
Let SDN Be Your Eyes:
Secure Forensics in Data Center Networks

Adam Bates Kevin Butler
University of Oregon

{amb,butler}@cs.uoregon.edu

Andreas Haeberlen
University of Pennsylvania
ahae@cis.upenn.edu

Micah Sherr Wenchao Zhou
Georgetown University

{msherr,wzhou}@cs.georgetown.edu

Abstract—Discovering the causes of incorrect behavior in
large networks is often difficult. This difficulty is compounded
when some machines in the network are compromised, since
these compromised machines may use deception or tamper with
data to frustrate forensic analysis. Recently proposed forensic
tools enable administrators to learn the causes of some system
states in a partially compromised network, but these tools are
inherently unable to (1) observe covert communication between
compromised nodes or (2) detect attempts to exfiltrate sensitive
data.

In this paper, we observe that the emergence of
Software-Defined Networking (SDN) offers interesting new op-
portunities for network forensics. We sketch the design of an
SDN-based forensic system that can be used to investigate a wide
variety of faults in data center networks, including previously
unobservable attacks such as data exfiltration and collusion
between compromised nodes. Our key insight is that the network
itself can be used as a point of observation, which gives us
a holistic view of network activity. We show that a collection
of lightweight middleboxes would be sufficient to support this
functionality, and we discuss several additional challenges and
opportunities for SDN-based forensic tools.

I. INTRODUCTION

Investigating a possible security breach is often a tedious, man-
ual task. When the administrator observes a suspicious event –
perhaps an unusual log entry, or suspicious connection attempts
between unrelated machines – she must decide whether there
is an actual attack, or whether there is a benign explanation.
In a complex network, finding such an explanation can be
highly nontrivial even when the real cause is benign (say, a
malfunction or a misconfiguration); if the cause is an actual
intrusion, the attacker will probably try to cover his tracks, or
even make it appear as if the cause is on a different machine,
thus sending the administrator on a wild goose chase.

To aid system administrators, a variety of forensic tools
have been proposed to monitor and debug networks. Recently,
there has been work that formulates network accountability
and forensic analysis as a problem of data provenance [3].
Conceptually, provenance is a detailed history of events that
allows a user to understand how the present or past state of an

object was derived. Within the context of the data center, net-
work provenance can be used to trace back traffic and discover
the cause of an event [28]. For example, an administrator can
use a network provenance system to discover if a suspicious
routing table entry is due to a simple misconfiguration, the
result of a routing attack, or is actually benign.

Network provenance systems have been applied in dis-
tributed systems to detect faults and attacks while incurring
only modest overheads. These systems often rely on correct
(i.e., uncompromised, non-faulty) nodes to observe and record
the actions of other nodes for possible forensic uses. A limi-
tation of this approach is that, if an attacker carefully avoids
interacting with nodes that are not yet compromised, the attack
may remain invisible to the forensic system. This is particularly
problematic in data center networks that store sensitive data: if
these data are exfiltrated to a remote adversary, the provenance
system cannot identify the node that leaked the data unless the
leakage was observed by at least one correct node.

This paper is inspired by the observation that, through the
advent of software-defined networking (SDN), we can now use
the network itself as the observation point for a forensic system.
In this paper, we examine the issues related to incorporating
SDN into a network diagnostic tool. We show that, by letting
SDN be our eyes, system administrators are able to ascertain
the correctness of every machine when issuing a forensic
query, making it possible to detect the presence of previously
unobservable attacks. Our security properties are achieved
by leveraging the complete observability of network events
that is possible in data center networks with SDN. Perhaps
surprisingly, we show that such powerful guarantees can be
attained without introducing significantly greater overhead than
existing forensic systems. Moreover, we argue that such SDN-
based forensic systems can operate effectively in the presence
of compromised network components.

