Karame, B. Danev, C. Bannwart, and S. Capkun, “On the Security
of End-to-End Measurements Based on Packet-Pair Dispersions,” IEEE
Transactions on Information Forensics and Security, vol. 8, no. 1, pp.
149–162, 2013.

[52] G. Karame, D. Gubler, and S. Capkun, “On the Security of Bottleneck
Bandwidth Estimation Techniques,” in SecureComm, 2009, pp. 121–
141.

[53] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular Composable Security Services for Software-
Defined Networks,” in Proceedings of the ISOC Network and Dis-
tributed System Security Symposium, 2013.

[54] P. Porras, S. Shin, S. Yegneswaran, M. T. M.W. Fong, and G. Gun, “A
Security Enforcement Kernel for OpenFlow Networks,” in Proceedings
of the ACM Sigcomm Workshop on Hot Topics in Software Defined
Networking (HotSDN), 2012.

[55] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “Avant Guard: Scalable
and Vigilant Switch Flow Management in Software-Defined Networks,”
in Proceedings of ACM Computer and Communications Security (CCS),
2013.

[56] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable Internet Protocol (AIP),” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 4, pp. 339–350, Aug. 2008.
[Online]. Available: http://doi.acm.org/10.1145/1402946.1402997

[57] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen, “SCION: Scalability, Control, and Isolation on Next-
Generation Networks,” in Proceedings of the 2011 IEEE Symposium
on Security and Privacy, ser. SP ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 212–227. [Online]. Available:
http://dx.doi.org/10.1109/SP.2011.45

10