II. OVERVIEW

This paper considers the scenario that is illustrated in Figure 1.
An administrator (Alice) is running a data center and has
observed some kind of unexpected behavior within the network
(e.g., multiple connections to an unknown remote address, high
network traffic on a switch, etc.). Now, she must investigate
whether the behavior is legitimate or is indicative of a fault or
attack. Unfortunately, it is not possible for Alice to simply ask
the nodes about their activities. An attacker may have gained
complete control of a node and could return false information
in response to Alice’s request. Especially in the case of a
clandestine attack, failure to detect the cause of the observed
anomaly could have severe consequences. The attacker could

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
SENT ’14, 23 February 2014, San Diego, CA, USA
Copyright 2014 Internet Society, ISBN 1-891562-36-3
http://dx.doi.org/10.14722/sent.2014.23002

Alice&

Internet&

How&was&the&&
informa3on&
&&exfiltrated?&

Fig. 1: Motivating example for network forensics. Alice runs
a data center and suspects that sensitive data has been leaked
to the Internet by compromised nodes.

attempt to exfiltrate sensitive or classified information from the
node, as was the case with Operation Aurora [15].

A. Prior Work

To obtain reliable information about the network, Alice can
turn to a forensic system that answers queries about past and
present network state (e.g. “Why was this node sending so
much traffic at time t?”). Fearful of an active attacker, Alice
cannot rely on a tool designed for non-adversarial settings
(cf. [27], [30]) since adversaries may subvert the forensic
investigation by contributing false information. Alice might
also be wary of introducing trusted host components such
as a virtual machine monitor [1], [13], host-level monitor
[19], or operating system [20], as OSes and VMMs might
be susceptible to exploitable bugs and require significant
management overhead. Alice may consider turning to a trusted
hardware solution [4], but these require specialized devices and
can also be subject to compromise [12].

Secure Network Provenance (SNP) [29] has been proposed
as an alternate forensic system that can operate in untrusted
environments. SNP constructs a provenance graph based on
the execution of a network system, where each vertex in the
graph represents a system state or event, and an edge repre-
sents a direct causal dependency between the corresponding
system states or events. The constructed provenance graph
captures transitive causes/effects of any system state or events.
SNP then answers forensic queries by extracting a recursive
explanation from the provenance graph, effectively replaying
network events for Alice to review.

SNP instruments each node in the network to manage its
own tamper-evident log [8], recording the messages they send
to other nodes, as well as those they receive. When node A
sends a message to node B, A commits to the message with a
cryptographic signature using a private key known only to A.
In this manner, nodes are unable to forge messages about other
nodes’ activity. Later, when Alice issues a forensic query, SNP
performs on-demand retrieval of the records from the tamper-
evident logs. A consistency check is performed between node
responses to detect omissions or equivocations. Nodes that
have lied or omitted information are marked as faulty. SNP
provides the provable guarantee that an observable symptom
of a fault or an attack can be traced to a specific event on
at least one faulty node. Imposing less than 4% additional
runtime CPU load and requiring just 178 bytes per message
authenticator, the cost of provenance maintenance with SNP
is low enough to be practical [29].

B. Challenges

While SNP provides a strong guarantee even in a system that
is under attack, it makes concessions that limit its usability in
scenarios such as the one described in Figure 1. Since SNP
detects omissions and equivocations by checking inconsisten-
cies between node logs, multiple faulty nodes might coordinate
their lies in order to avoid detection. As a consequence,
SNP provides answers only to queries about behavior that
is observable by at least one correct node; that is, SNP can
answer questions about network activity when one or more
of the communicating nodes are uncompromised and fully
functioning. As the number of correct nodes in the network
decreases, so too does the observable network state, reducing
the network area the administrator can “see” when she issues
a query.

Outside of the observable network, compromised
nodes can exchange covert messages with impunity or even
engage in clandestine activity such as data exfiltration,
without fear of being detected. In addition, in the presence of
faulty nodes, SNP might return an incomplete result. Though
eventual detection is guaranteed, faulty nodes may coordinate
to minimize the “loss” caused by a detection. For instance,
a botnet master may sacrifice one compromised bot to free
itself from detection.

These limitations arise due to the reliance on end hosts
for information about network activity. While nodes are not
inherently trusted, a critical mass of correct nodes are required,
or else system performance begins to degrade. Even when
correct nodes are available, they are often poorly positioned
to observe the network interior. Even collectively, they cannot
achieve complete observability of the network, which is the
optimal goal of a forensic system.

C. SDN as a Global Observer

We envision that, with the advent of SDN, the network itself
can now be used as a point of observation in forensic systems.
Rather than rely on reports from end nodes, we can transform
every network link into a reporting tool by programming a
distributed set of SDN switches and middleboxes. Accom-
plishing such a feat in a traditionally network system would
have been costly and extraordinarily complicated, requiring a
proxy box between every node in the network. Based on a set
of programmable flow table rules, SDN allows us to perform
complex sets of operations on a packet as it enters a switch. By
pattern matching in the packet headers, these operations permit
dropping unauthorized communications, modifying headers,
and forwarding packets to potentially multiple other points in
the network. When an operation is not possible within the
switch itself (e.g., deep packet inspection), packets can be
forwarded to middleboxes or the network controller for further
processing [2], [10]. As we show in the rest of the paper,
by leveraging these SDN functionalities, a set of lightweight
middleboxes is sufficient to enable a holistic view of network
activities even in untrusted environments.

III. DESIGN CONSIDERATIONS

In this section, we develop the design of an SDN-based
forensic system for data center networks.

2

Road map. In Section III-A, we discuss the core function-
ality that we need from software-defined networking. Noting
that the capabilities within an OpenFlow switch are insufficient
to accomplish our goals, we introduce Provenance Verification
Points, middlebox components for forensic packet processing.
Section III-B considers where to place these devices in the net-
work: either as in-line devices that actively interpose on traffic,
or as passive monitors of network activity. Acknowledging that
efficiency will be critical to our architecture’s practicality, we
develop a verification protocol in Section III-C that minimizes
the computational requirements of our forensic components. In
Section III-D, we discuss the security properties of our design.
Finally, Section III-E considers the implications of including
our SDN components within the network’s trusted computing
base.

Threat model. This work considers the task of foren-
sic analysis in a data center that is comprised entirely of
SDN/OpenFlow switches. Many recent reports have indicated
growing interest in the deployment of SDN in real-world data
centers [6], [11].

At any time, one to many of the data center’s nodes may
suffer a benign failure or be compromised by a malicious
attacker. Nodes may not only crash, but also silently change
behavior and continue to operate. It then becomes the admin-
istrator’s task to determine the cause of the problem, bearing
in mind that the affected nodes may take countermeasures
to evade detection. Therefore, we conservatively assume that
Byzantine faults [16] will occur – adversarial nodes do not
need to obey our protocols and may behave arbitrarily –
and we say that the affected nodes are faulty, regardless
of whether they are compromised or simply malfunctioning.
(We also say that a uncompromised, non-faulty nodes are
correct.) In particular, faulty nodes may attempt to hide
from the administrator and they may collude, although any
messaging that occurs between them must flow through SDN
switches (as with all other data center traffic). We assume the
standard computational bounds—our adversary cannot invert
cryptographic hashes or forge digital signatures.

We assume that all inter-node communication in the
data center takes place through the monitored physical net-
work; out-of-band communication via wireless technologies or
sneaker nets is not possible. Similarly, communication entering
or leaving the data center must pass through SDN switches. We
leave the matter of covert channels (e.g. timing) to future work,
although we discuss a possible detection strategy in Section IV.
For simplicity, we assume that the network is lossless, although
we also discuss the implications of packet loss in Section IV.

Finally, we make the following assumptions about security
of our network infrastructure. We assume that our switches and
network controller cannot be compromised by an adversary.
Mechanisms for SDN security is an emerging field that is
out of scope to this work [14], [22], [23], [26]. Finally, we
introduce a forensic middlebox in Section III-A; we do not
assume that these middleboxes are secure. We address the
matter of middlebox failure in Section III-E.

A. OpenFlow Requirements

While SDN allows us to extend network functionality, there
are limits to the operations that can be performed on an

Network(Controller(/(Administrator(

PVP(PVP(PVP(PVP(

Fig. 2: Provenance Verification Points (PVPs) are SDN middle-
boxes that collect forensic information. Dotted lines represent
logical groupings and links, and solid lines represent physical
links.

OpenFlow switch. These actions include packet forward-
ing, dropping, flooding, and header modification [21]. Ac-
tion sets are associated with flow table rules that are en-
abled through performing pattern matching over the packet
header fields. OpenFlow switches also maintain minimal state
per flow. More complex features (e.g., inspecting packet pay-
loads) can be achieved by forwarding packets to the network
controller or to some other middlebox; traffic replication for
enhanced network features is an application of SDN that is
available in enterprise products [2] and has been explored in
the literature [7], [10]. Our architecture relies on two SDN
primitives: forwarding traffic to middleboxes, and dropping
traffic that does not adhere to a specified behavior.

The SDN functionality available on a switch is not suffi-
cient to build a forensics system, so our design must feature a
middlebox component. We call these middleboxes Provenance
Verification Points, or PVPs. Each PVP is responsible for mon-
itoring activity for some subset of system nodes; determining
the exact number of middleboxes required for deployment is
a task that is explored elsewhere in the literature [5], [7], [9],
[24], [25]. As a demonstrative example, Figure 2 shows a FAT
tree topography in which one PVP is allocated to monitor
traffic in each pod [17].

For each permissible flow type in our data center, we
install OpenFlow forwarding rules that direct traffic through
a PVP. These rules act as hooks into our forensic system.
In short, our SDN policies ensure that all traffic is either
blocked or monitored. The adversary is able to communicate
across the network through the permitted flows; however, the
administrator will later be able to uncover the adversary’s
actions by issuing forensic queries. In the remainder of this
section, we explore how to best integrate the PVP component
into our forensic tool.

B. Middlebox Routing

We first consider how to route network traffic to the PVPs.
The two basic forms of middlebox routing are visualized in

3

PVP#

m

m m

m
(1)#

(2)#

(3)#
(4)#

(a) Traffic Interposition

PVP#

m

m

m
(1)#

(2)#

(2)#

(b) Traffic Mirroring

Fig. 3: Two methods of PVP interaction. The time of each message transmission is marked in parentheses.

Figure 3: traffic interposition (3a) and traffic mirroring (3b).
For our purposes, traffic interposition would allow PVPs to
actively enforce message commitment protocols, dropping
messages that were not digitally signed by the senders. In
contrast, traffic mirroring does not allow instantaneous policy
enforcement, but minimizes packet latency.

Due to the additional latency imposed by traffic interpo-
sition, we opt for the passive observation model of traffic
mirroring. A negative consequence of our choice is that our
forensic system cannot actively detect (or prevent) exfiltration
attempts since PVPs may receive copies of outgoing packets
after the corresponding copies have exited the data center.
However, our design still significantly aids in the forensic
process since the PVPs capture a copy of all traffic that
occurred during the exfiltration. Hence, PVPs may still provide
verification over network events (explained in the next section)
and investigators can identify the source of the exfiltration.

More generally, when a PVP detects a message that has
not been properly signed, it can alert the system administrator
and request that the network controller isolate the offending
node.1 Insertion of flow table rules has been shown to add
processing delays on the order of tens of milliseconds [23];
taking into account processing delay at the PVP, we estimate
that the faulty node could be sandboxed within hundreds of
milliseconds of its first unauthorized transmission.

C. Lightweight Monitoring

While SDN makes it easy to mirror packet transmissions to
arbitrary points in the network, it is much more difficult to
process those packets in a manner that allows the forensic
system to keep up with network traffic. If the PVPs are slower
than the network’s real time communications, their buffers
would become exhausted, leading to message loss, which in
turn would break the complete observation property that we
are attempting to achieve in our forensic system. We thus
identify the minimum functionality necessary for PVPs to
provide while still facilitating complete and correct forensic
querying. This means that PVPs must possess all of the
required information to help Alice explore complex series of
states, such as inspecting the causal chain that led to a packet’s
transmission.

To accomplish this, we propose that the PVPs operate as a
verification layer in an inter-node commitment protocol, much

1We separate PVPs and network controllers in our design, but the PVP
component could also run atop the controller.

like the accountability system described in PeerReview [8],
[29]. PeerReview allows correct nodes to defend themselves
against false accusations, but it cannot attest to the actions
of multiple incorrect nodes that communicate. Extending the
PeerReview protocol with PVPs makes these attestations possi-
ble. Each cross-node communication, even between two faulty
nodes, is monitored by the corresponding PVP, and an evidence
for the communication is retained. Such capability allows
PVPs to achieve full observability and catch a wider class of
misbehavior than SNP.

Informally, the PVP participates in the commitment as
follows: Node A wishes to send a message m to node B. To
do so, A first records an entry for m in a local append-only
tamper-evident log. As A appends to the log, a hash chain
of its actions is incrementally built. Next, A sends m to B
along with a signed copy of the new hash, as well as a short
hash chain segment that connects this hash to the previous
signed hash. Within the network, this message is mirrored and
arrives at both Node B and a PVP. Both B and the PVP verify
A’s signature and the hash chain. The PVP stores the signed
authenticator, and then discards the message. Meanwhile, Node
B continues the protocol by sending an acknowledgement
(ACK) to A, following the same procedure as A did in its
original message. The network also mirrors the ACK such that
it arrives at Node A and the PVP. Both A and the PVP verify
B’s signature and hash chain, and the PVP retains this signed
authenticator. The PVP now possesses proof of both message
m and its acknowledged receipt.

Later, Alice suspects a potential attack on her network
around the time m was sent. She queries the nodes in the
network about m, its derivation, and its consequences. That
is, she asks “Why did m exist at time t, and what other events
were a result of m?”. Consider the case in which A and B
are both faulty and wish to hide m’s presence. In previous
accountability systems, they would have been able to deny
knowledge of message m, as no correct system component
observed m’s existence. However, the PVP now possesses
proof of m’s transmission by A and receipt by B. Alice
can demand a transcript of network activity from the relevant
parts of A’s and B’s respective local logs, then compare the
transcripts to the PVP’s list of authenticators. She will be able
to detect the absence of the message and its acknowledgment,
and declare both A and B to be faulty.

4

The above protocol can be optimized such that the PVP
can maintain all state within memory, avoiding the need to
write to disk. Periodically, each node can be required to report
on the contents of their local log. The PVP can use this report
to confirm that its own records are complete, then chain the
hashes together and discard the individual authenticators. The
end of the hash chain serves as a proof of a node’s activity over
the entire timespan. A node that fails to report on its activity
within a required time interval is flagged as faulty.

D. Security Properties

We have sketched the design for a distributed set of SDN
components. The message commitment system employed rep-
resents the previous state of the art in forensic analysis [29].
We now summarize the additional guarantees that are provided
by our SDN-based tool:

Detect covert communication. In traditional net-
work architectures, capturing messages exchanged between
compromised nodes is difficult: if no honest node is on the
path between the two compromised nodes, then the commu-
nication will go unnoticed. Our global observer model (see
Section II-C) eliminates unmonitored communication paths for
explicit messages by instantiating SDN policies that forward
a copy of all communication to a PVP. When PVPs are
queried during a forensic investigation, the network operator
will discover the attempted covert communication.

Detect equivocation. In previous systems, nodes were able
to equivocate about their actions when responding to multiple
queries; a faulty node could make inconsistent claims about the
local inputs through which a particular message was derived.
For example, in a BGP application, a faulty node could send
conflicting route updates to two of its neighbors. In the past,
both of the neighbors would need to be correct at query time in
order to detect this lie. Using PVPs, though, we already have
a full snapshot of network events. As a result, the inconsistent
claims of the faulty node can be detected.

Response availability. As specified, our system cannot
guarantee that forensic records will still exist at the time that
a query is issued. This is because message content is recorded
locally by the nodes, rather than globally at the PVPs. As
a result, when a node becomes faulty through compromise
or drive failure, we must assume its forensic records will be
lost. However, by maintaining the authenticators associated
with each message, PVPs possess a proof of each node’s
correspondence. Because the PVPs possess the authenticators
associated with the lost forensics, the absence of the records is
detectable by the administrator. As a result, the administrator
will know that the node is faulty, even though she will be
unable to observe some of its actions.

One of the primary objectives of a forensic system is to
identify nodes that are incorrect due to compromise, hardware
failure, etc.; through storing message authenticators, the PVPs
offer the ability to detect all incorrect nodes in the network at
any time. This is already a powerful guarantee. However, in
environments where all network activity must be guaranteed to
be replayable at a later date, we note that the PVP architecture
would also be able to facilitate this ability. To do so, the
PVPs would need to keep a complete log of all messages,

rather than solely storing the authenticators. This additional
forensic power would require significantly more computational
provisioning for the PVP architecture.

E. Are PVPs Trustworthy?

Up to this point, we have treated the PVPs as a trusted
component. We consider the PVP to be a highly specialized
middlebox that is only responsible for its role in the verifi-
cation protocol. The PVP must receive packets, verify their
signatures, perform a hashing operation, and then respond to
queries from the network operator. We estimate that the PVP
could be implemented in a sufficiently small codebase to be a
candidate for formal verification. It may even be possible to
implement the PVP in hardware as an ASIC device [4].

However, it is not strictly necessary to trust the PVPs.
Since nodes commit their messages to one another using
cryptographic signatures, nodes have the required evidence to
defend themselves if the PVP presents a false history of events.
The PVP does not possess the private keys of the nodes, and
so cannot forge messages.

More generally, if a PVP is faulty, then the global ob-
servation property no longer holds. Importantly, the portion
of the network that is monitored by correct PVPs maintains
the security properties described in the previous section (since
all messages in that segment of the network are observed by
honest observers). Notably, in the presence of faulty PVPs, the
security guarantees of our system gracefully degrade to those
provided by SNP [29].

Additionally, a dishonest PVP can falsely claim that a node
has sent an unauthenticated message. Because a node cannot
present evidence that it did not send a particular message, this
creates the potential for deniability and inconsistency between
messages from the accused node and the dishonest PVP. In
this case, it will be necessary for the system administrator to
intervene and resolve the conflict and determine whether the
node or the PVP is faulty (or both).

IV. DISCUSSION

Building the Provenance Verification Points presents a variety
of technical challenges and opportunities. Having described
a prototype PVP design that allows a holistic view of the
network, we identify some additional challenges that we hope
to address in future work:

Message loss. Message loss sometimes is inevitable in
networks due to traffic bursts, policy errors, or malicious
attacks. However, we believe that some features of SDN can
be used by the PVPs to detect and recover from message loss.
We consider the following two scenarios:

If message loss occurs between a sender node A and
the corresponding receiver node B (i.e., B did not receive
the message sent by A), then B will not send an ACK and
A can retransmit the message after a timeout expires. The
PVP will observe the retransmission and (eventually) B’s
acknowledgment of the message.

If message loss occurs between either A or B and the PVP,
then the PVP will be able to detect the drop by polling the

5

switch for flow statistics [21]; the switch’s bytes sent will not
match the PVP’s bytes received.

Timing side channels. In networked systems and even
individual hosts, covert channels are myriad, and can be
difficult to detect and remove. While our system captures all
explicit message exchanges, the monitored network may be
vulnerable to a timing side channel attack in which faulty
notes can send implicit messages to one another through
measurement delays between innocuous explicit messages. We
remark that, by recording timing information in our message
commitment protocol [29], the administrator will have the
necessary information to later test for the presence of the
timing channel. Timing based channels have been shown to
be difficult to hide from a suspicious observer [18], and so the
administrator may catch the faulty nodes through replaying the
portion of the log in which the covert message was embedded.

Forensic automation. A common obstacle to forensic
system deployment is the requirement for application in-
strumentation. For example, SNP required the insertion of
several hundreds of lines of code in the Hadoop MapReduce
implementation [29]. We envision that SDN can also be used
to overcome this obstacle by extending the concept of external
specifications of application behavior. External specifications
were proposed in SNP as a method of overcoming closed-
source applications; the specification was placed in a proxy
box, which would use the high-level description of application
behavior in order to extract network provenance. We believe
that external specifications could also be expressed as a set of
flow table rules that handle the different forms of application
traffic. We intend to write a utility that parses a specification
and outputs OpenFlow rules, thus automating the process of
programming the network. These rules would be responsible
for directing network traffic to additional forensic middle-
boxes, which would remove the need for instrumentation
within the nodes.

Performance considerations. Our system is based on a
message commitment architecture that has been shown to
impose acceptable overheads [29]. We anticipate the discovery
of further interesting design tradeoffs in the deployment of our
architecture. For example, network overhead will decrease as
the placement of PVPs becomes more localized within the net-
work; however, this will require provisioning additional PVPs.
Additionally, PVPs may periodically fail. Compensating for
PVP failure requires the introduction of PVP redundancy and
an efficient form of recovery. We intend to better characterize
the tradeoffs between reliability and performance in future
work.

V. CONCLUSION

This paper explores software-defined networking’s ability to
aid in the forensic analysis of distributed systems. While SDN
grants novel capabilities, we have shown that the design of
SDN-based forensic components must be carefully considered
prior to deployment in data center environments. Through
introducing the Provenance Verification Point component, we
have demonstrated the ability to detect the presence of attacks
that were previously unobservable by forensic systems. In do-
ing so, we have shown that SDN is an important missing piece

in existing forensic systems that allows system administrators
to achieve total observability of network activity.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their insightful com-
ments and suggestions. This work is partially supported by
the National Science Foundation through grants CNS-1054229,
CNS-1064986, CNS-1065130, CNS-1118046, CNS-1149832,
CNS-1204347, and CNS-1254198, and by DARPA contract
FA8650-11-C-7189.

REFERENCES

[1] M. Basrai and P. M. Chen. Cooperative Revirt: Adapting Message
Logging for Intrusion Analysis. Technical Report CSE-TR-504-04,
University of Michigan, 2004.

[2] Big Switch Networks, Inc. Big Tap: Monitor Traffic Everywhere, De-
liver Traffic Anywhere, 2012. Available at http://www.bigswitch.com/
products/big-tap-network-monitoring.

[3] P. Buneman, S. Khanna, and T. Wang-Chiew. Why and Where: A
Characterization of Data Provenance. In International Conference on
Database Theory (ICDT), Jan 2001.

[4] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
Append-Only Memory: Making Adversaries Stick to Their Word. In
Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), Oct 2007.

[5] C. Dixon, H. Uppal, V. Brajkovic, D. Brandon, T. Anderson, and
A. Krishnamurthy. ETTM: A Scalable Fault Tolerant Network Manager.
In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation (NSDI), Mar 2011.

[6] S. Elby. Software Defined Networks: A Carrier Perspective. In Open
Networking Summit, Oct 2011.

[7] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward Software-
Defined Middlebox Networking. In Proceedings of the 11th ACM
Workshop on Hot Topics in Networks (HotNets), Aug 2012.

[8] A. Haeberlen, P. Kouznetsov, and P. Druschel. PeerReview: Practical
Accountability for Distributed Systems. In ACM Symposium on Oper-
ating Systems Principles (SOSP), Oct 2007.

[9] B. Heller, R. Sherwood, and N. McKeown. The Controller Placement
Problem. In Proceedings of the 1st Workshop on Hot topics in Software
Defined Networks (HotSDN), Aug 2012.

[10] V. Heorhiadi, M. K. Reiter, and V. Sekar. New Opportunities for
Load Balancing in Network-wide Intrusion Detection Systems. In Pro-
ceedings of the 8th International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), 2012.

[11] U. Hoelzle. OpenFlow at Google. Available at http://youtu.be/
VLHJUfgxEO4.

[12] B. Kauer. OSLO: Improving the Security of Trusted Computing. In
USENIX Security Symposium, Aug 2007.

[13] S. T. King and P. M. Chen. Backtracking intrusions. In Proceedings
of the 19th ACM Symposium on Operating Systems Principles (SOSP),
Oct 2003.

[14] D. Kreutz, F. M. Ramos, and P. Verissimo. Towards Secure and
Dependable Software-Defined Networks. In Workshop on Hot Topics
in Software Defined Networks (HotSDN), August 2013.

[15] G. Kurtz. Operation Aurora Hit Google, Others, Jan 2010. Available
at http://securityinnovator.com/index.php?articleID=42948§ionID=
25.

[16] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals
Problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[17] C. E. Leiserson. Fat-trees: Universal Networks for Hardware-efficient
Supercomputing. IEEE Trans. Comput., 34(10):892–901, Oct. 1985.

[18] X. Luo, P. Zhou, J. Zhang, R. Perdisci, W. Lee, and R. K. C. Chang.
Exposing Invisible Timing-Based Traffic Watermarks with BACKLIT.
In Proceedings of the 27th Annual Computer Security Applications
Conference (ACSAC), Dec 2011.

6

http://www.bigswitch.com/products/big-tap-network-monitoring
http://www.bigswitch.com/products/big-tap-network-monitoring
http://youtu.be/VLHJUfgxEO4
http://youtu.be/VLHJUfgxEO4
http://securityinnovator.com/index.php?articleID=42948§ionID=25
http://securityinnovator.com/index.php?articleID=42948§ionID=25

[19] P. Mcdaniel, K. Butler, S. Mclaughlin, R. Sion, E. Zadok, and
M. Winslett. Towards a Secure and Efficient System for End-to-
End Provenance. In USENIX Workshop on Theory and Practice of
Provenance (TaPP), Feb 2010.

[20] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer.
Provenance-aware Storage Systems. In USENIX Annual Technical
Conference (ATC), May 2006.

[21] OpenFlow Switch Consortium. OpenFlow Switch Specification Version
1.1.0, February 2011. Available at http://www.openflow.org/documents/
openflow-spec-v1.1.0.pdf.

[22] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu. A
Security Enforcement Kernel for OpenFlow Networks. In Workshop on
Hot Topics in Software Defined Networks (HotSDN), August 2012.

[23] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore.
OFLOPS: An Open Framework for Openflow Switch Evaluation. In
International Conference on Passive and Active Measurement (PAM),
Mar 2012.

[24] S. Schmid and J. Suomela. Exploiting Locality in Distributed SDN
Control. In Proceedings of the 2nd Workshop on Hot Topics in Software
Defined Networks (HotSDN), Aug 2013.

[25] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design
and Implementation of a Consolidated Middlebox Architecture. In
Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation (NSDI), Apr 2012.

[26] S. Shin and G. Gu. Attacking Software-Defined Networks: A First
Feasibility Study (short paper). In Workshop on Hot Topics in Software
Defined Networking (HotSDN), Aug 2013.

[27] A. Singh, P. Maniatis, T. Roscoe, and P. Druschel. Using Queries
for Distributed Monitoring and Forensics. In European Conference on
Computer Systems (EuroSys), Apr 2006.

[28] W. Zhou, E. Cronin, and B. T. Loo. Provenance-aware Secure Networks.
In International Conference on Data Engineering Workshop, 2008.

[29] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr.
Secure Network Provenance. In ACM Symposium on Operating Systems
Principles (SOSP), Oct 2011.

[30] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao. Efficient
Querying and Maintenance of Network Provenance at Internet-scale.
In ACM International Conference on Management of Data (SIGMOD),
June 2010.

7

http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

	Introduction
	Overview
	Prior Work
	Challenges
	SDN as a Global Observer

	Design Considerations
	OpenFlow Requirements
	Middlebox Routing
	Lightweight Monitoring
	Security Properties
	Are PVPs Trustworthy?

	Discussion
	Conclusion
	References

